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Machine learning approaches for feature engineering of the crystal structure:
Application to the prediction of the formation energy of cubic compounds
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In this study, we present an approach (along with the needed computational strategies) for efficient and scalable
feature engineering of the crystal structure in compounds of different chemical compositions. This approach
utilizes a versatile and extensible framework for the quantification of a three-dimensional voxelized crystal
structure in the form of 2-point spatial correlations of multiple atomic attributes and performs principal com-
ponent analysis to extract the low-dimensional features that could be used to build surrogate models for material
properties of interest. An application of the proposed feature engineering framework is demonstrated on a case
study involving the prediction of the formation energies of crystalline compounds using two vastly different
surrogate model building strategies; local Gaussian process regression and neural networks. Specifically, it is
shown that the top 25 features (i.e., principal component scores) identified by the proposed framework serve as
good regressors for the formation energy of the crystalline substance for both model building strategies.
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I. INTRODUCTION

Although physics-based modeling approaches such as
density-functional theory (DFT) [1,2] offer the preferred av-
enue for estimating the physical and chemical properties of
crystal structures, they are not ideally suited for materials
discovery and innovation efforts. Such efforts demand in-
verse solutions such as finding the molecular chemistry and
structure that meets a targeted combination of physical and
chemical properties [3]. One of the most practical strategies
for addressing the inverse solutions of materials design is
to first produce high-fidelity low-computational cost surro-
gate models trained to the available data (e.g., collections of
DFT computations), and then use the surrogate model for
addressing the inverse problems of interest. Such a strategy
can prove to be highly beneficial in rapid screening of vast
design spaces [3–5]. In this context, the emerging toolsets and
paradigms in machine learning (ML) offer new opportunities
for building the surrogate models needed to accelerate the
discovery of new crystal structures. In particular, it is now
possible to train these models using collections of publicly
accessible DFT data in repositories such as the Materials
Project (MP), Open Quantum Materials Database (OQMD),
Joint Automated Repository for Various Integrated Simula-
tions (JARVIS), Computational 2D Materials Database, and
Quantum Machine [6–16].

ML models have been used in prior work to predict a broad
range of material properties based on DFT datasets. The prop-
erties modeled have included optical and electronic bandgaps
[17,18], formation energy [6,8,19–24], atomization energies
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[25–29] and polarizability of crystalline compounds [30]. ML
models have also been used in prior work for the predic-
tion and classification of crystal compositions and structures
[31–35] and in the development of many-body interatomic
potentials for atomistic simulations [36–38]. One of the foun-
dational elements of ML common to most model building
approaches is feature engineering, which aims to identify a
small list of transformed input variables (called features) from
the original large list of input variables that potentially could
influence the predictions of the output variables (called tar-
gets). As one would expect, feature engineering governs the
accuracy and utility of the surrogate model. In some of the
ML approaches [e.g., convolutional neural networks (CNNs)],
feature engineering occurs implicitly in the model training
phase. In general, the more implicit one makes the feature
engineering task, the more training data would be needed.
This is because the model needs to learn the salient features
first before learning their quantitative relationships with the
targets. In much of the prior work [12,21,25,33], large fea-
ture lists have been manually cultivated by researchers based
largely on their intuition of the atomic physics. Consequently,
these feature lists have included various simplified attributes
of the chemical compositions (e.g., atomic fractions) as well
as the atomic structure (e.g., bond lengths and bond angles).
These approaches face significant challenges. First, the cre-
ation of these lists has been pursued largely in an ad hoc
manner, which inevitably reflects the bias of the individual
researchers. As such, these approaches may fail to account for
certain potentially salient features controlling the target prop-
erty. Second, the specification of chemical composition using
distinct labels for the different atomic species hinders learning
across crystal structures with different elemental composi-
tions. One strategy to address this challenge has been to

2475-9953/2021/5(6)/063802(14) 063802-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3360-329X
https://orcid.org/0000-0001-6909-7507
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.5.063802&domain=pdf&date_stamp=2021-06-02
https://doi.org/10.1103/PhysRevMaterials.5.063802


KAUNDINYA, CHOUDHARY, AND KALIDINDI PHYSICAL REVIEW MATERIALS 5, 063802 (2021)

supplement the feature lists with certain atomically weighted
physical properties [8,39,40]. Additionally, there have also
been various efforts at enhancing the specification of the
atomic structure in the feature lists by retaining much of the
actual three-dimensional (3D) atomic structure information.
For instance, Faber et al. [20] utilized an extension of the
Coulomb matrix representation to account for the periodicity
of the crystal structure. In a different approach, Ward et al.
[23] represented the crystal structure with a Voronoi decom-
position and employed local atomic species-level descriptors
between neighboring species in addition to global structure
descriptors such as maximum packing efficiency. In similar
efforts, Schutt et al. and Honrao et al. used a feature set
containing values of the partial radial distribution function
(RDF) between pairs of constituent species in the crystal
structure [41,42]. The partial RDF is a measure of the fre-
quency of a pair of species separated by a certain distance
within the material volume. However, the partial RDF does
not contain directional information about the distribution of
the atoms. One approach to overcome this limitation has
been to supplement the partial RDF with an angular distri-
bution function that contains information on the distribution
of interatomic angles between species [43]. Nevertheless, this
approach still utilizes distinct labels for constituent species,
and is thus typically useful only for description of crystal
structures with few species (such as Al-Ni and Cd-Te sys-
tems [43]). Another interesting approach proposed recently
relied on the development of graph embeddings that encode
species-specific features (such as the periodic table group
number, period number, electronegativity) and a limited set
of structural features (such as the interatomic distance) as
nodes and edges of a multigraph, respectively [24,44,45]. This
representation is amenable to usage in graph convolutional
neural networks [46,47] that sequentially build up localized
representations for each node by iteratively including infor-
mation from neighboring nodes.

Using the feature engineering schemes described above,
current efforts have employed various regression approaches
such as kernel ridge regression (KRR) [20,42], support vec-
tor machines [42,43], deep neural networks [21], gradient
boosted decision trees [8], and graph convolutional neural net-
works [24,44,45] to build the desired reduced-order models.
While the regression-based learning methods are computa-
tionally very efficient, they are often prone to over-fitting
because they invariably employ a large number of implicit
model parameters that need to be trained on a large collection
of ground-truth data. The overfitting may be mitigated to a
certain extent with the adoption of well-known techniques
such as early stopping [48], loss function regularization,
and dropout [49,50]. With the adoption of such techniques,
the high computational efficiency of neural networks (NNs)
makes them an attractive option for building reduced-order
models. However, a significant challenge arises from the avail-
ability of relatively small training datasets due to the very high
cost of DFT computations. The role of the feature engineering
procedure is especially critical in such smaller sized datasets
because of the need to restrict the number of model fit param-
eters that can be used in these cases.

ML approaches based on Bayesian inference offer an al-
ternate option that is likely to prove beneficial for building

surrogate models from DFT computations. More specifically,
Gaussian process regression (GPR) [51] offers a power-
ful nonparametric Bayesian approach to building surrogate
models from small training datasets. There are many po-
tential benefits to the utilization of Gaussian processes in
the context of regression. First, they allow a formal treat-
ment of uncertainty in the model predictions. In other
words, they do not just estimate the expected values for
the model outputs, but also their distributions. Second, the
formal treatment of model uncertainty allows the design
and implementation of strategies that could potentially re-
duce the effort spent in the generation of the training data.
More specifically, it is possible to formulate and maximize
the expected information gain to the surrogate model with
the addition of each specific new training data point. This is
particularly important to building surrogate models with lim-
ited data from the computationally expensive DFT datasets.
Furthermore, GPR models are typically more interpretable
than NNs.

In this paper, we present a systematic and comprehen-
sive approach to feature engineering of crystal structure that
directly addresses the challenges described earlier. In this
approach, we systematically and efficiently assemble an ex-
tremely large number of spatial correlations (specifically,
2-point correlations) [5,52] that implicitly account for atomic
attributes (e.g., Pauling electronegativity, ionization energy,
heat of fusion). After processing the large feature list for the
complete ensemble of crystal structures of interest, we employ
principal component analysis (PCA) to obtain a suitable low-
dimensional representation of the feature list. This strategy
offers many advantages compared to the approaches used in
current literature. First, the approach presented in this work
has the potential to systematically generate a very large set of
physics-inspired features for the rigorous and comprehensive
quantification of the crystal structure. Second, the proposed
protocols utilize digital (i.e., voxelized) representations of
the 3D crystal structure [53,54] along with compact Fourier
representations and associated computational algorithms [e.g.,
fast Fourier transform (FFT)] for highly efficient computation
of the features (i.e., spatial correlations). Third, the encod-
ing of individual chemical species through their individual
physical properties enables effective learning across crystal
structures of different elemental compositions. Fourth, the use
of PCA provides an objective (i.e., data-driven) path for es-
tablishing low-dimensional representations of the compound
crystal structure that can then be used with a broad variety
of model-building approaches. Fifth, the features identified by
the proposed framework are independent of the target property
predicted by the model.

