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CrI3 revisited with a many-body ab initio theoretical approach
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CrI3 has recently been shown to exhibit low-dimensional, long-range magnetic ordering from few layers
to single layers of CrI3. The properties of CrI3 bulk and few-layered systems are uniquely defined by a
combination of short-range intralayer and long-range interlayer interactions, including strong correlations,
exchange, and spin-orbit coupling. Unfortunately, both the long-range van der Waals interactions, which are
driven by dynamic, many-body electronic correlations, and the competing strong intralayer correlations, present
a formidable challenge for the local or semilocal mean-field approximations employed in workhorse electronic
structure approaches like density-functional theory. In this paper we employ a sophisticated many-body ap-
proach that can simultaneously describe long- and short-range correlations. We establish that the fixed-node
diffusion Monte Carlo (FNDMC) method reproduces the experimental interlayer separation distance of bulk
CrI3 for the high-temperature monoclinic phase with a reliable prediction of the interlayer binding energy. We
subsequently employed the FNDMC results to benchmark the accuracy of several density-functional theory
exchange-correlation approximations.
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I. INTRODUCTION

Since graphene was exfoliated, significant advances in ex-
perimental techniques have resulted in the rapid discovery of
two-dimensional materials [1–5]. These materials provide a
broad range of band gaps and electronic properties such as
high carrier/thermal conductivity, optochemical reactivity, and
piezoresistive effects. Despite this rapid discovery of novel
2D materials, it took nearly a dozen years to discover two-
dimensional magnets [6,7].

Recently, it was demonstrated that long-range magnetic
order in CrI3 persists down to a single monolayer [6]. This
finding marked a milestone in the community, as the exis-
tence of the long-range magnetic order in a two-dimensional
material was thought to be prohibited by the Mermin-Wagner
theorem. The apparent contradiction was explained by the
fact that spin-rotational invariance, a premise in the the-
orem, is no longer present in CrI3 because of spin-orbit
interactions, which induce single-ion spin anisotropy [8]. An
additional interesting finding regarding this material is that the
magnetic ordering is intimately related to the stacking config-
uration and the number of layers. Rhombohedral CrI3 bulk
exhibits ferromagnetic interlayer interactions. On the other
hand, few-layered CrI3 has a different stacking configuration,
similar to monoclinic CrI3 bulk, and exhibits antiferromag-
netic interlayer interactions. As a result, monolayer CrI3 is a
ferromagnet, while bilayer CrI3 is a layerwise antiferromag-
net, and trilayer Cri3 is a layerwise ferrimagnet, in which
the layers are magnetized in different directions alternately
(denoted as ↑↓↑) [9,10].

*ichibha@icloud.com

This material is particularly attractive owing to the pos-
sibility of dynamically controlling the spin orderings in a
few-layer CrI3. For example, an electric or magnetic field
applied to bilayer or trilayer CrI3 switches the spin order-
ings and consequently alters the magnetoresistance [11–13].
Moreover, bilayer CrI3 is proposed for use as “the antiferro-
magnet layer of magnetic tunnel junctions (MTJs)” [11] and
“voltage-controlled magnetic memories with low operation
energy.” [13] A recent work by Song et al. [14] reported that
the magnetic state can be tuned by pressure. They found that
the antiferromagnetic phase of the bilayer CrI3 vanishes under
a pressure of 2.7 GPa. Furthermore, they established that in
trilayer CrI3 a fully ferromagnetic phase ↑↑↑, as well as a
new magnetic phase ↑↑↓, appear at high pressures. The ↑↓↑
and ↑↑↓ phases had different numbers of antiferromagnetic
interfaces resulting in differences in their respective magne-
toresistances. The three magnetic phases remained even after
the applied pressure was removed, as such it is thought that a
first order structural transitions are involved in the magnetic
transitions.

