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Facile ab initio approach for self-localized polarons from canonical transformations
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Electronic states in a crystal can localize due to strong electron-phonon (e-ph) interactions, forming so-called
small polarons. Methods to predict the formation and energetics of small polarons are either computationally
costly or not geared toward quantitative predictions. Here we show a formalism based on canonical transforma-
tions to compute the polaron formation energy and wave function using ab initio e-ph interactions. Comparison
of the calculated polaron and band-edge energies allows us to determine whether charge carriers in a material
favor a localized small polaron over a delocalized Bloch state. Due to its low computational cost, our approach
enables efficient studies of the formation and energetics of small polarons, as we demonstrate by investigating
electron and hole polaron formation in alkali halides and metal oxides and peroxides. We outline refinements of
our scheme and extensions to compute transport in the polaron hopping regime.
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I. INTRODUCTION

Self-localized (small) polarons are charge carriers that in-
teract strongly with the lattice vibrations, becoming trapped
as a result of the local lattice distortion [1]. Small polarons
are essential to understanding electrical transport and optical
properties in a wide range of materials, including transition-
metal oxides, alkali halides, and organic molecular crystals
[2–5]. The presence of small polarons in these materials
is typically associated with a diffusive, thermally activated
charge-transport regime characterized by low mobility values,
typically less than 1 cm2/V s [6]. Recent progress has enabled
direct observation of small polaron states [7,8] and clarified
their important role in various technologies [9–13].

The theoretical treatment of small polarons was pioneered
by Holstein [14] based on ideas from Landau and Pekar [15].
It was later extended by Lang and Firsov [16] and generalized
by Munn and Silbey [17,18] and Hannewald et al. [19] to
improve the description of electron-phonon (e-ph) interac-
tions. The resulting small polaron theory can qualitatively
demonstrate the transition from bandlike to hopping transport
observed in experiments [4,20,21]. Yet, the presence of a self-
localized polaron state is typically assumed in these theories
rather than directly predicted, and most theoretical treatments
of polarons are not geared toward quantitative predictions on
real materials as they rely on empirical parameters and take
into account only one or a few vibrational modes.

Early work formulated the problem of polaron formation
as a competition of energies for localizing an electronic state,
which relaxes the lattice but increases the electron kinetic
energy [22]. Despite this intuition, whether charge carriers
form small polarons or not remains controversial in many
materials. For example, photoemission experiments found no
evidence of small polarons in SrTiO3 [23], although mobility
and optical measurements suggested their presence [24,25].

First-principles calculations can accurately compute the
electronic structure, lattice dynamics, and e-ph coupling [26],

and they are ideally suited to provide quantitative approaches
for treating both large and small polarons. However, existing
studies have focused on semiconductors and insulators with-
out small polaron effects [27–33]. First-principles calculations
of small polarons involve supercells with excess charge or de-
fects explicitly added [34–37]. While useful, these approaches
require computationally costly calculations with many atoms,
and their reliability is limited by the accuracy of density func-
tional theory (DFT) exchange-correlation functionals and the
treatment of charged systems in DFT. A rigorous and con-
venient first-principles approach connecting standard small
polaron theory [38] and modern ab initio e-ph calculations
would be expedient.

Here we show an efficient approach to compute the small
polaron energy in a localized basis starting from a trial polaron
wave function. Employing a canonical transformation formal-
ism [14], we construct a self-localized polaron state that is
free from hopping and decoupled from all vibrational modes
[39]. We determine whether an electron or hole charge carrier
self-localizes by comparing the energy of the polaron state
with the conduction- or valence-band edge, thus predicting
whether a small polaron forms and determining its formation
energy. The computational cost of our scheme is equivalent to
a DFT calculation on a unit cell plus an inexpensive e-ph com-
putational step. Its efficiency allows us to investigate small
polarons in various alkali halides, oxides, and perovskites
with minimal computational effort. Our work bridges the gap
between standard small polaron theory and modern ab initio
e-ph calculations.