The primary goal of this paper is to develop and
demonstrate a versatile feature engineering methodology for
materials problems involving different chemical compositions
of compounds and their crystal structures. This methodology
is aimed at extracting reliable models from small data sets
using physics-inspired feature engineering approaches. We
demonstrate the utility of this feature engineering scheme by
building predictive models for the crystal formation energy
using two drastically different model-building approaches:
(i) a localized variant of GPR [55], and (ii) a feed-forward
NN. A second goal of this work is to critically compare the

063802-2



MACHINE LEARNING APPROACHES FOR FEATURE … PHYSICAL REVIEW MATERIALS 5, 063802 (2021)

relative merits of both model building techniques for address-
ing materials problems.

II. BACKGROUND

The central goal of the feature engineering step is to es-
tablish a compact set of salient inputs (i.e., features) that
serve as suitable predictors for the selected targets. In the
context of our problem, this would entail establishing a set of
salient crystal structure descriptors for capturing high-fidelity
reduced-order structure-property (SP) relationships [5,56].
In this effort, the formalism of n-point spatial correlations
(also called n-point statistics) [5,57–61] offers a systematic
approach to statistical quantification of the underlying mor-
phological patterns in the heterogeneous material internal
structure. Several existing statistical atomic physics models
such as the Ising model (for predicting ferromagnetism) [62]
and the Potts model (a general model of interacting atomic
spins) [63] predict the bulk properties of materials as a sum
of contributions arising from local structure features that can
be easily interpreted as components of the n-point spatial cor-
relations. Spatial correlations are indeed the features dictated
by the governing physics in studies of heterogeneous material
structure at all length scales, spanning from the atomistic to
the mesoscale. However, the comprehensive set of n-point
spatial correlations is typically too large and unwieldy to serve
directly as inputs for the reduced-order models. As such, there
is a critical need for a compact representation of the material
structure features that can serve effectively as inputs to pro-
duce the desired high-fidelity reduced-order models. In this
section, we present a brief overview of the concepts of spatial
correlations, salient feature extraction (using PCA), and the
strategies for building reduced-order models (i.e., GPR and
NNs) used in this work.

A. Spatial correlations

Typically, efficient computations of spatial correlations for
the quantification of the heterogeneity of the material structure
utilize digital representations (i.e., voxelized representations
with suitable assignments of material states to each voxel)
and FFT algorithms for computing the convolution opera-
tions involved in these computations [5]. Mathematically,
these voxelized representations can be expressed as a high-
dimensional array mp

s , whose elements capture the value of
a local feature (reflecting the local material state) indexed
by p in a voxel indexed by s (defined as vector of inte-
gers {s1, s2, s3} for 3D material volumes). This array of size
(P × n(S)), with P denoting the number of distinct material
states assigned to each voxel in the material volume and n(S)
denoting the cardinality of the set of spatial voxels S, defines
one instantiation of a material structure.

Our interest lies in extracting microstructure statistics from
each instantiation (i.e., mp

s array) that can serve as features
in the formulation of surrogate models connecting mate-
rial structure to the properties/performance characteristics
of interest. The most systematic set of such microstructure
statistics are provided by the formalism of n-point spatial
correlations, which capture the relevant statistics related to the
morphological details (i.e., size and shape distributions) of the

distinct local states in the material structure. The most basic
set of these statistics are the 2-point correlations denoted by
f pq
r , which track how often distinct local states p and q are

separated by a discretized vector indexed by r. Mathemati-
cally, 2-point correlations may be computed as [5,61,64]

f pq
r =

∑
s∈S mp

s mq
s+r

n(S) . (1)

One way to interpret the above definition is to recognize
that the numerator denotes the number of successes in locating
the local states p and q separated by the vector index r, and
that the denominator represents the total number of valid trials
(for periodic microstructures, this is equal to the number of
voxels). It should be noted that the RDF (used commonly
in the quantification of the molecular structures) [59,65] is
a particular variant of the 2-point correlations described in
Eq. (1) in which one does not consider the orientation of the
vector, but only its magnitude. Noting that the central opera-
tion in Eq. (1) is essentially a discrete cross correlation over
the spatial domain of voxels S, the 2-point correlations are
efficiently computed by taking advantage of FFT algorithms
[5,52]. The computations naturally exploit the periodicity of
the crystal structures. There also exist several redundancies
that can be leveraged for obtaining a more compact set of
spatial correlations. Specifically, it can be seen that Eq. (1)
produces P2 sets of spatial correlations. It has been shown
that only P of these are adequate to compute the rest of the
spatial correlations [61,66]. As a result, it is often adequate to
compute the autocorrelations [which correspond to n = p in
Eq. (1)] for the dominant local state in the collected ensemble
of material structures and its cross correlations with the rest
of the local states.

B. Extraction of salient features

In prior work, our research group has established a gener-
alized framework referred to as materials knowledge systems
(MKS) [67–69] that has demonstrated the versatility and
utility of assembling a large set of n-point spatial correla-
tions and then applying PCA to establish suitable data-driven
low-dimensional representations of the material internal struc-
ture. PCA offers a dimensionality reduction technique that
performs a rotational transformation of the features into an or-
thogonal space organized to maximize the capture of variance
in the given dataset. The transformed axes (i.e., new basis) are
known as PCs, while the transformed coordinates are known
as PC scores. However, since PCA maximizes the capture of
variance, it tends to emphasize the features that exhibit the
largest variance in the dataset. Therefore, one could apply
suitable scaling factors to various subgroups of the features
before performing the PCA, in order to adjust their roles (i.e.,
increase or decrease their importance in the PCs). In this
work, the features are scaled such that the total variance in
the spatial correlations corresponding to each selected pair of
local states (i.e., each combination of p and q) is the same.
This type of scaling equalizes the importance of each subset
of spatial correlations related to a specific combination of
local states in the PCA. This protocol produces an ordered
list of transformed features such that the selection of each
additional transformed feature maximizes the capture of the
explained variance in the dataset. A truncated list of these
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FIG. 1. Schematic description of a fully connected neural net-
work for an N-dimensional input. The callout describes the details of
the computations performed at each neuron.

ordered transformed features (i.e., PC scores) serve as suitable
low dimensional representations of the material structure.

The benefits of the MKS pipeline have been expounded in
prior work [5,56,69–73]. First, this approach yields an objec-
tive low-dimensional representation of the material structure
that is not influenced by either the materials manufactur-
ing process or property information, thereby providing a
consistent representation of the material structure in process-
structure-property (PSP) linkages [5]. Second, since PCA is
essentially a Fourier representation, it allows for approximate
but optimal reconstructions of the material structure statistics
(controlled by the truncation levels applied in retaining the
PC scores), which in turn can then be used with sophisti-
cated algorithms [74,75] for the statistical reconstruction of
the material structure. Third, the concepts based on spatial
correlations and PCA are broadly applicable to virtually all
different classes of material internal structures found at multi-
ple hierarchical length scales, spanning from the atomic to the
macroscale. Fourth, and perhaps the most importantly, it has
been seen that only a handful of PC scores (≈5 to 10) are often
adequate in producing high fidelity PSP linkages needed to
drive materials innovation efforts [5,70,76]. It should be noted
that the use of the PC representations of the spatial correla-
tions as the features of the material structure has thus far been
explored mostly at the mesolength scales [5,70,73,77]. This
concept is only now beginning to be explored at the atomic
structure length scales.

