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Modeling the Ga/As binary system across temperatures and compositions from first principles
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Materials composed of elements from the third and fifth columns of the periodic table display a very rich
behavior, with the phase diagram usually containing a metallic liquid phase and a polar semiconducting solid.
As a consequence, it is very hard to achieve transferable empirical models of interactions between the atoms that
can reliably predict their behavior across the temperature and composition range that is relevant to the study of
the synthesis and properties of III/V nanostructures and devices. We present a machine-learning potential trained
on density functional theory reference data that provides a general-purpose model for the GaxAs1−x system. We
provide a series of stringent tests that showcase the accuracy of the potential, and its applicability across the
whole binary phase space, computing with ab initio accuracy a large number of finite-temperature properties as
well as the location of phase boundaries. We also show how a committee model can be used to reliably determine
the uncertainty induced by the limitations of the machine-learning model on its predictions, to identify regions
of phase space that are predicted with insufficient accuracy, and to iteratively refine the training set to achieve
consistent, reliable modeling.
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I. INTRODUCTION

Gallium arsenide, the prototypical III-V semiconductor,
has excellent electronic and optical properties, which have
been thoroughly studied from both an experimental and the-
oretical point of view [1–6]. Recent technological advances
in the synthesis of GaAs have allowed to move towards the
miniaturization of devices [6–9], which in turn has opened
the doors to the fine tuning of their electronic properties for
many applications, such as light and x-ray detectors [10–12],
lasers [13], and topologically protected qubits [14].

From the theoretical side, molecular dynamics has been
widely used to understand the physics behind experimen-
tal observations [15], the behavior of the material under
ionizing radiation [16], the growth of semiconductor thin
films [17], and, more recently, the self-catalyzed growth of
GaAs nanowires [18]. However, each one of these studies
required the use of ad hoc potentials that are tied to a specific
region of the binary phase space. A general and transferable
potential would not only allow to study complex phenom-
ena involving multiple phases, but also eliminate the need to
train one potential from scratch for each novel application
that arises due to technological progress. A more modern
approach based on the use of machine learning has created
the opportunity to generate potentials that can cover the whole
phase space, while retaining the accuracy of ab initio meth-
ods at roughly the cost of an empirical potential [19–22].
This has already proven to be an invaluable tool to study at
an unprecedented level of computational accuracy systems
that are otherwise inaccessible to computational investiga-
tion [23–25].

Although the typical accuracy achievable with these
machine-learning potentials (MLP) is known, it is important

to carefully assess the potentials that we use. For most pur-
poses, it is enough to train the MLP only on a selected region
of the phase space to investigate a particular phenomenon
of interest. However, to have a stable, accurate, and fully
transferable model, one needs to include a much more varied
set of structures in the training. Examples of potentials that
try to model multiple regions of the phase space include,
but are not limited to, iron [26], silicon [27], GeTe [28],
MnxGey [29], and Ga [30]. This approach clearly introduces
some challenges regarding both the limits of the description
used to represent the structures and the optimal construction
of a large data set. For the case of GaAs, and in general III-V
semiconductors, the electronic behavior of the system changes
greatly when moving across the binary phase diagram, which
contains both metallic and semiconducting phases. A potential
for the study of the phase diagram of pure gallium has been
recently proposed, providing an accurate picture of the phase
transitions of this material [30], but it does not explore the
complications deriving from the addition of a second element,
nor it provides a full survey of the properties at finite temper-
ature.

In this work, we discuss the construction and extensively
demonstrate the application of a machine-learning potential
that can be used to study the GaxAs1−x system in a wide
range of temperatures and pressures at any stoichiometry.
To train the potential, we rely on the method proposed by
Behler and Parrinello [19] as implemented by Singraeber
et al. [31]. Therefore, we describe the local environments
in terms of “symmetry functions” and use the flexibility of
a neural network to parametrize the interactions among the
atoms, following the successful example of other similar
works [23,25,28,32,33]. In order to give a sense of the accu-
racy and reliability of the potential, we thoroughly investigate
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the binary phase diagram and compute various properties for
both the solid and liquid phases at finite temperature. For the
solid phase, we present the results for the heat capacity and
thermal expansion from cryogenic temperatures up to melting.
For the liquid, we show the density, diffusion, and radial pair
distribution functions of Ga, As, and GaAs. We also present
encouraging results for the transferability of the potential to
the study of amorphous GaAs. At last, we conclude with the
binary phase diagram predicted by our potential.

As an additional benefit, one of the strengths of these types
of potentials is the knowledge that they can be incrementally
improved in the future, should the need arise. On one side,
should the potential be found to be unreliable in a particular
region of the phase space, one can increase its accuracy in this
region by adding new configurations to the data set. On the
other side, if the level of theory of the DFT reference were to
be found inadequate, one can recompute all, or a subset, of the
configurations at a higher level of theory, thus improving the
results while retaining the low computational cost.

The paper is divided into three sections. In the first part
we provide the details of the generation of the potential,
outlining both the architecture that has been employed and
the database generation. In the second part we validate the
potential, demonstrating the quality of the fit while comparing
it to existing literature. In the third section we show the results
of simulations and calculations beyond those used for training.
This is intended as a test of the transferability of the potential,
while also assessing the level of theory chosen in this work.
Finally, we draw the conclusions on the current state of the
potential and the possibility of using it to model systems of
particular interest.

II. METHODS

A. Architecture of the potential

While the choice of the representation and the machine-
learning algorithm in use is important for the quality of
the fitting, recent works have shown that different frame-
works tend to achieve similar performance for a given data
set [21,34].

1. Details of the MLP

For our potential, we have decided to follow the work
done by Behler and Parrinello [19] since it has already been
thoroughly tested on a number of different materials and it
has been shown to perform well on systems similar to ours.
We use the implementation by Singraber and Dellago [35].
Transforming this potential into a different one would be as
easy as refitting the training set that we have generated using
a different package.

Since the symmetry functions (SF) are tied to the sys-
tem [36] and tend to be very correlated to each other [37],
we use an unsupervised method [38] based on the CUR de-
composition [39] to select a small set of uncorrelated SFs
out of a larger pool, generated to span the possible space of
interactions.

For this system, we find that a set of 64 SFs for each species
(thus a total of 128 SFs) is sufficient to describe the local
environments. The selection has been repeated after the addi-

tion of every set of new training structures, to ensure that the
selection is able to capture all the novel relevant correlations.
We observe that late additions to the training set have little
effect on the choice of the SFs, indicating the robustness of
our method. Details of the selection and the SFs that have
been ultimately used for the potential can be found in the files
provided for the potential.

The regression scheme that we use in this work is a feed-
forward neural network with 2 layers and 24 nodes per layer,
for a total of 4370 parameters, 2185 for each species, that must
be optimized. The optimization procedure is carried out mini-
mizing the errors between the predicted energies and forces
with respect to the known density functional theory (DFT)
values, using a parallel Kalman filter implementation [35].