In addition to the experimental research, CrI3 has been
studied theoretically with ab initio methods focused on pre-
dicting the magnetic ground state and explaining magnetic
transitions. For instance, prior to the experimental realization
of 2D magnetism in CrI3 [6], McGuire et al. [15] predicted
that the ferromagnetic state would be significantly more sta-
ble than the nonmagnetic state in monolayer CrI3 using
first principles calculations. Sivadas et al. [16] elucidated
why the magnetic order of bilayered CrI3 changes between
ferromagnetic and antiferromagnetic depending on the stack-
ing configuration. They explained the magnetic transition by
demonstrating that interlayer super-super exchange effects
between chromium d orbitals mediated by iodine p orbitals
determine the magnetic state. The configuration-dependent
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magnetic transition agrees with an experiment showing that
trilayer CrI3 has three different magnetic phases with different
structures [14].

Nevertheless, accurate predictions with ab initio methods
for these layered materials remain a difficult problem because
of the simultaneous presence of noncovalent interlayer in-
teractions and of highly correlated electrons occupying the
d orbitals in Cr, which are both significant challenges for
mean field approaches. The introduction of vdW corrections
in density-functional theory (DFT) improves the description
of the noncovalent interlayer forces, in practice. However, the
results are sometimes not quantitatively reliable: They change
significantly depending on the parametrization of the van der
Waals (vdW) correction and the treatment of the exchange
energy [17–20].

To obtain reliable predictions independent of adjustable
parameters without the mean-field approximation, we use the
fixed-node diffusion Monte Carlo method (FNDMC). This
method is one of the most reliable choices since it removes
any excited-state components from a wave function using
the projection operator, e−Ĥτ |�〉 (τ → ∞): The wave func-
tion is optimized within the many-body form [21]. FNDMC
has made accurate predictions of several layered materials
[19,20,22–28]. Mostaani et al. [23] calculated the interlayer
binding curve of bilayer graphene with FNDMC, successfully
reproducing the experimental out-of-plane zone-center optical
phonon frequency. Shin et al. [22] concluded that bilayer
α-graphyne is more stable than bilayer graphene using
FNDMC, contrary to the DFT prediction. They found that
FNDMC predicted a comparatively huge density of electron
population between the layers in α-graphyne. Thus, they con-
cluded that α-graphyne is stabilized by interlayer covalent
bond formation in the FNDMC prediction. Kadioglu et al.
[29] predicted the relative stability of buckled and washboard
phases for monolayer and bilayer arsenene.

In this paper, we report FNDMC results on the inter-
layer binding properties of monoclinic bulk CrI3. We find
that FNDMC reproduced the experimental interlayer sepa-
ration distance [15] without adjustable parameters. In the
absence of accurate experimental data for the binding energy,
FNDMC provided an accurate benchmark for establishing
the accuracy of state-of-the-art approximations used in DFT.
We show that the vdW correction in DFT is necessary to
reproduce the interlayer binding properties. Most notably,
the vdW–DF–optB88 and vdW–DF–optB86b functionals [30]
reproduced the FNDMC-reference interlayer separation dis-
tance and binding energy.

The rest of the paper is organized as follows: In Sec. II
we describe the technical details of our DFT and FNDMC
calculations. Especially, we explain how we carefully dealt
with the errors peculiar to FNDMC such as the one-body
finite-size error, fixed-node approximation error, and time step
error. In Sec. III we discuss and analyze our results. We give
an accurate prediction of the interlayer binding energy of
the monoclinic structure, carefully considering the two-body
finite-size error in the bulk and monolayer structures. We
show that our FNDMC reproduced the experimental interlayer
separation distance. Finally, we evaluate the DFT functionals
mentioned earlier compared with the reference binding energy
and separation distance. This work is summarized in Sec. IV.

FIG. 1. Total energies of the rhombohedral structure predicted by
FNDMC with LDA+U trial wave functions with different U values.
The total energies are given as the relative differences from the lowest
data point. The optimal U value is estimated to be U = 2.4(4) eV by
quadratic fitting (dashed line).