C. Reduced-order model building strategies

In the final step of the MKS framework, the reduced-order
features of interest are correlated with the target property
using a variety of model-building strategies. NNs provide a
nonlinear modeling approach to accomplish this task and are
known to be sufficient to capture any arbitrary mapping be-
tween the inputs and the output. The most basic feedforward
NNs consist of multiple fully connected layers of multiple
neurons, with each neuron capturing a linear transformation
followed by a nonlinear activation (e.g., ReLu, sigmoid func-
tion) [78]. The architecture of a typical feed-forward NN is
shown in Fig. 1. The weights and the bias (i.e., model fitting
parameters) associated with each neuron are calibrated with
backpropagation. This is accomplished through minimization
of a user-specified loss function between the predicted output

and the corresponding observed values in the training data.
NNs derive their scalability from the computationally efficient
algorithms used for the calibration of the model parameters.
These are readily accessible in many software packages (e.g.,
PyTorch [79], TensorFlow [80]), most of which are amenable
to computation on graphics processing units. NNs also typ-
ically iterate through multiple epochs (i.e., passes over the
entire training data set) in order to optimize the model pa-
rameters. The main limitation of the NNs is that they need
a substantially large training dataset, without which they are
most likely to produce a model overfit (i.e., significantly
larger errors for test data points compared to the training
data points). Overfits to training data often occur due to an
overparametrization of the NN (i.e., more trainable weights
and biases to be calibrated than the size of the dataset). In
this work, we utilize feedforward NNs with two hidden layers
to predict the formation energies of the compounds in our
dataset. For an NN with two hidden layers consisting of h1

and h2 neurons, respectively, the number of trainable model
parameters to be calibrated (denoted by C) for a single output
from an N-dimensional input is given by

C = (Nh1 + h1h2 + h2) + (h1 + h2 + 1). (2)

An alternate modeling technique that is better suited for
small datasets is GPR [51,81,82], which offers a nonpara-
metric Bayesian approach to building surrogate models. GPR
(and its variants) have successfully been applied to model
structure-property linkages in the mesoscale from relatively
small datasets [70,83,84]. GPR models the target as a Gaus-
sian process (GP) that is fully defined by the specification
of a mean and a covariance. The GP is then tuned using
conditional distributions defined on available training data.
Let X , X∗, and y denote the N × D matrix of training data
points, N∗ × D matrix of test data points and N × 1 vector
of target values in the training set, respectively. Additionally,
let K(X , X ′), K(X∗, X∗′

) and K(X , X∗′
) denote the N × N ,

N∗ × N∗, and N × N∗ covariance matrices assembled (us-
ing a kernel function described later) using the inputs in the
training dataset, test dataset, and between the training and
test datasets, respectively. In GPR, the predictive mean and
variance for test points is expressed as

μ∗ = K(X , X∗′
)
T

K(X , X ′)−1y, (3)

�∗ = K (X∗, X∗′
) − K(X , X∗′

)
T

K(X , X ′)−1K (X , X∗′
),

(4)

where T denotes the transpose of a matrix. As stated earlier,
one typically uses a suitable kernel function to compute the
various covariance matrices in Eqs. (2) and (3). One of the
most commonly used kernel functions is the automatic rele-
vance determination – squared exponential (ARD-SE) [51,85]
function expressed as

k(x, x′) = σ 2
s

D∑
d=1

exp

(
−(xd − x

′
d )

2

2θd
2

)
+ σ 2

n δxx′, (5)

where x and x′ denote any two input vectors selected from the
data matrices for which the covariance matrix is being com-
puted, subscript d corresponds to the d th feature in the input
vector, σs is a scaling parameter that controls the scaling of the
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output variance, θd is the correlation-length hyperparameter
corresponding to the dth feature in the input vector, σn denotes
the noise in the target, and δxx′ denotes the Kronecker delta.
The treatment of the noise using a single parameter added
to the diagonal of the covariance indicates independence of
noise with the input data (i.e., homoscedasticity) [51]. The
central benefit of the ARD-SE kernel is that it allows us to tune
independently the correlation-length hyperparameter for each
of the input features. This allows for better interpretability of
the model, because the salient features with relatively smaller
length scale hyperparameters exhibit a higher sensitivity to the
predicted target. One should also note that extremely small
values of the hyperparameters tend to make the predictions
very noisy. Therefore, it is important to tune the values of
the hyperparameters in order to produce robust and reliable
predictions. This is typically accomplished with maximum
likelihood estimation, which lacks a closed-form solution;
consequently, one must resort to iterative schemes such as
quasi-Newton algorithms to optimize the hyperparameters
[86–88].

One of the central challenges in the implementation of
GPR comes from the computational cost, especially with large
training datasets. The main computational bottleneck arises
from the computation of the inverse of K(X , X ′) in Eq. (3),
which typically scales as O(N3) for dense matrices. This
makes traditional GPR intractable even for moderately sized
datasets (N > 1000). This difficulty is compounded by the
need to optimize the large number of hyperparameters (D + 2)
in the ARD-SE kernel. Several methods have been suggested
in literature to address these challenges. These include the uti-
lization of low-rank sparse approximations for the covariance
matrix [51,89,90], tree-based partitioning to develop smaller
datasets and fit individual GP predictors [91], and localized
GPR (L-GPR) proposed by Gramacy and Apley (discussed
next and used in this study) [92].

L-GPR involves identifying a local subset of training data
points to construct a separate GP for each predictive point. In
addition to allowing the application of GPR to larger datasets,
a key advantage of L-GPR is the ability to accommodate
nonstationarity in the model by allowing optimization of the
interpolation hyperparameters in the kernel functions depend-
ing on the location of the test point in the high-dimensional
input space. Different criteria may be considered while se-
lecting the local training points; an intuitive but suboptimal
method would be using a certain number of nearest neighbors
as the local neighborhood [93]. However, a more informa-
tive design criterion would be to sequentially build the local
neighborhood by evaluating a tradeoff between expected in-
formation gain by adding a training point and the increase
in the predictive variance of the GPR. This method of local
training point selection promotes an efficient exploration of
the sample space and provides a natural guidance to avoid
overfitting of the models. This approach is referred to as active
learning Cohn (ALC) [55,94], and is utilized in this work.

III. NOVEL FRAMEWORK FOR QUANTIFYING
CRYSTAL STRUCTURES

In this section, we describe a framework for effective low-
dimensional representation (i.e., fingerprints) of the crystal

structure of the compounds. This is accomplished by first
establishing computationally efficient protocols to arrive at
voxelized representations of the atomic structure of com-
pounds, and then suitably extending and applying the current
MKS framework (described in Secs. II A and II B) on such
voxelized representations. In prior work [74,95], very simple
descriptors were utilized for the microstructure array, mn

s ,
where it was assigned a value of one for voxels within the
atomic volume and a value of zero otherwise. A key challenge
encountered in this simple representation is that it does not al-
low an efficient interpolation between material structures (i.e.,
compounds) of varying chemical compositions. In this work,
we expand the previous framework to allow for an enhanced
representation of multiple atomic attributes of interest in each
voxel. This is accomplished by representing the local material
state as a vector set of attributes that take continuous values.
Such continuous local states have been utilized previously
in the treatment of mesoscale polycrystalline microstructures
and mesoscale fields of chemical compositions [5,96]. In this
work, we will extend these representations to the quantifica-
tion of crystal structures of compounds.

Choudhary et al. [8] have studied the order of importance
of various atomic attributes and their role in the formation
energy of a compound. Specifically, they have identified ion-
ization energy, Pauling electronegativity, and heat of fusion
as the most important attributes. Therefore, in this work, we
define the local material state in the voxel indexed by s using
a vector of attributes 〈a0s, a1s, a2s, vs〉, where a0s, a1s, and
a2s denote the heat of fusion, ionization energy, and Pauling
electronegativity, respectively, and v is a binary attribute that
takes a value of zero for voxels within any of the atomic
volumes (defined by a sphere with radius equal to the atomic
radius of the species) and a value one otherwise. Our model
building efforts (described later) found it beneficial to further
enhance the attribute list using various monomials of the
atomic attributes. In other words, the full list of local states
included in the atomic state vector ms may be defined as

ms = 〈
a0s, a1s, a2s, a0sa1s, a1sa2s, a0sa2s, a0sa1sa2s,

a2
0s, a2

0sa1s, . . . al0
0sa

l1
1sa

l2
2s, vs

〉
, (6)

where l0, l1, and l2 represent the maximum degree con-
sidered for each of the three atomic attributes. A total of
(l0 + 1) × (l1 + 1) × (l2 + 1) local states were used in the
definition of the atomic state vector. Through multiple trials,
it was found that the combination of l0, l1, and l2 set to 5, 5,

and 2, respectively, yielded the optimal performance in terms
of the tradeoff between computational cost (which scales with
the number of local states), and the accuracy of our models.
For these selections, the total number of local states in ms

is 108. Elements of ms are then used in the computation of
the 2-point correlations using Eq. (1). As already noted, the
convolution operation involved is best accomplished using the
FFT algorithm. Mathematically, this is expressed as

F pq
k = 1

n(S)
M p

k
∗Mq

k , (7)

where M p
k and F pq

k denote the discrete Fourier transforms
of mp

s and f pq
r , respectively, and the superscript ∗ denotes

the complex conjugate. It is important to note that Eqs. (7)
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FIG. 2. (a) A typical 2D cross section of a unit cell of the compound structure, with green and black regions representing two different
chemical species. (b) and (c) Extended compound structures depicting the spatial distribution of the local states p and q, respectively. These
extended structures are designed such that the spatial correlations to the desired vector length (i.e., rmax in each of the vector components)
can be computed efficiently using the FFT algorithms that implicitly treat the functions as being periodic. The red border in (b) identifies the
outline of original unit cell from (a).

implicitly assumes the fields involved are spatially periodic.
Although all the compounds considered in this work exhibit
periodicity (i.e., all spatial fields defined based on the atomic
structure of the compound are inherently spatially periodic),
the sizes of their periodic unit cells vary substantially. For
example, the lattice parameter (reflecting the length scale of
the periodicity) for the compounds included in this study
varies over the range of 1.8–12.4 Å. Therefore, if one were
computing the spatial correlations using voxelization schemes
based on the respective unit cell sizes, Eqs. (7) can be applied
directly without any problems. However, a constant voxel
size is essential for obtaining the desired low-dimensional
representations using PCA in the later steps. Since the unit
cell size L of the different compounds considered in this study
is unlikely to be an integer multiplier of a common voxel
size, t , a suitable strategy is needed to efficiently compute the
spatial correlations using a standardized voxel size. Given the
size of the dataset, these computations are only practical if we
can continue to exploit the cost savings provided by the FFT
algorithm in evaluating the spatial correlations. A suitable
computational protocol has been devised to address this chal-
lenge, which is described next. This new protocol builds on
prior efforts involving mesoscale material microstructures [5].