2. Uncertainty estimation

The ability to quantify the uncertainty deriving from the
use of a machine-learning model is very since it can be used
to assess the confidence of results and, possibly, to indicate
configurations that are beyond the phase space which is well
represented in the training database. In the case of neural net-
work potentials the uncertainty quantification can be achieved
by training multiple models, and using for each configuration
A their mean ȳ(A) = 1

M

∑
m y(m)(A) as the committee predic-

tion, and their standard deviation σ (A) as a measure of the
uncertainty [40–45].

If we use this approach, we have to account for the lim-
ited data set and implicit correlation of the models with a
correction parameter α [40,46] that ensures that the predicted
variance matches the expected variance over an unrelated
validation set, as

α2 = − 1

M
+ M − 3

M − 1

1

N

N∑
n

[yn − ȳ(An)2]

σ (An)2
. (1)

All the calculations in this paper have been performed using
an ensemble of M = 4 potentials independently trained on
different (but overlapping) subsets of the same training set
and starting from different initial weights. The average of
the forces and energies is used to drive the dynamics and
provide numerical estimates of the confidence intervals for
some properties. The set of structures used to estimate α

has been removed from the full data set before starting the
training procedure. More details about the data-set generation
are presented in Sec. II B

For properties computed on single structures (e.g., elas-
tic moduli), this method allows to distinguish low accuracy
and low precision predictions. During molecular dynamics
simulations, the uncertainty computed in this way allows to
identify configurations that are poorly predicted, suggesting
that the simulation is moving in previously unexplored regions
of the phase space. It has recently been shown that this kind
of uncertainty estimation can also be used to compute the
error on thermodynamical averages, that results from the ML
approximation of the reference potential [46]. We show an
early application of this approach to the evaluation of the ML
error for the pair distribution functions and the melting point
of Ga, As, and GaAs.

On top of the uncertainty deriving from the use of a
machine-learning (ML) model, we also take into account the
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statistical error due to the finite time of the MD simulations,
computed using the block-averaging method.

B. Database generation and details

To generate a potential able to cover the full binary phase
diagram, it is necessary to add training structures of all the
various phases of GaAs, Ga, As, and their relative interfaces.
We use concepts that have already appeared in the litera-
ture to create a database that spans all of the phase spaces
of interest [27,47]. The structures that are contained in the
database have been obtained using three related but different
approaches. We start with a potential limited to a small part
of the phase space, we extend it to reproduce static proper-
ties of all of the phases of interest and we finally ensure its
stability by using an active-learning-like procedure on more
challenging simulations. The final data set is composed of
1921 structures, belonging to crystal structures that are stable
around standard conditions, liquid phases, and various in-
terfaces (solid-liquid, liquid-vacuum, and solid-vacuum). We
note that other crystal structures, as well as amorphous and
disordered phases, were not explicitly included and our po-
tential should be used with caution to simulate these specific
systems. We demonstrate the transferability of our potential
outside the phases that are included explicitly in Fig. 13,
where we compute radial pair distribution functions of amor-
phous GaAs, in excellent agreement with experiments. For
these cases, the availability of a predicted uncertainty is essen-
tial to determine the level of reliability of the corresponding
predictions.

1. A potential for the interface

As a first iteration we use a potential generated to model the
interface between liquid Ga and crystalline GaAs (in either
Wurtzite (WZ) or zincblende (ZB) phase), that was used to
study the differences in the ordering between the two polar
surfaces in the [111] growth direction [24]. Given the limited
scope of this potential, the training set was generated from
short ab initio MD simulations of the interface, followed by
more extensive sampling that combines a preliminary MLP
and a DFT correction, as discussed in Ref. [24].

2. Complementing the potential

We extend this potential by explicitly including structures
needed to compute known static properties, such as lattice
constants, elastic constants, surface decohesion energies, sur-
face reconstructions, point defects, and selected plane defects
for Ga, As, and GaAs.

For this purpose, we have generated the structures needed
to compute these properties, either as single-point calculations
(e.g., lattice constants) or by relaxing the structure (e.g., de-
fects and surfaces), thus obtaining a sequence of correlated
structures. From the relaxations we have chosen to keep for
training only a few out of all of the generated structures, mak-
ing sure to include the initial, the final, and some intermediate
steps whose energies are found to be significantly different
compared to the initial and final configurations. Adding the
discarded configurations to the training set would have an
impact only on the training time, but not on the computational

cost of the MLP in production. However, we prefer to keep a
smaller and more efficient training set in order to reduce the
future cost of recomputing the structures at a different level of
theory. This additional set of 557 structures yields a potential
that is able to correctly reproduce these static properties across
all these phases, but does not guarantee stability at high tem-
perature or at intermediate stoichiometries.

3. Iterating over uncertain configurations

To complete the potential and ensure that it is reliable for
all of the properties that we want to model, we have used
an offline active-learning strategy, introducing in the data set
some of the structures generated throughout the validation
process. Whenever we observe an uncertainty in the commit-
tee higher than a threshold [arbitrarily chosen to be five times
the root-mean-square error (RMSE)] during a simulation, we
gather the structures that are poorly predicted and select a
small and representative set of configurations for retraining.
The structures are chosen either by using a farthest point
sampling strategy, i.e., spanning as uniformly as possible the
space of configurations, or by iteratively adding those with
the highest uncertainty, stopping when the predictions become
accurate.

We observe that with this procedure we have added
many structures of liquid GaxAs1−x with 0.05 < x < 0.45 and
0.55 < x < 0.95, which were initially found to be poorly
predicted. This is an obvious consequence of the previous
training procedures, where stoichiometries of x = 0, 0.5, 1
were favored, leaving the other regions of the phase space
poorly sampled. Similarly, we add a number of structures of
liquid Ga at high pressure, a region that we had not initially
included in the training but that it is of great technological
relevance.

4. Details of the DFT calculations

All the DFT calculations have been run using QUANTUM

ESPRESSO [48]. In order to ensure an absolute convergence
of the calculation to below 1 meV/atom we have used an
energy cutoff of 50 Ry and a density of 6.5 k points Å.
The generalized gradient approximation (GGA) with PBE
exchange-correlation function [49] has been used, together
with ultrasoft pseudopotentials [50] from the SSSP accuracy
library (version 0.7) [51].

In order to minimize the errors arising from minute dif-
ferences in the k-point grid, we have used, as consistently
as possible, similarly sized supercells, with average dimen-
sions of 12 × 14 × 40 Å. The elongated shape and large size
have been chosen in order to accommodate two different bulk
systems and their interface in a single supercell (e.g., the
interface between liquid GaxAs1−x and solid GaAs from the
original data set). This also helped to ensure that the cell was
large enough to avoid interactions among periodic replicas for
defect calculations.