II. THEORY

A. Polaron Hamiltonian

We derive the effective small polaron Hamiltonian in a dis-
torted lattice through a canonical transformation [14], inspired
by the treatment of the charged harmonic oscillator (CHO)
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in an external electric field E [40]. The Hamiltonian of a
one-dimensional CHO is

H (CHO) = ω
(
b†b + 1

2

) + ωg(b + b†), (1)

where b† and b are oscillator creation and annihilation oper-
ators, and the coupling parameter is g = eE/

√
2mω3, with e,

m, and ω the charge, mass, and frequency of the oscillator,
respectively. Here and below we set h̄ = 1. To solve the CHO
Hamiltonian, the common approach is to stretch the oscillator
spring to its new equilibrium position using the canonical
transformation of operators O → Õ = eSOe−S . Defining the
CHO generator as S(CHO) = g(b† − b), this transformation
gives

b̃ = b − g, (2)

H̃ (CHO) = ω
(
b†b + 1

2

) − ωg2. (3)

The shift of the operator b in Eq. (2) amounts to shifting the
coordinate system:

x̃ = 1√
2mω

(̃b† + b̃) = 1√
2mω

(b† + b) + x0, (4)

where x is the position operator and x0 = −2g/
√

2mω is the
new equilibrium position. The second term in Eq. (3) is always
negative and can be interpreted as the energy decrease result-
ing from relaxing the oscillator to a new equilibrium position
due to the electrical force, because −ωg2 = 1

2 mω2x0
2 + eEx0.

Inspired by Holstein’s treatment [14], we perform an analo-
gous transformation on the e-ph Hamiltonian in the electronic
Wannier [41] and phonon momentum basis,

H =
∑
mn

εmna†
man +

∑
Q

ωQ

(
b†

QbQ + 1

2

)

+ 1√
N�

∑
mn

∑
Q

ωQgQmn(b†
Q + b−Q)a†

man. (5)

Here, n = jnRn is a collective index labeling the jnth Wannier
function (WF) in the unit cell with the origin at the Bravais
lattice vector Rn, while an = a jnRn is the corresponding elec-
tron annihilation operator and bQ is the phonon annihilation
operator, where Q is a collective label for the phonon mode ν

and momentum q. The hopping strength and phonon energy
are denoted as εmn and ωQ, respectively, and N� is the number
of unit cells in the crystal. The unitless e-ph coupling matrix
element gQmn is obtained by transforming to the electron
Wannier basis a unitless e-ph matrix element in momen-
tum space, g̃mnν (k, q) = gmnν (k, q)/(h̄ωνq), where gmnν (k, q)
is defined in Eq. (24) of Ref. [42]. Using the notation in
Ref. [42], the explicit definition is gQmn ≡ g̃mnν (Re, q) =
1

Ne

∑
k,i j e−ik·ReU†

mi(k + q)g̃i jν (k, q)U jn(k), where U are uni-
tary Wannier gauge matrices [42].

We define the generator S as

S =
∑
mn

Cmna†
man, (6)

Cmn = 1√
N�

∑
Q

BQmn(b†
Q − b−Q), (7)

and using the transformation O → Õ = eSOe−S we obtain
the transformed electron and phonon annihilation operators,
respectively, as

ãm =
∑

n

e−C
mn an, (8)

b̃Q = bQ − 1√
N�

∑
mn

BQmna†
man, (9)

where e−C
mn is shorthand for the phonon operator,

e−C
mn = δmn − Cmn + 1

2!

∑
i

CmiCin − · · · , (10)

with Cmn defined in Eq. (7). Above, we introduced the unde-
termined distortion coefficients BQmn, which, analogous to the
coupling g in the CHO example, quantify how the transfor-
mation stretches the spring of each phonon mode to a new
equilibrium position due to the electrical forces applied on
the lattice by the charge carrier. This physical interpretation is
manifest in Eq. (9), where one changes the basis to a distorted
lattice configuration in analogy with Eq. (2), implying that the
operators a†

n and b†
Q create a polaron or phonon, respectively,

in the distorted lattice. To make the transformation unitary, the
distortion coefficients need to satisfy B∗

Qmn = B−Qnm, so that
the operators Cmn and S are both anti-Hermitian.