The computational scheme presented in this work is de-
signed to use a single voxel size and a common set of
corresponding vectors indexed by {r}, for the computation
of sets of 2-point correlations (i.e., f pq

r ) using Eqs. (1) and
(7) for all the compounds considered in this study. For 3D
volumes, it is convenient to represent r itself as a vector
of integers 〈r1, r2, r3〉. The 2-point correlations used in this
study are computed only for the set of positive vectors up
to a selected maximum length for each of the three compo-
nents, i.e., {r|0 � r1 � rmax, 0 � r2 � rmax, 0 � r3 � rmax}.
Therefore, the total number of discrete vectors for which
we seek to compute f pq

r is r3
max. Our approach to efficiently

compute these correlations considers the numerator and de-

nominator in Eq. (1) separately. As mentioned earlier, for each
selected r, the numerator represents the number of successes
in locating the local states p and q separated by the selected
vector. Our strategy to accurately (and efficiently) compute
this quantity is to express the numerator as a cross correlation
between two different material structure spatial fields, m̃p

s and
mq

s , both of which are derived from the original material struc-
ture. The construction of these structure fields is illustrated
in Fig. 2 for a simple crystalline compound comprising two
chemical species A and B. Note that all structure fields shown
in Fig. 2 are 2D sections of the 3D material volume of this
compound. Figure 2(a) shows the unit cell of the original
compound structure within a volume that is closely approx-
imated by an integer number of voxels of the selected size,
t . Therefore, the voxelated structure shown in Fig. 2(a) is no
longer exactly periodic. In fact, the size of this structure is
� L

t + 0.5	t , where �·	 indicates the greatest integer function
(also referred to as the floor function). Clearly, the size of the
voxelized unit cell shown in Fig. 2(a) is not equal to L. This
discrepancy introduces a small error in the computation of the
spatial correlations that scales with the value of t . In other
words, one would have to select the value of t carefully, as
a compromise between minimizing the voxelization error and
keeping the computational cost reasonable.

The structure fields m̃p
s and mq

s are defined over larger
spatial domains as shown in Figs. 2(b) and 2(c). The size
of these fields is specified as � L

t + 0.5	t + rmaxt , while the
corresponding set of voxels is labeled as S∗. Note that the
fields are extended so that when any of the vectors of interest
(identified earlier as {r}) are placed with their tails in the unit
cell structure shown in Fig. 2(a), their heads are guaranteed to
lie within the extended spatial domains shown in Figs. 2(b)
and 2(c). Furthermore, the two fields in these figures are
associated with local states p and q identified in the definition
of the subset of spatial correlations f pq

r . The structure fields
shown in Figs. 2(b) and 2(c) have been specifically designed
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FIG. 3. (a) Voxelized 3D crystal structure of AlNi3 with the green, orange, and dark blue colors representing the voxels occupied by the
void, Al, and Ni species. (b) The autocorrelation map for the void state (vs). (c) The vs(void) − a2s (Pauling electronegativity) cross-correlation
map.

so that the cross correlation defined as
∑

s∈S∗ m̃p
s mq

s+r provides
a sufficiently accurate estimate of the numerator to within the
inherent voxelization error discussed earlier. This is because
m̃p

s returns the value of the local state p only when the tail of
the vector indexed by r lies within the original unit cell shown
in Fig. 2(a). This region is indicated by the red outline in
Fig. 2(b) More importantly, this structure field returns a zero
value otherwise, which nullifies any possible contributions
arising from the wrap-around vectors implicit in the Fourier
transform operations performed in Eq. (7). Note that this
nullification only works for vectors within the selected set
{r}. In other words, the use of Eq. (7) on the fields shown
in Figs. 2(b) and 2(c) produces estimates of the numerator
in Eq. (1) for many more vectors not included in {r}. In the
strategy described here, one retains only the results for the
vectors in {r} and discards the rest of the results. Although
one computes more values than needed in this protocol, the
overall computational cost is much cheaper than the direct
computation of the correlations exclusively for the vector set
of interest. The denominator in Eq. (1) is simply the number of
voxels in the original unit cell shown in Fig. 2(a), and is given
by (� L

t + 0.5	)3. The protocol described here was found to
provide an excellent approximation for the fast computation of
the desired spatial correlations. In our work, we implemented
the aforementioned protocol with the value of t and rmax

selected as 0.2 Å and 30, respectively, which corresponds to
the computation (and retention) of the 2-point correlations
for vectors with components up to 6 Å. This selection was
motivated by the fact that 92% of the crystalline compounds
present in our dataset had a lattice parameter less than 6 Å.

Figures 3(a)–3(c) show an example crystal structure con-
sisting of two atomic species (AlNi3), its autocorrelation map
for vs (the void state), and its vs − a2s cross-correlation map,
respectively. Note that the auto- and cross-correlation maps
shown correspond only to a single octant in the vector space
(with positive values of r1, r2, and r3). It can be observed that
the periodicity of the crystal structure is indeed captured in
these maps. The value of the autocorrelation corresponding
to the zero vector [0.58 in Fig. 3(b)] reflects the void vol-
ume fraction in the crystal structure. Since the void state in
the present application is set to either zero or one in each
voxel, the autocorrelation map in Fig. 3(a) actually provides

statistical information for a large set of vectors, whose heads
can be selected anywhere in the depicted vector space, but
tails fixed at 〈0, 0, 0〉. As a specific example, the pink-colored
vector in Fig. 3(b) corresponds to 〈3.8, 0, 0 〉Å, with a void
autocorrelation of 0.58. This autocorrelation value simply
reflects the probability of finding two void (green) voxels
in the crystal structure shown in Fig. 3(a) separated by the
selected vector. Figure 3(a) shows two example placements of
the selected vector – a successful placement (pink vector with
a black outline) connecting two void (green) voxels and an
unsuccessful placement (pink vector without a black outline).
Due to the periodicity of the crystal structure, it is seen that the
autocorrelation value for the pink-colored vector is the same
as autocorrelation for the zero vector (i.e., the void volume
fraction). The cross-correlation map shown in Fig. 3(c) sim-
ilarly captures the spatial correlations between states vs and
a2s present in the structure. Note that since we do not allow
the void state and any material state to coexist in a single
voxel, the cross correlation for the zero vector exhibits a zero
value. A cross-correlation peak is observed for 〈0, 0, 1.8〉 Å
in Fig. 3(c), shown using a blue-colored vector. As before,
two example placements of this vector are shown in Fig. 3(a),
with one reflecting a successful sampling of the desired spatial
correlation.

IV. DATASET

A dataset of compound crystal structures and formation
energies was obtained from the publicly accessible JARVIS-
DFT repository [7,9–12]. The extracted data included the
crystal structure information (i.e., Bravais lattice type and the
coordinates of the atoms present in the unit cell) and their
DFT-computed chemical properties. Specifically, the forma-
tion energies of ∼1740 cubic crystalline compounds that were
computed with the OPTB88VDW functional [12] were extracted
from this repository, and were used to train our models and
evaluate the utility of our feature engineering scheme. The
compounds included in this dataset comprised 70 different
chemical species, thereby offering opportunities for the ex-
traction of surrogate models applicable to a broad range of
chemical compositions. The most frequently occurring non-
metallic species in the dataset were oxygen and nitrogen,
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FIG. 4. (a) Distribution of the attribute values for the different atomic species present in the dataset. (b) Histogram of the formation
energies of the compounds in the dataset.

while the most frequently appearing metallic species were
aluminum, palladium, and rubidium. The least frequently ap-
pearing metal atoms are cesium, rhenium, and technetium.
Among the crystalline compounds in the dataset, there are
1160 intermetallic compounds, 408 metal oxides, 95 metal
halides, and 37 metal sulfides. Moreover, the dataset consisted
of 21, 950, 743, and 27 unary, binary, ternary, and quaternary
crystalline compounds.