C. Molecular dynamics

To test the potential beyond the properties that can be
probed with single-point calculations, we run MD simulations
for the system in its solid and liquid form, together with
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various interfaces. Since our investigation includes the evalua-
tion of these properties at very low temperature, it is necessary
to explicitly include the effects of the quantum motion of the
nuclei to recover the correct properties.

Path-integral molecular dynamics (PIMD) is a formalism
needed to include nuclear quantum effects (NQE) into the
simulation, which relies on the isomorphism between a nu-
cleus and a chain of P beads connected by springs, where
P must be increased to ensure convergence to the quantum
Boltzmann distribution. More details on the theory of PIMD
can be found elsewhere [52,53], whereas from our perspec-
tive it is important to mention that simulating a system of P
beads has the same computational cost of running P parallel
simulations of the same system.

All the MD and PIMD simulations have been run using
I-PI [54] to propagate the dynamics and LAMMPS [55] with
the N2P2 plugin [31] to compute energies and forces at ev-
ery step. Boxes of about 300 atoms have been used in most
cases for determining the properties, unless specified. The
temperature has been constrained using a combination of a
generalized Langevin [56] and stochastic velocity rescaling
thermostats [57], whereas the pressures, when needed, have
been constrained using an isotropic Bussi-Zykova-Parrinello
barostat [58] as implemented in I-PI. Solid and liquid coexis-
tence simulations were performed with an anisotropic NpzT
scheme. A time step of 4 fs has been used to integrate the
equations of motion.

III. VALIDATING THE POTENTIAL

The final database generated as explained in Sec. II B is
composed of 1921 structures, out of which 100 have been
excluded from the training procedure and have been used both
as a final test set and to compute the α parameter from Eq. (1).
Each potential is trained on the remaining 1821 structures,
20% of which, randomly chosen for each potential, are used
for internal validation.

Figure 1 illustrates the similarity among the structures that
are present in the database. The colors represent the origin of
the structures, following the methods detailed in Sec. II B. The
layout of the points has been obtained with a KPCovR projec-
tion [59] and reflects the composition and stability of different
configurations. It can be noticed that the initial configurations
are limited to a small region at very precise stoichiometries
and low relative energy, while the iterative sampling allows to
fill the gaps between the regions and to incorporate defective,
high-energy structures.

Figure 2 shows the parity plots for energies (top) and forces
(bottom). In these plots, we refer to “training set” to indicate
the full 1821 structures that have been used for training, even
if not all of them appear in every potential, and the “test set” is
the set of 100 structures initially removed from the database.
The RMSE for the committee computed on the test set is
found to be 2.4 meV/atom for the energies and 109 meV/Å
for the forces. We correct for the intrinsic correlation in the
data set with a factor α = 2.2. These values show a very accu-
rate fitting, particularly when one considers the very diverse
set of structures used in the training.

While these values provide a sense of the typical error for
this potential, they do not necessarily reflect the ultimate accu-

FIG. 1. KPCoVR map [59] of the configurations used to fit the
final neural network potential (NNP). The map uses an equal mix of
principal component analysis (PCA) and linear regression of the en-
ergy relative to the trivial combination xEGa + (1 − x)EAs (α = 0.5,
following the convention of [59]) to illustrate the similarity among
the structures. Different colors highlight the origin of the data, as
presented in Sec. II B. The subplots present the same map, colored
according to the stoichiometry (left) and the hull distance (right), the
same quantity used for KPCovR construction underlying the map.

racy when computing specific, physically and technologically
relevant observables. To provide a compelling demonstration
of the versatility and limits of the potential, we compute a
selection of properties and compare them to DFT calculations

FIG. 2. Parity plot comparing the energies (top) and forces (bot-
tom) predicted with the NNP against the reference values from DFT.
The test set is an independent set of 100 structures which have been
excluded from the training procedure. The dashed line is added as a
guide for the perfect match between prediction and reference.
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TABLE I. Comparison of the structural properties between DFT, NNP, ANNK [60], and BOP [61]. Note that the ANNK and BOP potentials
are fitted to reproduce experimental data, while our potential has been fitted on the DFT predictions.

Property DFT NNP ANNK BOP Murdick BOP Expt.
GaAs-ZB

V0 (Å3) 23.82 23.76 ± 0.07 22.56 22.70 22.58
E0 (eV/atom) −4.04 −4.04 ± 0.00 −3.35 −3.37 −3.35
B (GPa) 58.82 59.75 ± 0.16 71.3 73.0 74.8
C11 (GPa) 98.72 96.22 ± 1.25 124.96 118.89 118.1
C12 (GPa) 41.23 46.44 ± 1.22 49.47 54.63 53.2
C44 (GPa) 50.92 44.09 ± 0.38 39.27 47.94 59.2

GaAs-WZ
V0 (Å3) 23.81 23.79 ± 0.06 22.56 22.70
E0 (eV/atom) −4.03 −4.03 ± 0.00 −3.35 −3.37
B (GPa) 58.73 59.01 ± 0.73 71.25 73.00
Ga-α
V0 (Å3) 20.38 20.37 ± 0.02 19.27 20.88 19.58
E0 (eV/atom) −2.83 −2.83 ± 0.00 −2.83 −2.57 −2.810
B (GPa) 46.91 47.52 ± 1.80 90.75 49.1 61.3

Ga-II
V0 (Å3) 19.02 19.00 ± 0.07 16.53 16.71
E0 (eV/atom) −2.81 −2.81 ± 0.00 −2.86 −2.60
B (GPa) 47.57 48.25 ± 1.90 350.04 98.94

As
V0 (Å3) 22.42 22.42 ± 0.03 19.25 19.86 21.51
E0 (eV/atom) −4.55 −4.55 ± 0.00 −2.91 −2.94 −2.9
B (GPa) 67.85 68.03 ± 0.37 69.03 103.20 55.6

or experimental values. The static lattice properties that we
compute are closely related to structures that are part of the
training set, and so they do not fully report on the trans-
ferability of the model but rather on the quality of the fit.
Results on finite-temperature properties, discussed in Sec. IV,
provide a complementary perspective on the behavior of the
ML potential and the underlying DFT reference.

We also provide the results obtained for the same proper-
ties with two of the most successful empirical potentials that
have been published in the past for GaAs, and are fitted to
experimental data. The first is the so-called Albe-Nordlund-
Nord-Kuronen (ANNK) potential, from the initials of the
authors, which has the form of a modified Tersoff poten-
tial [60] and has seen wide use for the study of the effect of
radiation on crystalline GaAs. The second is the bond-order
potential (BOP) presented by Murdick et al. in 2006 [61] to
study the molecular beam epitaxy growth of GaAs MOSFETs.
Single point calculations for the equation of state, plane deco-
hesion, and defect energies have been run with the aid of the
atomic simulation environment (ASE) package [62].