II. CALCULATION DETAILS

We used QMCPACK [31] for the FNDMC calculations.
We used Slater-Jastrow–type trial wave functions [21], which
have proved to be sufficiently accurate in numerous applica-
tions of FNDMC for both correlated and vdW materials. The
orbital functions comprising the Slater determinant were gen-
erated by the local-density approximation (LDA) +U method
implemented in Quantum Espresso (QE) [32]. We modified
the value of U to alter the nodes of the trial wave function.
Figure 1 shows the relationship between the FNDMC total
energies and the U values. According to the variational prin-
ciple, optimal nodes correspond to a minimum of the total
FNDMC energy. It can be seen that the dependence of the
energy on U is weak in this system for low to moderate values
of U . Since the minimum is estimated to be U = 2.4(4) eV by
quadratic fitting, we used U = 2.5 eV for all the calculations.
We used the BFD pseudopotential for iodine atoms [33,34].
Meanwhile, we used our own pseudopotential for chromium
atoms [35], since a 40% decrease in the locality error from
the BFD pseudopotentials was achieved with our pseudopo-
tentials for the 3d transition metal atoms. Because of the
intrinsic plane wave hardness of the potentials, a high-energy
cutoff of 300 Ry was required to obtain FNDMC trial wave
functions from the DFT calculations [35,36]. The Jastrow
factor contained one-, two-, and three-body terms amounting
to 160 variational parameters in total, which were optimized
by the “linear” method [37] implemented in QMCPACK.

A FNDMC calculation is accompanied by two kinds of
system-size errors, which are larger for smaller simulation
cells. They are called one- and two-body finite-size errors
[38]. The one-body finite-size error is caused by insufficient
sampling of the Brillouin zone. This error is suitably han-
dled with twist-averaged boundary conditions that is similar
to the k-points sampling in DFT. In this paper, we used
the reciprocal grid equal to or larger than 3 × 3 × 3 per
2 f.u. The resulting one-body finite-size error was kept below
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FIG. 2. Total energies per formula unit of the monoclinic
structure predicted by FNDMC with different grid sizes of twist-
averaging. The total energies are given as relative differences from
that with a 4 × 4 × 4 grid. This figure indicates the one-body finite-
size error is sufficiently suppressed with a 3 × 3 × 3 grid.

10 meV/f.u., as shown in Fig. 2. The two-body finite-size
error is attributed to the overestimation of the interaction
distance between an electron and its making exchange-
correlation (XC) holes (i.e., a suppression of the electronic
density caused by the presence of the electron) in the periodic
cells. The influence of periodic images on this interaction
is generally negligible for practically used cell sizes [38].
However, in a typical implementation of the potentials under
the periodic boundary condition (i.e., Ewald method [39]),
an electron is significantly affected by the XC holes of the
periodic images. Fortunately, the influence on the total energy
can be estimated by extrapolating the total energy on the
inverse of the simulation cell size. Also schemes to cancel
out the spurious interactions can be used [38]. We used the
extrapolation scheme to estimate the two-body finite-size er-
ror with the Ewald method as discussed in the first paragraph
of Sec. III.

We used the Gaussian charge screening breakup method,
an Ewald-class method, rather than the optimized breakup
method (default setting of current version of QMCPACK)
[40], because of known numerical instabilities in the latter
method for some quasi-2D systems [41]. With the Gaussian
charge screening breakup method, care must be taken to min-
imize the error induced by the exclusion of nearest neighbor
images in the real-space portion of the Ewald sum. The range
of the real-space portion of the Ewald potential is controlled
by the LR_DIM_CUTOFF parameter in QMCPACK [31],
with a larger cutoff giving a smaller error. We confirmed
that cutoffs equaling 15, 20, and 25 gave 136.1, 11.6, and
1.0 meV/f.u. biases, so we used a cutoff equaling 20 or larger.