Figure 4(a) shows the distribution of the values of the three
local state attributes, i.e., heat of fusion (a0) ionization energy
(a1), Pauling electronegativity (a2) for all of the different
chemical species present in the dataset. The electronegativity
of the different chemical species in the dataset appears to
be fairly evenly distributed over the range 0.79 to 3.98. In
contrast, the distributions of the heat of fusion and ionization
energy appear to be nonuniformly distributed, with more of
the chemical species having attribute values in the lower end
of their respective ranges of (2.3e−3 to 0.52) eV/atom and
(3.89 to 17.42) eV/atom. Figure 4(b) represents the distribu-
tion of the DFT-computed formation energies of compounds
(the target or output for the models) present in the dataset.
Note that the samples are unevenly distributed in the values
of the formation energy, with most of the samples having
a formation energy between −3 and 1 eV/atom. From this
distribution of target properties, one would expect a higher
accuracy in the prediction of the formation energy within this
region, and a lower accuracy outside it.

The feature engineering framework developed in Sec. III is
applied to the selected dataset. As described in Sec. II A, the
complete set of P2 (or 1082) spatial statistics contains several
redundancies. The following sets of spatial correlations were
used in this work: (i) autocorrelations of vs, a0s, and a1s (this
were the most dominant signals in the dataset), and (ii) the
cross correlations of these three local states with the rest of
the local states, while eliminating the trivially related sets (the
f pq
r are trivially related to f qp

r ). This resulted in a total of 321
sets of spatial correlations for each crystal compound. The
dimensionality reduction procedure described in Sec. II B was
then applied on the complete set of spatial statistics to obtain
25 PC scores for each compound. Since each PC basis in our
application carries (weighted) information from a total of ∼3
million 2-point statistics, its precise interpretation is currently
impractical.

V. RESULTS AND DISCUSSION

As mentioned earlier, two different modeling strategies
have been explored in this study to evaluate critically the
efficacy our feature engineering framework. These modeling
strategies were specifically chosen to represent distinctly dif-
ferent approaches to building surrogate models. Therefore,
our main goal here is to evaluate the performance of the
proposed feature engineering framework (involving PCA on
a large feature vector of spatial correlations that account
rigorously for the atomic details in the crystal structure) on
distinctly different model building strategies. The selected
model building strategies for this study include L-GPR (im-
plemented using the laGP package in the R programming
language [55]) and NN (implemented using PyTorch [79]).
The inputs and the output to both models were the set of the
top 25 PC scores (scaled to unit variance) generated using
the feature engineering framework presented in this work
and the DFT-computed formation energy, respectively. Both
modeling strategies benefited significantly from the scaling of
inputs (to unit variance), due to their usage of gradient-based
optimization in the regression procedure (i.e., hyperpa-
rameter tuning in L-GPR, and loss function minimization
in NNs).

In this study, mean absolute error (MAE) and median ab-
solute error (MedAE) have been chosen as error metrics for
quantifying the predictive accuracy of the surrogate models.
For a set of J predictive test samples, these error measures are
expressed as

MAE = 1

J

∑
j∈J

∣∣y( j)
pred − y( j)

actual

∣∣, (8)

MedAE = Median
(∣∣y(1)

pred − y(1)
actual

∣∣, ∣∣y(2)
pred − y(2)

actual

∣∣, . . . ,∣∣y(J )
pred − y(J )

actual

∣∣) (9)

in which y( j)
actual and y(j)

pred indicate the DFT-computed and
the surrogate model predicted values of the formation en-
ergy for the sample j, respectively. While the same error
metrics are used to evaluate performance of both modeling
strategies, the training and test protocols are substantially
different because of the very different underlying philosophies
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TABLE I. The predictive accuracy of the five L-GPR models
built in this work to estimate the DFT-computed formation energies.
The input to all models is the set of the 25 PC scores of the spatial
correlations of the crystal structure.

Percentage of MAEL-GPR MedAEL-GPR

Model No. χ entire dataset (%) (eV/atom) (eV/atom)

LGPR1 50 2.84 0.393 0.256
LGPR2 100 5.68 0.378 0.244
LGPR3 150 8.52 0.352 0.219
LGPR4 200 11.36 0.330 0.192
LGPR5 250 14.20 0.329 0.187

involved in these model building strategies. These are de-
scribed next.

A. L-GPR modeling approach

In this study, five different models were built using the
L-GPR strategy. Recall that in this strategy, a separate GP
is formulated for each point in the dataset using training
points selected from the local neighborhood based on the
ALC criterion described in Sec. II C. Since predictions were
made at each point independently, the MAE and MedAE were
computed directly with Eqs. (8) and (9) over all samples
(indexed by j) in the dataset (consisting of J samples). These
values are denoted as MAEL-GPR and MedAEL-GPR, respec-
tively. The main difference in the five L-GPR models built
for this study was in the number of points selected from the
local neighborhood (denoted by χ ). Table I summarizes the
accuracies of these models, as evaluated by the error metrics
described previously. In this table, the value of χ is also shown
as a percentage of the total number of points in the dataset.
The main purpose of this analysis was to understand the
effectiveness of the ALC criterion in the L-GPR scheme for
selecting optimal training points for the desired model. Since
GPR is essentially an interpolation strategy, L-GPR offers sig-
nificant computational savings compared to the conventional
GPR strategy (which utilizes all points in the dataset). This is

because the computational cost of the GPR scales as O(N3),
as mentioned previously. Also, the use of ALC in the L-GPR
to select the training points offers an organic strategy for
regularization and avoiding overfit. More specifically, since
the ALC criterion selects neighborhood points based on the
goal of maximizing information gain, one would expect that
after the training dataset has included most of the “important”
points, there would only be an incremental improvement in
performance with a further increase in χ . This tendency was
indeed observed in our results. Table I shows that a selection
of about 200 points in the neighborhood of each test point in
the 25-dimensional input space (i.e., with χ = 200) provides
a robust prediction of the formation energy. Figure 5(a) shows
the histogram of errors of the formation energies predicted by
this model. As seen in this figure, around 80% of the formation
energies are predicted to within an error of 0.4 eV/atom. Only
a small improvement in overall predictive performance was
observed when χ was further increased to 250 points.

Figure 5(b) shows the parity plot of the L-GPR predicted
vs DFT-computed formation energies corresponding to Model
4 from Table I (i.e., χ = 200). Figure 5(c) presents a bar
plot of the distribution of the average error for the different
values of the formation energies. As seen from the bar plot,
the average error in the predicted values is lowest for samples
with DFT-computed formation energies in the range of (−2 to
0) eV/atom. This range is also the region with the highest con-
centration of training data points [see Fig. 4(b)]. As expected,
the accuracy of the L-GPR models built is quite sensitive
to the amount of available training data close to test data
points. For example, the average error for the samples with
DFT-computed formation energies greater than 2 eV/atom is
quite high, as there are only 20 data points with the corre-
sponding formation energies. The predictive uncertainty of the
L-GPR model also followed a similar distribution over these
ranges of formation energies, with the highest uncertainty
associated with the crystals with DFT-computed formation
energies greater than 2 eV/atom. This indicates that prediction
confidence in regions with more data is significantly higher
than in the regions with sparse data.

FIG. 5. (a) Histogram of errors obtained in prediction of the DFT-computed formation energy for L-GPR Model 4 in Table I with the local
training dataset size χ of 200 points. (b) Parity plot of the L-GPR predicted vs DFT-computed formation energies for the same L-GPR model
for all data points used in this study. (c) Bar plot of the mean prediction error (of the same model) in the formation energy for different ranges
of DFT-computed formation energies.
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TABLE II. The predictive accuracy of the five NN models built
in this work to estimate the DFT-computed formation energies. The
input to all models is the set of the 25 PC scores of the spatial corre-
lations of the crystal structure. Note that the error metrics (MAENN,
MedAENN) were computed only for the ∼345 Data points in the test
set (represented by the green points in Fig. 6).

Number of Number of MAENN MedAENN

Model No. hidden neurons parameters (eV/atom) (eV/atom)

NN1 (20,10) 741 0.361 0.232
NN2 (20,14) 829 0.352 0.225
NN3 (20,20) 961 0.341 0.198
NN4 (25,20) 1191 0.340 0.201
NN5 (25,25) 1326 0.350 0.195

B. NN modeling approach

Five different feedforward NN models (all consisting of
two hidden layers) were evaluated in this study. For each
model, the loss function (to be minimized) was chosen as L1
loss [97], which reflects the mean absolute error in the predic-
tion of the target for the training dataset. This minimization
was performed using the Adam gradient-based optimizer [98]
with a learning rate set to 5e−5. The available dataset was
partitioned into separate training and test datasets in a 80%
to 20% split. This partitioning was done while maintaining
similar distributions of the output values in the train and
test datasets [similar to Fig. 4(b)]. A small fraction of the
training dataset (about 5%) was designated as a validation
set, and utilized to implement an early stopping criterion [48],
designed to mitigate overfitting of the NN models produced.
The performance of the model on the validation dataset is
used to make decisions on when to stop the minimization
iterations (epochs) on the loss function. This is especially
important in the present work because of the relatively small
training datasets, and relatively large number of trainable
model parameters inherent to the NN models. The MAE and
MedAE error metrics (denoted by MAENN and MedAENN,
respectively) were computed using Eqs. (8) and (9) on the test
data points for all NN models built in this study to evaluate
their predictive accuracy.