The polaron Hamiltonian is obtained by substituting the
transformed electron and phonon operators [43]:

H̃ =
∑
mn

Emna†
man +

∑
Q

ωQ

(
b†

QbQ + 1

2

)

+ 1√
N�

∑
mnQ

ωQGQmn(b†
Q + b−Q)a†

man, (11)

where the polaron hopping strength Emn and the residual
polaron-phonon (pl-ph) coupling constant GQmn are defined,
respectively, as

Emn = 〈̃ε〉mn + 1

N�

∑
iQ

ωQB−Qmi(BQin − 2〈̃gQ〉in),

GQmn = 〈̃gQ〉mn − BQmn, (12)

and the angle brackets 〈· · · 〉 indicate a thermal average over
phonon states.

B. Thermal average

In the effective polaron Hamiltonian derived above, the
transformed hopping and e-ph coupling matrices ε̃mn and
g̃Qmn, denoted as M̃mn, are defined as

M̃mn =
∑

i j

eC
miMi je

−C
jn . (13)

These transformed matrices still contain phonon operators
(through the operator Cmn). Following Holstein [14], we take
their thermal average in Eq. (12) to obtain the effective
polaron Hamiltonian in Eq. (11). The thermal average is com-

063805-2



FACILE AB INITIO APPROACH FOR … PHYSICAL REVIEW MATERIALS 5, 063805 (2021)

puted using the Baker-Campbell-Hausdorff formula [19]:

〈M̃〉mn = 〈eCMe−C〉mn =
〈
M + 1

2!
[C, [C, M]] + · · ·

〉
mn

,

(14)

where terms with an odd number of Cmn vanish because the
thermal average of an odd number of bQ or b†

Q is zero. Substi-
tuting Cmn as defined in Eq. (7), we get

〈M̃〉mn =
〈∑

i

1

(2i)!
[C, [· · · [C, [C, M]] · · · ]

〉
mn

=
∑

i

1

(2i)!Ni
�

[
∑
Q1

BQ1 , [· · · [
∑
Q2i

BQ2i , M] · · · ]]

× 〈(b†
Q1

− b−Q1 ) · · · (b†
Q2i

− b−Q2i )〉mn,

(15)

where the phonon operator part can be factored out in the
last equality because all permutations of (b†

Q − b−Q) give
the same thermal average. Next, we apply the Wick theorem
and use the identities 〈b†

QbQ〉 = NQ and 〈bQb†
Q〉 = NQ + 1 on

the thermal average part, where NQ is the phonon thermal
occupation:

〈M̃〉mn =
∑

i

(−1)i

(2i)!Ni
�

∑
Q1···Qi

(2NQ1 + 1) · · · (2NQi + 1)

×
∑

all pairings

[BQ1 , [B−Q1 , [· · · [BQi , [B−Qi , M]] · · · ]]]mn. (16)

This expression can be simplified by assuming that all dis-
tortion coefficients BQ commute with each other. Under this
assumption, the commutator part of every possible pairing is
the same, and each of the (2i)!/2ii! pairings gives the same
contribution. We obtain

〈M̃〉mn =
∑

i

(−1)i

Ni
�i!

∑
Q1···Qi

(
NQ1 + 1

2

)
· · ·

(
NQi + 1

2

)
×[BQ1 , [B−Q1 , [· · · [BQi , [B−Qi , M]] · · · ]]]mn. (17)

Defining a linear operator � on M as∑
αγ

�mn,αγ Mαγ = 1

N�

∑
Q

(
NQ + 1

2

)
[BQ, [B−Q, M]]mn,

(18)

we obtain the final expression

〈M̃〉mn =
∑
αγ

e−�
mn,αγ Mαγ . (19)

For the special case in which all the nonlocal distortion coef-
ficients vanish, and using the ansatz,