A. Structural and mechanical properties

As a sanity check for our MLP, we compute the equation
of state and the elastic constants for some stable phases of
Ga, As, and GaAs. As a starting point, we use primitive
cells obtained from the Materials Project [63], and optimize
them separately for each potential, to provide a self-consistent
reference. The results are shown in Table I, together with the
available experimental values, which the empirical potentials
are fitted against. The same set of calculations has been re-
peated for each potential, and the results of the ANNK and

BOP potentials are in agreement with those presented in their
respective original papers with the sole exception of the bulk
modulus of the ANNK potential for α-Ga and Ga-II, which
we find to be more than twice as large as the original value
reported, a discrepancy whose origin we could not determine.
As expected, our potential is in excellent agreement with the
DFT data, while the ANNK and BOP potentials show good
agreement with the experimental values of GaAs but are less
accurate for single-species Ga and As phases, despite the fact
that they were included in the fitting.

B. Defects

Structure and stability of defects are very important quan-
tities for III/V semiconductors because of the impact they
have on electronic properties and device performance. In this
section we demonstrate the accuracy of MLP prediction for
point and planar defects for the stable phases of As, Ga,
and GaAs, while also showing the results obtained with the
ANNK and BOP potentials. It should be noted that various
works in the literature report that the most stable configuration
of some of the defects that we present is charged [64–67].
However, we study them in their neutral state because both the
MLP and the empirical potentials do not have any information
about the overall charge of the system, but rely only on the
nuclear coordinates for their prediction. While we could, in
principle, train the potential with charged defects instead of
the neutral ones, this would be inconsistent with the rest of
the bulk structures, that are neutral. This also limits the types
of defects that we can study (e.g., surface reconstructions, that
often involve macroscopic charge transfer).
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FIG. 3. Formation energy of selected defects in bulk Ga, As,
GaAs. In the legend, V indicates a vacancy, 2V a divacancy, I an
interstitial, and GaAs is an antisite, where a Ga atom substitutes an
As one (and vice versa for AsGa). When multiple defects of the same
kind were available, only the lowest-energy one has been presented.
The arrows indicate predictions that are far outside the range of rea-
sonable values for the given defects. Numerical values are reported
in the Supplemental Material [68], Table S2.

1. Point defects

We compute the formation energies of vacancies, di-
vacancies, and interstitial atoms for Ga, As, and GaAs. For
the latter, we also include antisite configurations (substitu-
tion of an atom with the other chemical species, e.g., Ga
instead of As). For each potential we generate the defective
supercell at the corresponding equilibrium density, followed
by relaxation of the internal coordinates using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm.
Therefore, when comparing the various “relaxed” configura-
tions, we are effectively observing different minimum energy
configurations, each obtained with the corresponding poten-
tial.

Since we could not find reference values for the geometry
of interstitial atoms in crystalline Ga and As, we generate
several possible configurations, and report here only the one
that yields the lowest energy of formation with DFT, although
we include in the training set all of those that have been
created. Similarly, we compute all interstitial configurations
that have been reported in GaAs [66,69], but only discuss here
what we find to be the most stable structure. Results for the
other geometries can be found in the Supplemental Material
(SM) [68], Table S2.

Results for all defects are summarized in Fig. 3. The
ANNK and BOP potentials both fail to produce meaningful
results for defects in As and Ga, yielding extremely high,
or negative formation energies, demonstrating the unphysi-
cal results that can be produced by an empirical force field
outside of the range of configurations it has been fitted for.
On the other hand, the predictions for GaAs are closer to
the DFT values. Our MLP can predict with a low error all
the formation energies, although it tends to underestimate
some particular defects. We also observe that, occasionally,
the MLP geometry optimization converges to a structure

having a small but significant distortion relative to the DFT ge-
ometry, which is associated with a further decrease in energy.
When using the DFT-minimized structures for the compari-
son, the NNP is able to produce results closer to the DFT
references, as shown in the SM [68]. Given, however, that the
overall error in terms of energy per atom is much smaller than
the overall RMSE of the potential, we found that even adding
more reference configurations could not improve the accuracy
of the MLP, which underscores the need of including more
specific training targets if one wants to achieve the ultimate
accuracy in properties that depend on energy differences.

2. Surface energies and reconstructions

Figure 4 reports the rigid decohesion energies for all the
stable surfaces of Ga, As, and GaAs, that are relevant to
modeling fracture, and the surface-related phenomena that are
relevant to modeling the synthesis of III/V nanostructures.
Each supercell is computed at the equilibrium density of the
corresponding potential. Even though in this case surface
energies have reasonable values for all potentials, only the
NNP reproduces quantitatively the DFT reference, and avoids
an unphysical, near-discontinuous behavior of the decohesion
curve.

However, cleaved surfaces are usually not the most sta-
ble structure. The surfaces of semiconductors often undergo
complex reconstructions, i.e., the atoms on the surface rear-
range themselves and/or bind to one or more adatoms in the
presence of a Ga or As atmosphere [70,71]. Just as for sili-
con [72–74], surface reconstructions in GaAs have been the
subject of intense experimental and theoretical investigation,
and many structures have been proposed and found for each
of the high-symmetry orientations, i.e., [100], [110], and polar
[111] [70,71,75–77].

When computing the surface free energy for the re-
constructions, we have to account for the variation in
stoichiometry of the configuration. We also assume that the
surface is allowed to exchange atoms with a reservoir with
a given chemical potential. The equilibrium free energy is
obtained as

γsurfA = Esurf −
∑

i

μiNi, (2)

where Ni is the number of atoms of the species i in the
system, and μi its chemical potential in the reservoir. The
upper limit of the chemical potentials for each species is that
of the respective condensed phase, as μi < μi(bulk). Since we
know that in thermodynamic equilibrium the sum of chemical
potentials of As and Ga must be equal to the bulk energy per
GaAs pair

μGa + μAs = μGaAs = μGa(bulk) + μAs(bulk) − �Hf , (3)

we can rewrite our range of chemical potentials in terms of
variation of the chemical potential for a single species, which
we choose to be As following [61,71]

−�Hf < μAs − μAs(bulk) < 0. (4)

Finally, we compute the surface free energy as

γsurfA = Esurf − μGaAsNGa − μAs(NAs − NGa). (5)
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FIG. 4. Decohesion energy curves for the main high-symmetry
surfaces in Ga, As, and GaAs. Results with BOP and ANNK poten-
tials, our MLP and the DFT reference values are reported. Error bars
from the NNP reflect the distribution of estimates from the calibrated
committee model.

In the case of a cleaved surface we have (NAs − NGa) = 0, thus
leaving with a quantity that is independent of the chemical
potential.