Table II summarizes the accuracies of the five different NN
models produced in this study. The numbers of neurons in
the hidden layers were varied across all the NN models that
were built in this study, in order to explore their influence
on model performance. The number of the trained model
parameters in each NN model [calculated using Eqs. (2)] are
also shown in Table II. It is seen that the predictive accuracy
of the model does not increase significantly beyond the NN3
model, in spite of large increases in the number of trainable
model parameters. Indeed, with the number of trainable model
parameters approaching the number of training data points,
there is clear evidence of model overfit, especially with mod-
els NN4 and NN5. Figure 6 shows a parity plot of the train
and test predictions from the NN3 model. It can be seen in
this plot that the prediction quality on the train and test sets
are similar (with MAEs of 0.28 eV/atom and 0.34 eV/atom
on each of these sets, respectively), indicating that the early
stopping criterion provides an effective regularization method

FIG. 6. Parity plot of the NN-predicted vs DFT-computed forma-
tion energies for NN3 Model (see Table II).

to help mitigate an overfit to the training set. Out of the set
of compounds exhibiting a high prediction error (greater than
1 eV/atom), 28% are metal oxides, 11% are metal halides,
and 35% are intermetallic compounds. Further analysis of
the crystals having the ten highest prediction errors indicates
that the prediction quality is affected by the proportion of
occurrence of the atoms in the dataset. In each case, at least
one of the constituent atoms occurs in less than 3% (i.e., fewer
than 52 samples) from the dataset.

C. Comparison of the L-GPR and NN surrogate
model building strategies

While the accuracy of both modeling strategies explored
in this study are reported using the same metrics (MAE and
MedAE), the performance of these models are not easily
compared directly because of the different underlying philoso-
phies involved in the two strategies. However, they clearly
point to the efficacy of the feature engineering paradigm pre-
sented in this work. It is indeed remarkable that the 25 features
identified by our protocols (from an extremely large initial set
of approximately three million 2-point correlations) provided
reasonably accurate models when used as inputs to two com-
pletely different modeling strategies (i.e., the L-GPR strategy
utilizing Bayesian local interpolations and the NN providing
a global regression). This observation strongly supports our
claim that the protocols involving spatial correlations and
PCA are capable of identifying salient features that exhibit
high utility in the formulation of surrogate structure-property
models, independent of the modeling strategy employed.

The results from the models produced in this work are
quite reasonable when compared with prior modeling efforts
in literature. Faber et al. [20] utilized three different struc-
ture representation schemes (Ewald sum matrix, extended
Coulomb matrix, and Sine matrix) together with a KRR mod-
eling scheme and reported test set MAEs of 0.49 eV/atom,
0.64 eV/atom and 0.37 eV/atom, respectively, for the pre-
dicted values of formation energies. However, the authors also
reported significantly lower training set MAEs of the order of
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0.005 eV/atom for each of these models, indicating that the
models obtained in this study are likely overfit to the training
data. These models were trained on 3000 data points taken
from the MP database [16]. In a different study, Choudhary
et al. [8] curated a large set of ∼1550 chemical and structural
descriptors as input features for establishing a model using
a much larger dataset consisting of ∼24 500 materials. This
study reported a test set MAE of 0.12 eV/atom with the use of
an ensemble-based gradient-boosting decision tree regression
model consisting of ∼1150 estimators with up to 270 leaves
per estimator and an unconstrained tree depth (which was
decided based on an early stopping criterion). This correlated
with the use of ∼500 nodes for almost all estimators built,
indicating that a large number of parameters were employed
in the final model. While the test MAE reported in this study
is lower, the feature engineering procedure used in this study
is significantly more computationally intensive and difficult to
scale to larger datasets.

It is emphasized that in comparison with the prior studies,
the strategy developed in this work relies on unsupervised
(i.e., independent of the selected output variable) feature en-
gineering to identify a small number of salient features (PC
scores). These features are then used as inputs to models with
relatively fewer fit parameters. This confirms the value and
utility of the feature engineering protocols presented in this
work. Both models produced in this study are likely to find
uses in potentially different applications. The main strength
of the L-GPR strategy is that it can provide objective guid-
ance on what new training data points should be generated to
improve the model fidelity. This is because the GPR models
not only predict the expected values of the output for test data
points, but also their variance. This attribute can be used in
a suitable design of experiments strategy [51,99] to identify
which specific inputs exhibit the highest potential for model
improvement. This is particularly useful in the initial stages of
generating the training data sets, especially in situations where
the cost of data generation is high (e.g., data generated using
DFT models). In contrast, NNs could become the preferred
approach after a substantial amount of data has been collected.
This is mainly because of their ability to cover a much richer
space of model functions, and their superior computational
efficiency in handling large data sets. The data set used here is
small enough that the L-GPR strategy is likely to be the better
option for its size.

The overall predictive accuracy obtained by the models in
this work is not sufficient for the accurate computation of the
crystal formation energy. We believe that the model accuracy
can be improved by (i) implementing the feature engineer-
ing scheme on a larger dataset (by lifting the constraint of

cubic crystal symmetry), and (ii) using the obtained spatial
correlations directly as inputs to other model architectures like
CNNs. Larger training datasets would allow for models with
a larger number of model fit parameters, and thereby improve
the model accuracy.

VI. CONCLUSIONS

In this study, we have introduced a systematic and com-
putationally efficient feature engineering framework based
on 2-point spatial correlations for the quantification of cubic
crystal structures with varied chemistries. The approach pre-
sented in this work employed a voxelized representation of the
crystal structure and computed the spatial correlations on suit-
ably selected atomic attributes (here taken as heat of fusion,
ionization energy, and Pauling electronegativity). The pro-
posed approach offers an avenue for feature engineering that
will allow interpolations across different chemistries of the
compounds. This work demonstrates that the proposed feature
engineering approach combined with PCA for dimensionality
reduction is capable of generating a compact set of salient
features (i.e., PC scores) representing the many details of the
crystal structure. These PC scores can be used effectively
in building surrogate models needed to screen for materials
exhibiting potential for improved properties. In this work, this
was demonstrated by using the same features as inputs to two
very different model-building strategies (i.e., L-GPR and NN)
for the predictions of crystal formation energy. The results
of this work indicate that the utility of the generated features
is independent of the model-building strategy. Moreover, the
distribution of errors in predictions (and their associated un-
certainties in the case of Bayesian approaches) offer objective
guidance on where additional training data should be targeted
to further improve the performance of the surrogate models.
This work also found that the L-GPR modeling strategy pro-
duces more robust predictions when dealing with relatively
smaller datasets, as the one utilized in this study.

The dataset used in this study is available to download from
Ref. [100].

ACKNOWLEDGMENTS

P.R.K. and S.R.K. gratefully acknowledge support from
ONR N00014-18-1-2879. The Hive cluster at Georgia Insti-
tute of Technology (supported by NSF 1828187) was used for
this work.

The authors declare that no known competing financial
interests have influenced the work reported in this paper.

[1] W. Kohn and L. J. Sham, Self-consistent equations includ-
ing wxchange and correlation effects, Phys. Rev. 140, A1133
(1965).

[2] P. Hohenberg and W. Kohn, Inhomogeneous electron gas,
Phys. Rev. 136, B864 (1964).

[3] A. Zunger, Inverse design in search of materials with target
functionalities, Nat. Rev. Chem. 2, 0121 (2018).

[4] A. Agrawal and A. Choudhary, Perspective: Materials infor-
matics and big data: Realization of the “fourth paradigm”
of science in materials science, APL Mater. 4, 053208
(2016).

[5] S. Kalidindi, Hierarchical Materials Informatics: Novel An-
alytics for Materials Data (Elsevier, Amsterdam, 2015),
p. 219.

063802-11

https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1038/s41570-018-0121
https://doi.org/10.1063/1.4946894


KAUNDINYA, CHOUDHARY, AND KALIDINDI PHYSICAL REVIEW MATERIALS 5, 063802 (2021)

[6] S. Kirklin et al., The open quantum materials database
(OQMD): Assessing the accuracy of DFT formation energies,
npj Comput. Mater. 1, 15010 (2015).

[7] K. Choudhary: Jarvis-DFT (2014), https://www.nist.gov/
system/files/documents/2018/02/02/jarvis-dft_1_31_2017.pdf
(accessed May 10, 2021).