BQmn = gQmnδmn, (20)

we obtain (see below) a self-localized polaron state with
negligible intersite hopping. Using this ansatz, the thermal
average of the transformed matrix can be written as 〈M̃〉mn =
exp[−λmn]Mmn [40], where the exponent λmn(T ) depends on
temperature T and on the difference between the local e-ph

couplings at the m and n WF sites,

λmn(T ) = 1

N�

∑
Q

(
NQ(T ) + 1

2

)
|gQmm − gQnn|2, (21)

and on the phonon thermal occupation factor NQ(T ). In this
work, the quantity λmn is computed using ab initio e-ph
coupling constants gQmm, paying attention to converge the
Brillouin zone integral in Eq. (21). The diagonal part of λmn

is identically zero, which makes exp[−λmm] = 1 for all sites
m. The off-diagonal part of exp[−λmn] is orders of magnitude
smaller than unity (typically of order 10−2–10−10 at 300 K),
as we verify explicitly in our numerical calculations. Thus we
have

exp[−λmn] ≈ δmn. (22)

C. Polaron hopping and formation energy

Substituting Eqs. (20)–(22) into Eq. (12), we derive the
central equations for the polaron hopping strength Emn and
pl-ph coupling GQmn:

Emn =
(
εmm − 1

N�

∑
Q

ωQ|gQmm|2
)
δmn, (23)

GQmn = gQmnδmn − BQmn = 0.

The first equation implies that the operators a†
m in the po-

laron Hamiltonian, Eq. (11), create a self-localized polaron
because intersite hopping is negligible due to the vanishing
off-diagonal Emn elements. The second line implies that this
small polaron state is decoupled from all phonon modes as
GQmn = 0. The on-site polaron energy Emm is the sum of the
electronic energy εmm of the corresponding WF and the poten-
tial energy decrease due to the lattice distortion, analogous to
the CHO case [compare the second terms in Eqs. (3) and (23)].
The physical insight provided by Eq. (23) is that a material
with less dispersive electronic bands, in which εmm is closer to
the band edge, and stronger on-site e-ph coupling gQmm (and
thus greater potential energy decrease), is more likely to host
a small polaron.

Whether or not a small polaron forms depends on the
competition of two terms, namely the potential energy de-
crease due to the lattice distortion and the kinetic energy
increase from localizing a Bloch state. If the on-site polaron
energy Emm is lower than the energy of the conduction-band
minimum (CBM) for an electron carrier, or higher than the
valence-band maximum (VBM) for a hole carrier, then the
self-localized polaron is energetically more favorable than a
delocalized Bloch state. In this scenario, the electron or hole
quasiparticle forms a small polaron and becomes self-trapped
by the lattice distortion; the polaron formation energy is thus
the difference between the polaron energy Emm and the respec-
tive band edge. For electron carriers, the polaron formation
energy is given by

�E el
f = Emm − εCBM, (24)

while similarly for hole polarons the formation energy is

�E hole
f = εVBM − Emm. (25)
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The small polaron wave function has rarely been discussed in
the canonical transformation treatment. While Eq. (23) gives
the polaron energy for an electron in a given WF, the choice
of a WF is not unique—different WFs will result in slightly
different lattice distortions and polaron energies, the most
stable state corresponding to the WF minimizing the polaron
energy. In the following, we use a maximally localized WF as
a trial wave function and compute its polaron energy. If the
resulting small polaron is stable, as determined by comparing
the electron or hole polaron energy with the respective band
edge, then our approach provides a sufficient condition for
concluding that a small polaron forms in the material, as well
as an approximate polaron wave function.

III. FIRST-PRINCIPLES CALCULATIONS

We carry out DFT calculations using the QUANTUM

ESPRESSO code [44] with a plane-wave basis set, employing
norm-conserving pseudopotentials [45] from Pseudo Dojo
[46] and the Perdew-Burke-Ernzerhof generalized gradient
approximation [47]. A kinetic energy cutoff of 100 Ry, an 8 ×
8 × 8 k-point grid, and relaxed lattice parameters are used in
all DFT calculations. We use density functional perturbation
theory [48] to compute phonon frequencies and eigenvectors
on a coarse 8 × 8 × 8 q-point grid for all materials except
Na2O2, for which we use a 4 × 4 × 4 q-point grid. The e-ph
coupling constants gmnν(k, q) are obtained on coarse grids
and transformed to Wannier basis coupling constants gQmn