Most of these reconstructions involve charge redistribution
between the surface and the bulk. In a typical slab super-
cell geometry, this requires introducing additional atoms to
artificial balance the total charge (e.g., saturating dangling

FIG. 5. Difference between the surface energy of the various
GaAs [110] reconstructions and the cleaved surface plotted against
the chemical potential of As. As indicated in Eq. (4), the physical
values of μAs vary within a range that depends on the potential, from
zero down to −�Hf , which is 0.7 eV for the NNP and DFT, and
approximately 0.9 for the two empirical potentials. Both the NNP
and the BOP potentials recognize the correct stable structures in the
observed range, while the ANNK potential finds the cleaved surface
as the most stable across all values of the chemical potential.

bonds with H atoms), and/or performing DFT simulations
for charged systems. This poses a challenge for interatomic
potentials, such as empirical force fields and MLPs, whose
parametrization relies only on the nuclear coordinates, and
does not allow varying the overall charge. While it would be
possible to compute MLP results for the [100] and polar [111]
surfaces, and compare them with neutral-slab DFT simula-
tions, the results would not be physically significant. As such,
we compute and present results for the reconstruction of the
[110] surface, the only one which is neutral in every case. As
shown in Fig. 5, the MLP reproduces accurately the DFT re-
sults; the BOP also predicts qualitatively the correct ordering
of surface reconstructions, while the ANNK potential incurs
a large error in predicting the stability of the As-terminated
reconstruction, and therefore incorrectly predicts the cleaved
surface to be the most stable across all values of μAs we
consider.

3. Generalized stacking fault energy

Surface energies play an important role in the brittle frac-
ture behavior of a material. The generalized stacking fault
(GSF) surface, instead, describes the energy cost associated
with the sliding of two atomic planes, which is connected
to plastic deformation, and the formation and dynamics of
dislocations. We consider the [111] GSF surface gliding in
the 〈112̄〉 direction. We use a 24-atom surface and the tilted
supercell approach [78] to estimate the GSF energy profile
(Fig. 6). All the curves exhibit a similar overall glide barrier,
but only the MLP reproduces qualitatively and quantitatively
the DFT results. The ANNK potential predicts a flat-top,
nonsmooth GSF profile, while the BOP incorrectly predicts
the asymmetry of the path.
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FIG. 6. Generalized stacking fault energy profile for the [111]
surface gliding along the 〈112̄〉 direction. The BOP, ANNK, and
MLP are compared to DFT reference calculations.

IV. FINITE-TEMPERATURE PROPERTIES

Having demonstrated the accuracy of the MLP for quanti-
ties that can be computed from static lattice calculations, and
for which a direct comparison with DFT reference values is
simple, we now move to consider finite-temperature proper-
ties, that require large simulation boxes and long sampling
time, and that would be prohibitively demanding when per-
formed with ab initio molecular dynamics. We investigate a
broad temperature range, from 20 to 1600 K, that covers both
a cryogenic regime, which is well below the Debye tempera-
ture and requires a quantum mechanical treatment of the ionic
degrees of freedom, up to the melting point of the highest-Tm

phase, i.e., GaAs. Even though some of the quantities we com-
pute can be obtained with approximate, perturbative methods
at smaller computational cost, we report the fully anharmonic
estimate using MD and path-integral MD simulations, which
are made feasible by the use of a MLP. Even though our results
reflect accurately the thermodynamics of the MLP, which in
light of the validation in Sec. III is likely to reproduce the
DFT predictions, we expect significant deviations from the
experimental values, due to the shortcomings of the reference
electronic structure methods. Still, the combination of a MLP
and accurate finite-temperature sampling makes it possible to
improve substantially the accuracy relative to existing em-
pirical force fields. Unless otherwise stated, the uncertainties
presented for the properties arise from the finite time of the
simulations and have been computed by block averaging the
simulations to account for the time correlation of the data.

A. Solid properties

We present the results of simulations of the solid phases for
temperatures from 20 K up to the melting point for Ga, As,
and GaAs, computed over a fine grid of temperature values.
Based on this set of simulations, we compute and discuss bulk
thermophysical properties such as heat capacity and thermal
expansion for every phase which is stable at room-temperature
conditions.

The isotropic thermal expansion is computed by com-
paring the equilibrium volumes between simulations run
at subsequent temperatures (using PIMD and MD simula-
tions separately), while we compute the heat capacity using

the variation of the enthalpy with respect to the temper-
ature. The same quantities have been also computed with
the quasiharmonic approximation (QHA) as implemented in
PHONOPY [93]. In the following figures, we will be presenting
on the left side the results obtained with MD for our NNP
committee, while on the right side the comparison with the
empirical potentials at the QHA level.

The isotropic thermal expansion coefficients vs temper-
atures are presented for Ga, As, and GaAs in Fig. 7 for
all three potentials. The ANNK potential shows an unusual
profile of the thermal expansion of bulk As and bulk Ga
[Figs. 7(a) and 7(b)], while the BOP is able to follow more
closely the experimental values. For the case of bulk As, the
MD simulations run with the two potentials show that the
ANNK potential is unstable when running beyond 800 K,
while the BOP is unstable at 1400 K and never undergoes a
spontaneous solid-liquid transition. Experimentally, a single
result has been found for the isotropic thermal coefficient that
can be compared to our analysis, and is given as an average
value for temperatures between 300 K and the melting point.
Finally, the GaAs results are shown in Fig. 7(c). GaAs in its
zinc-blende form has a negative thermal expansion coefficient
at low temperature [94], which is predicted by our potential
both in the MD simulations and the QHA, but not by the
other models. At higher temperatures, our potential seems to
be slightly overestimating the expansion of the solid in the
MD simulations. The QHA results follow rather closely those
obtained with MD simulations at lower temperatures, while
slightly deviating at higher ones, when anharmonic contribu-
tions become relevant.

The results concerning the heat capacity converge, as ex-
pected, to the corresponding classical value. However, the
BOP and the ANNK potentials deviate from the experimen-
tal values at low temperatures, particularly for Ga and As
[Fig. 8(a) and 8(b), respectively]. Moreover, as expected, clas-
sical MD is not able to reproduce the quantum behavior of
the heat capacity, that can be recovered only by using PIMD
simulations, as it can be seen clearly in the calculations run
with the NNP for all three phases.

B. Liquid properties

We turn now our analysis to properties related to the liquid
part of the phase diagram, which is investigated using MD
simulations of large supercells for long trajectories. In this
section we present the results for the density of Ga, the radial
pair distribution functions of liquid Ga, As, and GaAs, diffu-
sion coefficients, and viscosities of the liquid phases of Ga and
GaAs. We also compare the values predicted by our potential
with the ones that have been reported experimentally, where
available.