We set the FNDMC timestep as dt = 0.005 a.u.−1. We
confirmed that the interlayer binding energies calculated with
dt = 0.02 and 0.005 a.u.−1 were identical within the er-
ror bar of one standard deviation (1σ ). We confirmed that
the nodal errors and nonlocality pseudopotential errors are
small enough to predict the binding properties, comparing the

energy difference of the rhombohedral and monoclinic struc-
tures in Appendix A1. We used Nexus [42] for the FNDMC
calculations. Nexus is a workflow management system mainly
for QMCPACK. Note that the error bars in this work all
indicate 1σ confidence interval.

We also calculated and compared the interlayer binding
curves with multiple approximations of DFT implemented in
Vienna ab initio Simulation Package (VASP) [43] to study
how the binding curve depends on the functional. We used
the projector-augmented wave (PAW) method to describe the
core electrons [44]. We described the Kohn-Sham orbitals
by plane waves. The cutoff energy was 520 eV, which is
the higher one of the recommended cutoff energies accom-
panied by the chromium and iodine PAW pseudopotentials.
The k-mesh spacing was denser than 0.30 Å−1, with which
the total energy of the monoclinic structure was converged
within a few meV per formula unit. For the comparison,
we considered the LDA [45], PBE [46], PBEsol [47], and
SCAN [48] functionals; vdW interaction corrected vdW–DF
[49,50], vdW–DF2 [30,51], vdW–DF–optPBE, vdW–DF–
optB88, vdW–DF–optB86b [30], rev–vdW–DF2 [18], and
SCAN+rVV10 [52] functionals; and the LDA+U method
[53]. Here, VASP implements the vdW-DF-class nonlocal cor-
relation terms with the original formulas [30,49–51], which
depends on the electronic density rather than the spin den-
sity. On the other hand, there are extended formulas for
spin-polarized calculations by Thonhauser et al. [54]. We con-
firmed that the difference of the formulas hardly influences the
interlayer binding curve in the supporting information [55].

We used the experimental geometries for the rhombohedral
and monoclinic bulk structures, as reported in a previous work
by one of the authors (see Table 1 of [15] for details). We
targeted the ferromagnetic states for both bulk and mono-
layer structures (i.e., all the chromium ions magnetized in
the same direction). Since all the DFT functionals shown
earlier predicted 3 bohr/f.u. magnetization for the bulk and
monolayer structures, we used this value for the FNDMC
calculations. Although the monoclinic structure is known not
to have long-range magnetic order, our DFT calculation with
VASP code using the vdW–DF2 functional predicted that the
above-mentioned ferromagnetic phase is 1.45 eV/f.u. more
stable than the nonmagnetic phase. This indicates that the
magnetic moment of the spins are stable but spins may be oth-
erwise disordered (i.e., the materials is likely paramagnetic).
We selected the ferromagnetic state as one of the choices of
the spin configurations. The energy difference of FM − AFM
was only 0.5 meV/f.u..

III. RESULTS AND DISCUSSION

We calculated the interlayer binding energy of the mono-
clinic structure. For the interlayer binding energy prediction,
care must be taken regarding the two-body finite-size error,
since errors are expected to be very different between the bulk
and the monolayer. We estimated finite-size errors by extrap-
olating the total energy for the inverse of the simulation cell
sizes. Figure 3 (Fig. 4) shows the total energies for the mono-
layer (monoclinic bulk) structure calculated with FNDMC as
a function of the inverse of the size of the simulation cell. The
dotted straight lines shows a linear fit curve using the energies
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FIG. 3. Total energies of the monolayer CrI3 predicted by
FNDMC for the inverse of different simulation cell sizes.

of the larger of the two simulation cell sizes. The y intercept
value represents the extrapolated value of the total energy to
the infinite simulation cell-size limit. The binding energy is
342 (22) meV/f.u. equaling 16.7(11) meV/Å2.