[8] K. Choudhary, B. DeCost, and F. Tavazza, Machine learn-
ing with force-field inspired descriptors for materials: Fast
screening and mapping energy landscape, Phys. Rev. Mater.
2, 083801 (2018).

[9] K. Choudhary, K. F. Garrity, and F. Tavazza, Data-driven
discovery of 3D and 2D thermoelectric materials, J. Phys.:
Condens. Matter 32, 475501 (2020).

[10] K. Choudhary et al., High-throughput Identification and
Characterization of Two-dimensional Materials using Density
functional theory, Sci. Rep. 7, 5179 (2017).

[11] K. Choudhary and F. Tavazza, Convergence and machine
learning predictions of Monkhorst-Pack k-points and plane-
wave cut-off in high-throughput DFT calculations, Comput.
Mater. Sci. 161, 300 (2019).

[12] K. Choudhary et al., Computational screening of high-
performance optoelectronic materials using OptB88vdW and
TB-mBJ formalisms, Sci. Data 5, 180082 (2018).

[13] S. Haastrup et al., The Computational 2D Materials Database:
High-throughput modeling and discovery of atomically thin
crystals, 2D Mater. 5, 042002 (2018).

[14] L. Ruddigkeit et al., Enumeration of 166 billion organic
small molecules in the chemical universe database GDB-17,
J. Chem. Inf. Model. 52, 2864 (2012).

[15] R. Ramakrishnan et al., Quantum chemistry structures and
properties of 134 kilo molecules, Sci. Data 1, 140022
(2014).

[16] A. Jain et al., Commentary: The Materials Project: A materials
genome approach to accelerating materials innovation, APL
Mater. 1, 011002 (2013).

[17] J. Lee et al., Prediction model of band gap for inorganic
compounds by combination of density functional theory cal-
culations and machine learning techniques, Phys. Rev. B 93,
115104 (2016).

[18] G. Pilania et al., Machine learning bandgaps of double per-
ovskites, Sci. Rep. 6, 19375 (2016).

[19] A. M. Deml et al., Predicting density functional theory to-
tal energies and enthalpies of formation of metal-nonmetal
compounds by linear regression, Phys. Rev. B 93, 085142
(2016).

[20] F. Faber et al., Crystal structure representations for machine
learning models of formation energies, Int. J. Quantum Chem.
115, 1094 (2015).

[21] W. Ye et al., Deep neural networks for accurate predictions of
crystal stability, Nat. Commun. 9, 3800 (2018).

[22] A. Agrawal et al., A Formation Energy Predictor for Crys-
talline Materials Using Ensemble Data Mining, in IEEE
16th International Conference on Data Mining Workshops
(ICDMW) (IEEE, New York, 2016).

[23] L. Ward et al., Including crystal structure attributes in machine
learning models of formation energies via Voronoi tessella-
tions, Phys. Rev. B 96, 024104 (2017).

[24] T. Xie and J. C. Grossman, Crystal Graph Convolutional Neu-
ral Networks for an Accurate and Interpretable Prediction of
Material Properties, Phys. Rev. Lett. 120, 145301 (2018).

[25] M. Rupp et al., Fast and Accurate Modeling of Molecular
Atomization Energies with Machine Learning, Phys. Rev. Lett.
108, 058301 (2012).

[26] H. Huo and M. Rupp, Unified representation of molecules and
crystals for machine learning, arXiv:1704.06439 (2018).

[27] G. Montavon et al., Learning invariant representations of
molecules for atomization energy prediction, Advances in Neu-
ral Information Processing Systems, Vol. 25 (Elsevier, 2012),
p. 449.

[28] L. Ward et al., Machine learning prediction of accurate at-
omization energies of organic molecules from low-fidelity
quantum chemical calculations, MRS Commun. 9, 891
(2019).

[29] R. Ramakrishnan et al., Big data meets quantum chem-
istry approximations: The delta-machine learning approach,
J. Chem. Theory Comput. 11, 2087 (2015).

[30] D. M. Wilkins et al., Accurate molecular polarizabilities with
coupled cluster theory and machine learning, Proc. Natl. Acad.
Sci. 116, 3401 (2019).

[31] A. Ziletti et al., Insightful classification of crystal structures
using deep learning, Nat. Commun. 9, 2775 (2018).

[32] K. Ryan, J. Lengyel, and M. Shatruk, Crystal structure pre-
diction via deep learning, J. Am. Chem. Soc. 140, 10158
(2018).

[33] J. Graser, S. K. Kauwe, and T. D. Sparks, Machine learning
and energy minimization approaches for crystal structure pre-
dictions: A review and new horizons, Chem. Mater. 30, 3601
(2018).

[34] B. Meredig et al., Combinatorial screening for new materials
in unconstrained composition space with machine learning,
Phys. Rev. B 89, 094104 (2014).

[35] O. Egorova et al., Multifidelity statistical machine learning for
molecular crystal structure prediction, J. Phys. Chem. A 124,
8065 (2020).

[36] E. V. Podryabinkin et al., Accelerating crystal structure pre-
diction by machine-learning interatomic potentials with active
learning, Phys. Rev. B 99, 064114 (2019).

[37] K. Hansen et al., Machine learning predictions of molecular
properties: Accurate many-body potentials and nonlocality in
chemical space, J. Phys. Chem. Lett. 6, 2326 (2015).

[38] J. Behler, Perspective: Machine learning potentials for atom-
istic simulations, J. Chem. Phys. 145, 170901 (2016).

[39] V. Gladkikh et al., Machine learning for predicting the band
gaps of ABX3 perovskites from elemental properties, J. Phys.
Chem. C 124, 8905 (2020).

[40] D. Jha et al., ElemNet: Deep learning the chemistry of ma-
terials from only elemental composition, Sci. Rep. 8, 17593
(2018).

[41] K. T. Schütt et al., How to represent crystal structures for
machine learning: Towards fast prediction of electronic prop-
erties, Phys. Rev. B 89, 205118 (2014).

[42] S. Honrao et al., Machine learning of ab initio energy land-
scapes for crystal structure predictions, Comput. Mater. Sci.
158, 414 (2019).

[43] S. J. Honrao, S. R. Xie, and R. G. Hennig, Augmenting
machine learning of energy landscapes with local structural
information, J. Appl. Phys. 128, 085101 (2020).

[44] M. Karamad et al., Orbital graph convolutional neural network
for material property prediction, Phys. Rev. Mater. 4, 093801
(2020).

063802-12

https://doi.org/10.1038/npjcompumats.2015.10
https://www.nist.gov/system/files/documents/2018/02/02/jarvis-dft_1_31_2017.pdf
https://doi.org/10.1103/PhysRevMaterials.2.083801
https://doi.org/10.1088/1361-648X/aba06b
https://doi.org/10.1038/s41598-017-05402-0
https://doi.org/10.1016/j.commatsci.2019.02.006
https://doi.org/10.1038/sdata.2018.82
https://doi.org/10.1088/2053-1583/aacfc1
https://doi.org/10.1021/ci300415d
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1063/1.4812323
https://doi.org/10.1103/PhysRevB.93.115104
https://doi.org/10.1038/srep19375
https://doi.org/10.1103/PhysRevB.93.085142
https://doi.org/10.1002/qua.24917
https://doi.org/10.1038/s41467-018-06322-x
https://doi.org/10.1103/PhysRevB.96.024104
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.108.058301
http://arxiv.org/abs/arXiv:1704.06439
https://doi.org/10.1557/mrc.2019.107
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1073/pnas.1816132116
https://doi.org/10.1038/s41467-018-05169-6
https://doi.org/10.1021/jacs.8b03913
https://doi.org/10.1021/acs.chemmater.7b05304
https://doi.org/10.1103/PhysRevB.89.094104
https://doi.org/10.1021/acs.jpca.0c05006
https://doi.org/10.1103/PhysRevB.99.064114
https://doi.org/10.1021/acs.jpclett.5b00831
https://doi.org/10.1063/1.4966192
https://doi.org/10.1021/acs.jpcc.9b11768
https://doi.org/10.1038/s41598-018-35934-y
https://doi.org/10.1103/PhysRevB.89.205118
https://doi.org/10.1016/j.commatsci.2018.08.041
https://doi.org/10.1063/5.0012407
https://doi.org/10.1103/PhysRevMaterials.4.093801


MACHINE LEARNING APPROACHES FOR FEATURE … PHYSICAL REVIEW MATERIALS 5, 063802 (2021)

[45] C. W. Park and C. Wolverton, Developing an improved crystal
graph convolutional neural network framework for accelerated
materials discovery, Phys. Rev. Mater. 4, 063801 (2020).

[46] A. Micheli, Neural network for graphs: A contextual construc-
tive approach, IEEE Trans. Neural Netw. 20, 498 (2009).

[47] T. N. Kipf and M. Welling, Semi-supervised classification with
graph convolutional networks, arXiv:1609.02907.