The density of liquid Ga is presented in Fig. 9, where it
is clear that our potential qualitatively reproduces the experi-
mental values, although underestimating it by about 8%. This
underestimation may be in part due to the lack of dispersion
interactions, that have been found to play an important role
in materials composed by row IV elements and above [97].
Investigating the role of dispersion by retraining the NNP
against van der Waals (vdW) corrected functionals may be an
interesting future line of research. Both the BOP and ANNK
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(a)

(b)

(c)

FIG. 7. The isotropic thermal expansion coefficient computed for Ga (a), As (b), and GaAs (c). On the left side we provide the results
obtained with PIMD (up to 300 K) and MD (from 200 K onward) for the NNP, while on the right side we compare the three potentials
at the QHA level. The inset in (c) provides a clear view of the behavior at low temperature of the three potentials. In this regime, our NNP is
the only potential able to recover the negative thermal expansion coefficient. The experimental value of Ga is presented as the range between
the maximum observed value and the minimum [79], while for As it has been provided as an average over a large range of temperatures
As [80]. Various sources have been used for the experimental thermal expansion of GaAs [81–86].

do not follow even qualitatively the experimental density.
Both the empirical potentials are actually solid in the region
T < 800 K and become liquid only afterwards. A disconti-
nuity in the first derivative of the density can be observed
around that temperature for both potentials. As predicted by
the thermal expansion calculations of solid Ga [Fig. 7(a)], the
ANNK potential actually shows a compression of the box as
the temperature increases.

Then, we report the radial pair distribution function, which
we will refer to as g(r). We run simulations of liquid Ga at
three different conditions in Fig. 10, liquid As in Fig. 11,
liquid GaAs in Fig. 12, and amorphous GaAs in Fig. 13 for
a comprehensive view of the potential. For As and GaAs,
we also provide the equilibrium density at the given tem-
perature. We do not provide the results for the BOP and
ANNK potentials in most cases because they are not liquid
in the range of temperatures that we have considered for the
MD simulations (e.g., the BOP and ANNK melting points of
GaAs are reported to be around 1950 K). In these figures
we also provide a comparison between the thermodynamic
uncertainty obtained by reweighting the trajectories for each
potential in the committee (here called σV following the same
notation as Ref. [46]) and the statistical uncertainty due to the
finite time of the simulations (indicated as σMD).

In the case of liquid Ga, our potential is able to reproduce
with striking accuracy the g(r) both at low and high temper-

atures, similarly to the results of other ab initio studies run
with GGA [96,102] or local density approximation (LDA)
functionals [30]. At higher pressure, we obtain a good agree-
ment with the experimental data, very similar to that of other
studies at the GGA kevel [96]. Both empirical potentials fail
to provide a meaningful description of the liquid environment
at 959 K, while the ANNK potential has a reasonable, but too
ordered, g(r) at high pressure.

Arsenic does not undergo melting at atmospheric pres-
sure, becoming directly gaseous at 887 K. Therefore, in
Fig. 11 we run simulations at T = 1098 K and p = 4.8 MPa,
where it is liquid, to compare to the g(r) obtained ex-
perimentally in the same conditions [98]. Our prediction
is less accurate compared to the Ga one, but we are still
able to recover the position of the peaks in the liquid, al-
though the shoulder in the second peak seems to be entirely
missing. We are also underestimating the density of the
liquid.

The results obtained for liquid GaAs at 1550 K are pre-
sented in Fig. 12, where we observe a reasonable agreement
with the experimental data [99], although it is not entirely
clear whether the splitting of the peaks in the experiments is
a physical feature, possibly due to the undercooling of the
sample, or due to the noise. Other ab initio simulations in
literature also do not show the same splitting of the second
peak [103–105].
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(a)

(b)

(c)

FIG. 8. The constant pressure heat-capacity coefficient computed for Ga (a), As (b), and GaAs (c) with PIMD (up to 300 K) and MD (from
150 K onward) for the NNP and with the QHA for the BOP and ANNK potentials. MD simulations can only predict the classical value of the
heat capacity, whereas with the explicit inclusion of NQEs we can recover the quantum behavior. Experimental values have been reported for
Ga [87], As [88,89], and GaAs [1,90–92].

The excessive smoothing of the g(r) of both As and GaAs,
and the underestimation of the density, are probably a reflec-
tion of the limitations of the ab initio reference rather than of
the NNP, as evidenced by the small estimated σV . As in the
case of Ga, incorporating dispersion interactions might be a
possible strategy to improve the accuracy of DFT energetics.

Finally, we provide predictions of the g(r) for amorphous
GaAs, which is not included in the training set. We prepare

FIG. 9. The density of liquid gallium as predicted by the NNP
compared to the experimental values. The values from the simula-
tions with the BOP and ANNK potentials are added, but the density
refers to the solid phase until 800 K, where a discontinuity is ob-
served for both potentials.

the cell by first running five trajectories with different initial
structures made of 1000 atoms where we quench the liquid
from 1800 to 300 K over 1 ns. Then, we compute the g(r)
on 1-ns-long simulations of the final structure, at 300 K. The
results presented in Fig. 13 refer to the average g(r) of the five
different simulations, compared to the experimental results of
Gheorghiu et al. [100] and Shevchik et al. [101]. Overall, we
find a good agreement with the experimental values, with very
similar positions of the peaks. We also observe that the un-
certainty over the energies is, on average, only twice as large
as the same uncertainty computed for liquid GaAs, which
translates in an uncertainty in the g(r) that is larger, but still
negligible. In fact, the uncertainty of the g(r) of amorphous
GaAs is comparable with the one we obtain for liquid As,
which is explicitly included in the training set. Overall, we
believe that the potential is able to produce accurate results for
the amorphous system, despite the lack of dedicated structures
in the training set. For a study dedicated to the amorphous
phases, however, we would recommend to extend the training
set incorporating explicitly amorphous structures.

Having investigated the thermodynamic properties of the
bulk liquids, we now consider the diffusion coefficients and
the viscosities for the liquid phases of Ga and GaAs. To
obtain these, we run several simulations with cubic boxes with
a side of 30 Å, relaxed at the equilibrium density. At each
temperature we run 20 simulations starting from different
initial configurations (at equilibrium density) for 200 ps each
in the NVT ensemble using a weak SVR thermostat [57]. We
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1×10−21×10−2 1×10−2

FIG. 10. The radial pair distribution function computed for the various potentials and compared to the experimental values at ambient
pressure [95] and at high pressure [96]. The g(r) of the empirical potentials are not reported in the first panel because the structures remain
solid at the reported temperature. The bottom panels present the uncertainty arising from the use of a ML model compared to the statistical
uncertainty due to the finite time of the simulation.

compute the mean-square displacement as an average over
the 20 trajectories and obtain the diffusion coefficient for the
finite-size system (which we indicate with the Periodic bound-
ary conditions (PBC) subscript) with adequate statistics:.