using the PERTURBO code [42], with WFs generated from
WANNIER90 [49]. Computing the polaron formation energy
with Eq. (23) only requires Wannierizing one or more bands
and computing the potential energy decrease term, which has
a small computational cost equal to computing an e-ph scat-
tering rate [42]. Before calculating the polaron energy, we first
numerically verify that the identity in Eq. (22) is satisfied. We
then obtain the on-site polaron energy, Emm in Eq. (23), carry-
ing out the Brillouin zone integral via Monte Carlo integration
with 1 million random q points drawn from a Cauchy distri-
bution. All materials investigated in this work have strongly
polar bonds and dominant Fröhlich e-ph coupling with the
longitudinal optical modes [28,50]. The temperature is set to
300 K in all calculations.

IV. RESULTS

Figure 1 shows the computed polaron energy in three alkali
halides—NaCl, LiF, and KCl—for both electron and hole
polaron states. Our formalism predicts that holes in these three
materials form a self-localized small polaron, in agreement
with experiments [3], because the computed polaron energies
Emm are above the VBM, as shown in Figs. 1(a)–1(c). Elec-
trons in these materials, on the other hand, are not expected
to self-trap—as the conduction band in alkali halides is s-like
and therefore more dispersive than the p-like valence band, the
potential energy decrease due to the lattice distortion cannot
outweigh the increase in kinetic energy for localizing the
electronic state. Consistent with this intuition, our results for
electrons in NaCl, LiF, and KCl, shown in Figs. 1(d)–1(f),
conclude that electrons in these materials do not form a self-
trapped polaron, as is seen by the fact that the polaron energy

FIG. 1. Calculated polaron energy for holes in (a) NaCl, (b) LiF,
and (c) KCl, and electrons in (d) NaCl, (e) LiF, and (f) KCl. Blue
lines are the polaron on-site energies Emm, and dashed black lines
are WF energies εmm, in Eq. (23). The solid black curves are the
DFT band structure, and the red curves are the Wannier interpolated
bands, whose number equals the number of WFs employed in the
calculation. The energy zero is set to either the CBM or VBM,
respectively, when electron or hole carriers are considered.

is above the CBM. Experiments in alkali halides similarly
found no evidence of electron polarons down to 5 K [51].

Figure 2 shows the calculated electron and hole po-
laron energies in three alkali-metal oxides and peroxides:
Na2O2, Li2O2, and Na2O. The nature of the charge carri-
ers in these materials is important for application to novel
battery technologies, where the low electrical conductivity
hampers device performance and is commonly attributed to
the presence of small polarons [9]. Our results in Fig. 2 unam-
biguously demonstrate that both electrons and holes in these
materials form self-localized small polarons with formation
energies greater than 0.5–1 eV, warranting further investiga-
tion of their electrical transport properties. The hole polaron
wave function in NaCl and the electron polaron wave func-
tion in Li2O2 are shown in Figs. 3(a) and 3(b), respectively,
highlighting their localized nature.

The last case study we examine is cubic SrTiO3 perovskite,
whose electron mobility near room temperature exhibits a
power law that can be attributed to a transport regime
governed by large (non-self-localized) polarons [31]. We

063805-4



FACILE AB INITIO APPROACH FOR … PHYSICAL REVIEW MATERIALS 5, 063805 (2021)

FIG. 2. Calculated polaron energy for holes in (a) Li2O2,
(b) Na2O2, and (c) Na2O, and electrons in (d) Li2O2, (e) Na2O2, and
(f) SrTiO3. The lines and their color code have the same meaning as
in Fig. 1.

investigate small polaron formation in cubic SrTiO3, using
accurate electronic band structure, phonon dispersions, and
e-ph interactions from our previous work [30,31] as a starting
point for the polaron calculation. As shown in Fig. 2(f), we
find a polaron energy significantly higher than the CBM,
clearly showing that for electrons in SrTiO3 it is energetically
unfavorable to self-localize and form a small polaron state.
Note that this finding does not conflict with the existence of
localized electronic states due to oxygen vacancies [25,34] as
our approach focuses on self-localized electronic states in the
pristine crystal.

FIG. 3. The square of the trial polaron wave function for the
(a) hole polaron in NaCl and (b) electron polaron in Li2O2.