We calculated the interlayer binding curve of the mon-
oclinic structure with FNDMC to predict the interlayer
separation distance. We estimated the two-body finite-size
error by a linear extrapolation of the energies of 4 f.u. and
12 f.u simulation cells for the inverse of the cell size. We did
not optimize the geometry for every interlayer separation: we
merely changed the interlayer separation distance. However,
we confirmed that the structural relaxation did not signifi-
cantly alter the prediction of the separation distance. Figure 5
compares the interlayer binding curves of the monoclinic
structure predicted by the vdW–DF–optB86b functional for
two different geometries: with and without (fixed) structural
relaxation. The vertical lines indicate the minima estimated by
cubic spline interpolation, highlighting the minimal effects of
structural relaxation on the interlayer separation distance. The
binding curve predicted by FNDMC is shown in Fig. 6. The

FIG. 4. Total energies of monoclinic bulk CrI3 predicted by
FNDMC for the inverse of different simulation cell sizes.

FIG. 5. The interlayer binding curves of the monoclinic struc-
ture predicted with vdW–DF–optB86b for two different geometries:
experimental and relaxed with vdW–DF–optB86b.

minimum estimated by quadratic fitting is 6.749(73) Å, which
agrees with the experimental separation distance 6.623 Å [15]
within 2σ standard deviation. We note that the interlayer
separations predicted with 4 and 12 f.u. are 6.496(22) Å and
6.693(26) Å, respectively. The interlayer separation with the
4 f.u. simulation cell is significantly different from the ex-
trapolated value, indicating the need for careful consideration
of the two-body finite-size errors when predicting interlayer
separation distances.

Figure 7 shows the interlayer binding curves of the mon-
oclinic structure predicted by DFT with different functionals.
(The predicted binding curves of the rhombohedral structure
are also shown in the Appendix A2. They are very similar to
those of the monoclinic structure.) The vertical line indicates
the experimental interlayer separation distance [15]. The gray

FIG. 6. FNDMC prediction of the binding curve of the mon-
oclinic structure. The vertical axis indicates the relative energy
differences from the lowest total energy. The dotted line indicates
the quadratic fitting curve with the four lowest data points.
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FIG. 7. DFT prediction of the interlayer binding curves of the
monoclinic structure with different functionals. The experimental
separation distance is shown as a vertical line. The binding energy
predicted by FNDMC is shown as a gray shaded region. The PBE
result is just behind the LDA result so the PBE curve is not visible.

shaded region indicates the interlayer binding energy pre-
dicted by FNDMC. The vertical width of the region indicates
the error bar. The functionals without vdW corrections (i.e.,
LDA, PBE, LDA+U , PBEsol, and SCAN) completely fail to
reproduce the interlayer binding. For vdW-corrected function-
als, we estimated the minima (i.e., separation distance) by
cubic spline interpolation. The predicted separation distances
are shown in Table I with the experimental value [15].

Before discussing the results, we will briefly introduce
vdW-corrected functionals, which are expressed as

EXC = EGGA
X + ELDA

C + ENL
C . (1)

Here, EGGA
X is the exchange functional, ELDA

C is the correla-
tion functional of LDA, and ENL

C is the nonlocal correlation
functional. ENL

C is given as

ENL
C = 1

2

∫∫
d�rd�r′n(�r)φ(�r, �r′)n(�r′). (2)

TABLE I. Separation distances (dseparation) and binding ener-
gies (Ebinding) of the monoclinic bulk CrI3 obtained with different
approaches. The top and bottom items are reference data.

dseparation (Å) Ebinding (meV/Å2)

Experiment [15] 6.623
FNDMC 6.749(73) 15.6–18.1
vdW–DF 7.063 12.45
vdW–DF2 6.960 11.90
rev–vdW–DF2 6.671 13.05
SCAN+rVV10 6.656 12.27
vdW–DF–optPBE 6.847 15.02
vdW–DF–optB88 6.686 15.99
vdW–DF–optB86b 6.646 16.30
vdW–DF–optB86b [15] 6.240

Here, n(�r) is the electronic density at position �r. The term
φ(�r, �r′) is defined in Ref. [49] and determines the interaction
among the densities. The term EGGA