DPBC = lim
t→∞

1

6t

〈
N∑

j=1

(r j,i(t ) − r j,i(0))2

〉
. (6)

Since the diffusion coefficient is known to be heavily af-
fected by the size of the box [111], we determine the diffusion
coefficient of the infinite bulk system by adding the correction
factor computed by Yeh and Hummer [112], as

D∞ = DPBC + ξkBT

6πηL
, (7)

where ξ is a dimensionless constant equal to 2.837 297 for
cubic simulations boxes, η is the viscosity, and L is the side of

1×10−2

FIG. 11. The radial pair distribution function computed for the
NNP at 1098 K and 4.8 MPa, compared to the corresponding ex-
perimental values available [98]. The bottom panel presents the
uncertainty arising from the use of a ML model compared to the
statistical uncertainty due to the finite time of the simulation.

the box. The viscosity, which is almost independent from the
box size [112–114], is obtained from the autocorrelation func-
tion of the off-diagonal elements of the stress tensor computed
in the same simulation of the diffusion, as

η = V

kBT

∫ ∞

0
〈Pαβ (t )Pαβ (0)〉dt . (8)

An alternative method to compute the diffusion coefficient
for the infinite bulk system is to compute the coefficient for
supercells of increasing size, then extrapolate the value for
an infinite supercell [114]. Therefore, we have run additional
calculations for smaller cells, to compare the values obtained
with the two methods and found them to be in good agree-
ment, as seen in Fig. S1 of the SM [68].

While the MLP consistently underestimates the viscosity
(and conversely overestimates the diffusion coefficient), we

1×10−2

FIG. 12. The radial pair distribution function computed for the
NNP at 1550 K and compared to the experimental values avail-
able [99]. The empirical potentials have been omitted, since they are
solid at this temperature. The bottom panel presents the uncertainty
arising from the use of a ML model compared to the statistical
uncertainty due to the finite time of the simulation.
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1×10−2

FIG. 13. The radial pair distribution function of amorphous
GaAs computed for the NNP at 300 K after a slow quenching start-
ing at 1800 K, compared to the experimental values of Gheorghiu
et al. [100] and Shevchik et al. [101]. The bottom panel presents
the uncertainty arising from the use of a ML model compared to the
statistical uncertainty due to the finite time of the simulation.

are able to recover the qualitative behavior at lower temper-
ature for gallium, as seen in Fig. 14. The underestimation of
the viscosity at a given temperature is to be expected given the
lower value of the melting point, that we discuss next. A large
underestimation of the viscosity is also observed in the case
of GaAs (Fig. 15), which also has a much lower melting point
(1200 K against 1550 K observed experimentally). However,
the fact that even at the lowest temperature we do not observe
the sharp increase in viscosity that is observed in experiments
when approaching the melting point suggests that our MLP
should be used with care when investigating dynamical prop-
erties for molten GaAs.

FIG. 14. The diffusion (top) and the viscosity (bottom) computed
for liquid gallium at increasing temperatures. 20 simulations have
been run for each point and the spread in the predicted values is
reported with the error bars. Although the viscosity and the diffusion
are related, we have used experimental values reported from separate
sources for the viscosity [106] and the diffusion [107].

FIG. 15. The diffusion (top) and the viscosity (bottom) computed
for liquid gallium arsenide at increasing temperatures. 20 simulations
have been run for each point and the spread in the predicted values
is reported with the error bars. The simulations are compared to
the reported experimental values for the viscosity [108], whereas no
direct measurement of the diffusion has been found in literature.

Finally, having reported on the bulk properties of the liq-
uids, we compute their surface tension, that we obtain by
running 1-ns-long simulations of the interface between bulk
liquid and vacuum in a large orthorhombic supercell with
1568 atoms for Ga and 1728 atoms for GaAs, with approxi-
mate dimensions of 32 × 32 × 100 Å at varying temperatures.
To estimate the surface tension we have used its relation to the
diagonal elements of the stress tensor for the described box,
as in Eq. (9), where the 1

2 factor at the beginning accounts for
the presence of two interfaces between liquid and vapor:

γ = 1
2 Lz

[
Pzz − 1

2 (Pxx + Pyy)
]
. (9)

Our NNP seems to underestimate the surface tension for
both Ga and GaAs, as seen in Fig. 16. To investigate the
discrepancy, we check additional structures related to these
trajectories and find errors of 1 to 2 meV/atom between our
NNP and the DFT results, well below the overall RMSE of
the potential, suggesting that the discrepancy might be due to
the reference calculations and not to the accuracy of the fit.

C. Binary phase diagram

In the Introduction we mentioned our aim to produce an ac-
curate and transferable potential. Until now we have computed
a number of properties with the purpose of showing its ac-
curacy, albeit limited by the underlying DFT reference. Here
we want to provide a compelling proof of the transferability
of the potential, which is of utter importance when studying
technologically relevant phenomena in varying conditions of
temperature, pressure, and stoichiometry.

Providing a full description of the phase diagram is a
definitive test of reliability of the potential since not only are
we performing simulations at different stoichiometries, but
every simulation that we run contains both solid and liquid
bulk, together with their interface.

In Fig. 17 we show our predicted phase diagram, com-
pared to the experimental one. At first glance we observe a
good agreement in the shape of the two curves, with a low
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FIG. 16. The surface tension of Ga in (a) and GaAs in
(b) for increasing temperature, compared to the experimental val-
ues [109,110]. As previously mentioned, the empirical potentials
tend to overestimate the melting point, so the results with these
potentials refer to the solid phase

FIG. 17. Top: The binary phase diagram for GaAs as predicted
from our NNP, compared to the experimental one. We used interface
pinning simulations to find the melting point for the pure Ga, As,
and GaAs cases, while the other points have been measured using
mixed Monte Carlo–MD simulations at different stoichiometries and
temperatures. Bottom: saturation concentration of As in liquid Ga as
a function of temperature in the region of low temperatures.

FIG. 18. Determination of the error in the melting point of As,
GaAs, Ga associated with the NNP fit, using the uncertainty estima-
tion scheme in Ref. [46]. The chemical potentials at each temperature
are computed separately for each member of the NNP committee,
using a cumulant expansion scheme that makes it possible to obtain
the four values by reweighting the trajectory driven by the committee
average. This approach makes it possible to estimate the melting
point of each potential, and determine the uncertainty in melting
point by the spread in the four predictions.

solubility of As predicted at low temperatures in the high-
Ga region (highlighted in the bottom figure), followed by an
almost flat central part. We also observe an eutectic point
at T = 950 K and x = 0.03, not far from the experimental
value of T = 1083 K and x = 0.05. The melting points are
predicted to be 1039, 1200, and 195 K for As, GaAs, and Ga,
respectively, which are in relatively good agreement with the
experimental values of 1090, 1511, and 303 K. It is important
to stress that the discrepancy is probably due, in large part,
to the underlying electronic-structure reference. In Fig. 18
we demonstrate the use of the thermodynamic uncertainty
quantification scheme from Ref. [46] to determine the error
due to the fit of the NNP. We find 1039 ± 51, 1200 ± 5, and
195 ± 24 K for As, GaAs, and Ga: except for the case of As,
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the error associated with the machine-learning approximation
is a small fraction of the discrepancy with experiments.

The points shown in Fig. 17 have been computed with
two different methods. The melting point of pure Ga, As,
and GaAs is obtained with the interface pinning method, as
described by Pedersen et al. [115]. The remaining points in
the liquidus are obtained by running large supercells at various
temperatures and stoichiometries, measuring the concentra-
tion of the two species in the liquid at equilibrium. In order
to speed up the equilibration of the concentrations, we add a
Monte Carlo step on top of the MD calculation.