V. DISCUSSION

The method developed in this work focuses on finding
self-localized polarons with negligible intersite hopping and
polaron bandwidth (and thus immobile), as is implied by
Eq. (23). As shown in the case of SrTiO3, even when a stable
small polaron state is not found with our approach, a more
extended small polaron or a large polaron state may still be
present in the system. This limitation of our approach can be
overcome by removing the assumption of local e-ph coupling
or by directly solving the polaron Hamiltonian and treating
the distortion coefficients BQ as variational parameters. Both
of these possibilities lead to more challenging calculations
and are left for future work. Translating recent advances in
polaron models [52] into first-principles calculations may also
enable accurate modeling of more delocalized polaron states.
Another possibility to describe small polarons delocalized
over a few unit cells would be to employ a linear combination
of WFs and use a variational approach to minimize the polaron
energy. Such a calculation is left for future work.

The formalism presented in this work leaves room for
various straightforward extensions. One is minimizing the
polaron energy over the space of possible trial WFs, leading
to a refinement of the polaron formation energy and wave
function. Mode-resolved analysis of the potential energy de-
crease is also possible, and allows one to infer which phonon
modes contribute to small polaron formation. In addition,
treating e-ph interactions in materials with open-shell d or
f electrons, for example using the DFT+U approach, is an
important future extension for studies of small polaron effects
in transition-metal oxides [53,54]. Our approach also forms
the basis for charge-transport calculations in the polaron hop-
ping regime, for example using the Kubo formula [5,16,17],
and for studies of the transition from bandlike to polaron
hopping transport [4,20,21]. Both topics are pristine territory
for first-principles calculations.

Finally, there are conceptual differences between our ap-
proach and a recently proposed momentum-space formalism
to treat polarons using Landau-Pekar theory [55,56]. The ap-
proach proposed in Refs. [55,56] can be obtained as a special
case of our treatment under simplifying assumptions. While
the operator Cmn, and therefore also e−C

mn , contains phonon
creation and annihilation operators, let us suppose that we
can take a thermal average and turn e−C

mn into a matrix, Amn.
By replacing e−C

mn with Amn in Eq. (13), as opposed to taking
thermal averages of M̃mn as we did above, the on-site energy
and the pl-ph interaction in Eq. (12), for a polaron at the
Bravais lattice origin (Rn = Rm = 0), become

E00 =
∑
mn

A∗
0m

[
εmn − 2

N�

∑
Q

ωQB−Q00 gQmn

]
An0

+ 1

N�

∑
Q

ωQB−Q00BQ00, (26)

GQ00 =
∑
mn

A∗
0mgQmnAn0 − BQ00. (27)

This result is a Wannier space version of the two polaron
equations proposed in Refs. [55,56], but with an additional
term (the second line of the first equation above) whose origin
will be discussed elsewhere. Despite the similarities, the two
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formalisms differ in two crucial points: (i) Our approach guar-
antees that the polaron state is self-localized, as the polaron
hopping term between nearby sites, E0n, is negligibly small;
(ii) we use Wannier functions as a more natural, localized
basis set to describe small polarons, thus bypassing costly
calculations in momentum space. For example, our computed
electron polaron formation energy in Li2O2 is −4.905 eV [see
Fig. 2(d)], which is nearly identical to the −4.87 eV value ex-
trapolated to infinite supercell sizes using progressively finer
k-point grids in Ref. [55]. Remarkably, our approach obtains
this value with a negligible computational cost, without the
need for any extrapolation or fine k-point grid sampling, and
without solving a polaron eigenvalue problem in momentum
space as in Ref. [55].

VI. CONCLUSION

In summary, we developed a computationally efficient
approach to predict the formation of self-localized small po-
larons, and we made it available in our open-source PERTURBO

code. Our formalism combines ab initio e-ph interactions with

an extension of small polaron theory. Its computational cost is
a minimal overhead to a DFT calculation on a unit cell, allow-
ing one to rapidly scan many materials. Besides providing a
convenient atomistic approach for small polaron studies, our
method is a starting point for developing transport calculations
in the polaron hopping regime.
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