X− is the revPBE exchange
functional [56] in the original vdW–DF functional. The vdW–
DF2 variant replaces the revPBE exchange functional with
a revised PW86 exchange functional [57], because revPBE
is generally too repulsive near the equilibrium separation
[51]. rev-vdW–DF2 uses the B86b [58] exchange functional
rather than PW86. This functional is designed to provide
improved descriptions of inhomogeneous systems compared
with PW86. For vdW–DF–optPBE, vdW–DF–optB88, and
vdW–DF–optB86b functionals, the parameters in the ex-
change functionals, revPBE, B88 [59], and B86b [58], are
optimized for the S22 data set to work with the vdW–DF cor-
rection [30]. SCAN+rVV10 combines the SCAN functional
[48] and rVV10 correction for vdW interactions [60], which
is similar to vdW–DF correction.

In Table I, as expected from previous experience, the
vdW–DF functional overestimates the separation distance.
The vdW–DF2 functional predicts a shorter distance, but the
separation distance is still significantly larger than the ex-
perimental value. Similar overestimations have been reported
in cases of transition metal atom adsorption on a graphene
surface [17,18], interlayer binding of quasi–two-dimensional
materials [18], and benzene adsorption on a copper surface
[18]. On the other hand, rev–vdW–DF2 was found to be
in extremely good agreement with the experimental value,
presumably because it provides a better description of inho-
mogeneity through the use of the PW86b exchange functional.
However, similar to vdW–DF and vdW–DF2, the rev–vdW–
DF2 functional still significantly underestimates the binding
energy. SCAN-rVV10 provides a similar prediction to that
of rev–vdW–DF2. The functionals whose exchange portions
were reoptimized with the vdW corrections (i.e., vdW–
DF–optPBE, vdW–DF–optB88, and vdW–DF–optB86b) best
reproduced the reference interlayer separation and binding
energy. Among those functionals, vdW–DF–optPBE slightly
overestimates the separation distance and underestimates the
binding energy, presumably because the original revPBE
functional generally overestimates interlayer repulsion. Fi-
nally, we note that our vdW–DF–opB86b results contradict
a previous study: The estimation by McGuire et al. [15] of the
separation distance, shown in the bottom column of Table I,
significantly underestimates the separation distance compared
with the experimental value.

The comparison between our results for CrI3 and other
benchmark studies of other quasi–two-dimensional materials
shows that the best density functional is system dependent.
Krogel et al. [20] predicted the equilibrium separation and
the binding energy of TiS2. They established that vdW–DF–
optB86b and vdW–DF–optB88 reproduce both the reference
equilibrium separation and binding energy. They also estab-
lished that SCAN+rVV10 significantly underestimates the
binding energy. Hamada [18] predicted the equilibrium sepa-
ration of graphite, hexagonal boron nitride, and molybdenum
(IV) sulfide with the vdW–DF2 and rev–vdW–DF2 func-
tionals. Their findings suggest that vdW–DF2 significantly
overestimates separation distances. On the other hand, their
findings differ from our results in that, in the case of graphite,
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vdW–DF2 reproduces the reference binding energy but
rev–vdW–DF2 overestimates it. In the case of black phos-
phorus, vdW–DF–optB86b significantly overestimates the
binding energy compared with the FNDMC prediction [19].
Schulz and Liljeroth [61] predicted the distances between
atoms in hexagonal boron nitride (graphene) and Iridium
(111) substrate. They showed that vdW–DF–optB88 re-
produced the experimental structure for graphene but the
functional underestimated the layer width in the case of the
hexagonal boron nitride. They established that vdW–DF–rB86
[18,61], vdW–DF2–rB86 [18,61], and PBE+rVV10 [46,60]
reproduced the experimental structures for both systems.
However, their prediction heavily depends on the functional,
suggesting that their results may not apply to other sys-
tems. Tran et al. [62] performed benchmark study of DFT
functionals for intralayer and interlayer lattice constants and
interlayer binding energy of several hexagonal layered solids.
They established that PBE+rVV10L [63], SCAN+rVV10,
and rev–vdW–DF2 showed comprehensively better perfor-
mance than the other functionals including vdW–DF–optB86b
and vdW–DF–optB88. To summarize, the accuracy of each
DFT functional is significantly dependent on the target
quasi–two-dimensional system: thus, functionals should be
benchmarked for each system. Therefore, our study is a valu-
able source for subsequent DFT studies targeting CrI3. We
have found that some DFT functionals work impressively well
for magnetic quasi–two-dimensional systems, for which DFT
functionals have not been benchmarked against FNDMC to
our knowledge. In addition, the reliable predictions of the
binding energy of two-dimensional materials with FNDMC
will be useful in further developing and improving DFT
approximations.