For the interface pinning simulations we first determine
an optimal collective variable that can distinguish solid and
liquid phases, and then run multiple simulations at regular
temperature intervals for a large supercell in the NpzT ensem-
ble. To run these trajectories, we use the open source PLUMED

library [116,117] to add the bias potential, in addition to I-PI

and LAMMPS. After obtaining the mean value of the collective
variable at each temperature, we determine the melting point
by fitting the chemical potentials to a line. The temperature
at which we find a chemical potential of μ = 0 is the melting
point of the system [118]. To compute these trajectories we
use the locally averaged Steinhardt parameters introduced by
Lechner and Dellago [119,120] q4 (for As and GaAs) and q6
(for Ga) as collective variables for the system.

For intermediate concentrations, we use a mixed Monte
Carlo–MD scheme, implemented in I-PI. At every MD step,
we attempt to swap 50 (on average) random Ga-As pairs in the
system. The particle exchange is then accepted or rejected us-
ing a Metropolis criterion. The supercells used in this case are
composed by 50% solid GaAs and 50% liquid GaxAs1−x . The
stoichiometry of the liquid is determined such that the total
stoichiometry of the system varies between 0.25 < x < 0.75.
The simulations are divided in a first NpT part, for 10 ps, to
find the equilibrium density for the solid, and a second NpzT
part, run for 200 ps. In this second trajectory, we allow the
system to equilibrate for the first 100 ps, and then measure
the average concentration of As and Ga in the liquid for the
remaining 100 ps.

This method works without the need to introduce an exter-
nal potential to pin the interface because we are considering a
binary mixture [121]. For an elemental system, the chemical
potential between the solid and liquid at the melting point is
0, hence, the need to introduce the bias potential to avoid a
random walk of the interface, which could result in complete
freezing or melting. For the mixture, however, the curvature
of the free energy at the interface depends on the composition
of the two coexisting phases as(

δ2G

δ f 2

)
p,T,x

= (xs − xl )3μ′′
l (xl )μ′′

s (xs)

(xs − x)μ′′
s (xs) + (x − xl )μ′′

l (xl )
, (10)

where f represents the fraction of solid phase in the system,
xs, xl , and x are the compositions of the solid, the liquid, and
the overall system, and μl,s is the chemical potential of the
liquid and the solid, respectively. Thus, in any case in which
solid and liquid have different equilibrium composition, there
is a positive curvature that acts as a restoring force against
fluctuations of the dividing surface, acting effectively as a
pinning potential that keeps the solid fraction fluctuate around

FIG. 19. The electronic density of states of liquid and solid Ga,
As, and GaAs as predicted by a committee of 16 built following
Ref. [46]. All the curves are centered with respect to the Fermi
energy, which represents the energy = 0 level.

the value consistent with the lever rule. Measuring the mean
composition of the two phases in equilibrium makes it possi-
ble to determine the position of the solidus and the liquidus.
The derivation is provided in Ref. [121].

D. Beyond potentials

It is worth mentioning that the same transferability that is
achieved for the potential also applies to other properties, such
as those afforded by next-generation integrated ML models
that also target predictions of the electronic structure of mate-
rials. As a proof of principle, we build a model of the density
of states (DOS) using the same protocol discussed in [44],
using the Kohn-Sham eigenvalues from the same structures
included in the training set for the potential, an additive
decomposition of the DOS, and a prediction of local contri-
butions in terms of a multivariate Gaussian process regression
and a description of atomic environments based on smooth
overlap of atomic positions (SOAP) features [122], computed
using the implementation in LIBRASCAL [123]. As shown in
Fig. 19, this DOS model gives accurate predictions of the
single-particle energy states across the entirety of the phase
diagram. Even though the limitations of DFT-PBE (which are
known to underestimate the band gap in GaAs) make this
preliminary model of limited utility, future work may build
on our results to incorporate electronic-structure information
at a higher level of theory, such as it has been done for the
AlxGa1−xAs system [124], providing a full description of the
stability and properties of the GaxAs1−x system.

V. CONCLUSIONS

We presented an accurate and flexible machine-learning
potential for the GaxAs1−x binary system, that can be used
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to model technologically relevant phenomena and deepen our
understanding of the atomistic processes that underlie them.
We demonstrate an accuracy of this potential which is compa-
rable to the electronic-structure reference calculations, while
its low, and linear-scaling, computational cost will benefit
the study of large-scale problems, such as the full nanowire-
nanodroplet interface during the vapor-liquid-solid growth of
GaAs nanowires, or the investigation of radiation damage in
bulk GaAs. The transferability of this potential makes it also
suitable to study, with comparable accuracy, the behavior of
pure As and Ga. The latter, in particular, has become the
subject of several works regarding the local structure at high
pressure [96,125,126] and the details of its liquid-liquid phase
transition [127,128]. Both in the construction of the training
set, and in the analysis of the simulation results, we make
use of the structure of the potential as a committee of mul-
tiple models [40]. Their standard deviation (after appropriate
calibration) indicates the uncertainty of predictions for each
configuration. This provides an online control of the quality
of the trajectories that are generated and a reliable method to
choose new training points to refine the fit. We also demon-
strate how the committee model can be used to estimate the
error for both static-lattice quantities and finite-temperature
thermodynamic averages, assessing the error associated with
the machine-learning approximation on the structure of the
liquid phases and the values of the melting points [46].

In order to provide compelling arguments for the quality
of the potential, we have tested the predictions across many
different scenarios. Some, such as the calculation of static
lattice properties, are directly comparable to the DFT predic-
tions. Others, such as finite-temperature static and dynamical
quantities, cannot be directly computed from DFT and have
been compared to their experimental counterparts. Overall, we

have demonstrated that the potential is able to reproduce very
well the reference data, with only minor deviations from the
DFT calculations. We have also seen a good agreement with
the experimental data on a number of properties. Finally, we
have shown the flexibility and overall accuracy of the potential
by exploring the finite-temperature properties of GaxAs1−x ,
including challenging properties such as the melting point and
the low-temperature thermophysical quantities, that require a
quantum mechanical treatment of nuclear degrees of freedom.
The binary phase diagram is in convincing agreement with the
experimental one, although the shortcomings of the reference
PBE DFT energetics are apparent in the underestimation of
the melting point of all phases. Higher-level-of-theory cal-
culations, for instance, using a hybrid DFT scheme, could
increase the accuracy of this potential, as well as provide more
reliable estimates of electronic excitations, and serve as an
input for an integrated model providing both structural and
functional properties of III-V semiconductors.

The Supplemental Material contains additional data about
bulk phases and point defects, and a comparison of the
diffusion coefficients extrapolated using the viscosity or by
finite-size scaling. The training data, the fitted potential, a
chemiscope [129,130] visualization of the training set, and
two examples of I-PI simulations using the potential are also
included as a compressed archive [68].
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