IV. CONCLUSIONS

In summary, we studied the interlayer binding properties
of bulk CrI3 using FNDMC. This method successfully re-
produced the experimental interlayer separation distance [15]
indicating the reliability of FNDMC for investigating bulk
CrI3. We also predicted the interlayer binding energy with
FNDMC, which is estimated at 14.3 to 17.9 meV/Å2. We
found that, in agreement with experiment, the rhombohe-
dral and monoclinic structures observed experimentally were
within thermal energy difference, suggesting favorable can-
cellation of systematic errors in FNDMC. In this paper, we
have carefully taken into account the different dimensional
two-body finite-size errors of monolayer and monoclinic bulk
CrI3. We have evaluated several DFT functionals based on
the predicted binding energy and the experimental interlayer
separation distance. The results showed that functionals with
vdW corrections, vdW–DF–optB88, and vdW–DF–optB86b
reproduced the reference interlayer separation distance and
binding energies very well. We believe that the FNDMC
predicted interlayer binding energy is useful to test other
promising functionals such as vdW-DF-C09 [64], vdW-DF-cx
[65], DFT-D [66–68], TS-vdW [69], and ones not yet in-
vented, in future. Especially, vdW-DF-cx was shown as good
as vdW-DF-B86b in a previous benchmark study [70].

APPENDIX

1. Energy difference of the rhombohedral and
monoclinic structures

We calculated the energy differences of the rhombohedral
and monoclinic structures with FNDMC. The structures com-
pared have the same experimental geometries considered in
the main text [15]. The energies were calculated for the fer-
romagnetic state with 3 bohr/f.u.. We compared the energies
of simulation cells with the same number of atoms and a
similar shape for both structures (three layers and 12 f.u. in
total), so that the two-body finite-size errors could be canceled
out in the energy difference prediction; however, the residual
finite-size errors were shown to be large without extrapolation.

The energy difference of the two structural phases was
considered to be a few meV per atom, since the transition
temperatures were below the room temperature. Our FNDMC
calculations found a 90(28) meV/f.u. energy difference, with-
out finite-size correction. This result, although encouraging,
may well be due to accidental cancellation of multiple errors
sources, since, in addition to size effects, nodal errors and
nonlocality pseudopotential errors were typically much larger
than a few meV per atom. Finite-size extrapolations using
FNDMC are currently not practical for the rhombohedral
structure.

2. DFT predicted binding curves of the rhombohedral structure

In Fig. 8, we compare the interlayer binding curves pre-
dicted by DFT with different functionals. Since the energy
difference between the monoclinic and rhombohedral struc-
ture is very small, the binding energy should be close.
Therefore we write the FNDMC prediction of the binding
energy for the monoclinic structure into the figure as the
reference for the binding energy. We obtained very similar
results to those for the monoclinic structure.

FIG. 8. DFT prediction of the interlayer binding curves of the
rhombohedral structure with different functionals. The experimental
separation distance is shown as a vertical line. The binding energy
predicted by FNDMC is shown as a gray shaded region. The PBE
result is just behind the LDA result so the PBE curve is not visible.
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