[48] L. Prechelt, Early Stopping — But When? in Neural Networks:
Tricks of the Trade: Second Edition, edited by G. Montavon,
G. B. Orr, and K.-R. Müller (Springer, Berlin, 2012), p. 53

[49] N. Srivastava et al., Dropout: A simple way to prevent neu-
ral networks from overfitting, J. Mach. Learn. Res. 15, 1929
(2014).

[50] F. Girosi, M. Jones, and T. Poggio, Regularization theory and
neural networks architectures, Neural Comput. 7, 219 (1995).

[51] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes
for Machine Learning. Adaptive Computation and Machine
Learning (MIT Press, Cambridge, MA, 2006), p. 248

[52] A. Cecen, T. Fast, and S. R. Kalidindi, Versatile algorithms for
the computation of 2-point spatial correlations in quantifying
material structure, IMMI 5, 1 (2016).

[53] S. Kajita et al., A universal 3D voxel descriptor for solid-state
material informatics with deep convolutional neural networks,
Sci. Rep. 7, 16991 (2017).

[54] Y. Zhao et al., Predicting elastic properties of mater. from
electronic charge density using 3d deep convolutional neural
networks, J. Phys. Chem. C 124, 17262 (2020).

[55] R. B. Gramacy, LaGP: Large-scale spatial modeling via local
approximate gaussian processes in R, J. Stat. Softw. 72, 1,
(2016).

[56] S. R. Kalidindi, S. R. Niezgoda, and A. A. Salem, Microstruc-
ture informatics using higher-order statistics and efficient
data-mining protocols, JOM 63, 34 (2011).

[57] A. G. Gray and A. W. Moore, N-body’ problems in statistical
learning, in Proceedings of the 13th International Conference
on Neural Information Processing Systems (MIT Press, 2000),
pp. 500–06.

[58] A. W. Moore et al., Fast Algorithms and Efficient Statistics:
N-Point Correlation Functions (Springer, Berlin, 2001).

[59] S. Torquato and H. Haslach Jr., Random heterogeneous mate-
rials: Microstructure and macroscopic properties, Appl. Mech.
Rev. 55, B62 (2002).

[60] A. Cecen, Y. C. Yabansu, and S. R. Kalidindi, A new frame-
work for rotationally invariant two-point spatial correlations in
microstructure datasets, Acta Mater. 158, 53 (2018).

[61] S. R. Niezgoda, D. T. Fullwood, and S. R. Kalidindi, De-
lineation of the space of 2-point correlations in a composite
material system, Acta Mater. 56, 5285 (2008).

[62] W. P. Wolf, The Ising model and real magnetic materials,
Braz. J. Phys. 30, 794 (2000).

[63] F. Y. Wu, The Potts model, Rev. Mod. Phys. 54, 235
(1982).

[64] A. Gupta et al., Structure–property linkages using a data sci-
ence approach: Application to a nonmetallic inclusion/steel
composite system, Acta Mater. 91, 239 (2015).

[65] P. Debye, H. R. Anderson Jr., and H. Brumberger, Scattering
by an Inhomogeneous Solid. II. The Correlation Function and
Its Application, J. Appl. Phys. 28, 679 (1957).

[66] A. M. Gokhale, A. Tewari, and H. Garmestani, Constraints
on microstructural two-point correlation functions, Scr. Mater.
53, 989 (2005).

[67] D. B. Brough, D. Wheeler, and S. R. Kalidindi, Materials
knowledge systems in python - a data science framework for
accelerated development of hierarchical materials, IMME 6,
36 (2017).

[68] T. Fast and S. R. Kalidindi, Formulation and calibration of
higher-order elastic localization relationships using the MKS
approach, Acta Mater. 59, 4595 (2011).

[69] S. R. Kalidindi, Computationally efficient, fully coupled
multiscale modeling of materials phenomena using cali-
brated localization linkages, ISRN Mater. Sci. 2012, 305692
(2012).

[70] P. Fernandez-Zelaia, Y. C. Yabansu, and S. R. Kalidindi, A
comparative study of the efficacy of local/global and paramet-
ric/nonparametric machine learning methods for establishing
structure–property linkages in high-contrast 3D elastic com-
posites, IMME 8, 67 (2019).

[71] S. R. Kalidindi, A Bayesian framework for materials knowl-
edge systems, MRS Commun. 9, 518 (2019).

[72] J. A. Gomberg, A. J. Medford, and S. R. Kalidindi, Extracting
knowledge from molecular mechanics simulations of grain
boundaries using machine learning, Acta Mater. 133, 100
(2017).

[73] N. H. Paulson et al., Reduced-order structure-property link-
ages for polycrystalline microstructures based on 2-point
statistics, Acta Mater. 129, 428 (2017).

[74] D. T. Fullwood, S. R. Niezgoda, and S. R. Kalidindi,
Microstructure reconstructions from 2-point statistics using
phase-recovery algorithms, Acta Mater. 56, 942 (2008).

[75] P.-E. Chen et al., Hierarchical n-point polytope functions
for quantitative representation of complex heterogeneous ma-
terials and microstructural evolution, Acta Mater. 179, 317
(2019).

[76] B. Yucel et al., Mining the correlations between optical micro-
graphs and mechanical properties of cold-rolled HSLA steels
using machine learning approaches, Integr. Mater. Manuf.
Innov. 9, 240 (2020).

[77] S. R. Niezgoda et al., Optimized structure based representative
volume element sets reflecting the ensemble-averaged 2-point
statistics, Acta Mater. 58, 4432 (2010).

[78] C. Nwankpa et al., Activation functions: Comparison of trends
in practice and research for deep learning, arXiv:1811.03378
(2018).

[79] A. Paszke et al., PyTorch: An imperative style, high-
performance deep learning library, Advances in Neural
Information Processing Systems, Vol. 32 (2019).

[80] M. Abadi et al., TensorFlow: A system for large-scale machine
learning, in Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation (USENIX As-
sociation, Savannah, GA, 2016), p. 265–283

[81] D. G. Krige, A statistical approach to some basic mine valua-
tion problems on the Witwatersrand, J. South. Afr. Inst. Min.
Metall. 52, 119 (1951).

[82] E. Schulz, M. Speekenbrink, and A. Krause, A tutorial on
Gaussian process regression: Modelling, exploring, and ex-
ploiting functions, J. Math. Psych. 85, 1 (2018).

063802-13

https://doi.org/10.1103/PhysRevMaterials.4.063801
https://doi.org/10.1109/TNN.2008.2010350
http://arxiv.org/abs/arXiv:1609.02907
https://doi.org/10.1162/neco.1995.7.2.219
https://doi.org/10.1186/s40192-015-0044-x
https://doi.org/10.1038/s41598-017-17299-w
https://doi.org/10.1021/acs.jpcc.0c02348
https://doi.org/10.18637/jss.v072.i01
https://doi.org/10.1007/s11837-011-0057-7
https://doi.org/10.1115/1.1483342
https://doi.org/10.1016/j.actamat.2018.07.056
https://doi.org/10.1016/j.actamat.2008.07.005
https://doi.org/10.1590/S0103-97332000000400030
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1016/j.actamat.2015.02.045
https://doi.org/10.1063/1.1722830
https://doi.org/10.1016/j.scriptamat.2005.06.013
https://doi.org/10.1007/s40192-017-0089-0
https://doi.org/10.1016/j.actamat.2011.04.005
https://doi.org/10.5402/2012/305692
https://doi.org/10.1007/s40192-019-00129-4
https://doi.org/10.1557/mrc.2019.56
https://doi.org/10.1016/j.actamat.2017.05.009
https://doi.org/10.1016/j.actamat.2017.03.009
https://doi.org/10.1016/j.actamat.2007.10.044
https://doi.org/10.1016/j.actamat.2019.08.045
https://doi.org/10.1007/s40192-020-00183-3
https://doi.org/10.1016/j.actamat.2010.04.041
http://arxiv.org/abs/arXiv:1811.03378
https://journals.co.za/doi/10.10520/AJA0038223X_4792
https://doi.org/10.1016/j.jmp.2018.03.001


KAUNDINYA, CHOUDHARY, AND KALIDINDI PHYSICAL REVIEW MATERIALS 5, 063802 (2021)

[83] Y. C. Yabansu et al., Application of Gaussian process re-
gression models for capturing the evolution of microstructure
statistics in aging of nickel-based superalloys, Acta Mater.
178, 45 (2019).

[84] Y. C. Yabansu et al., Application of Gaussian process au-
toregressive models for capturing the time evolution of
microstructure statistics from phase-field simulations for sin-
tering of polycrystalline ceramics, Model. Simul. Mater. Sci.
Eng. 27, 084006 (2019).

[85] D. Duvenaud, Automatic model construction with Gaussian
processes, Doctoral thesis, University of Cambridge, 2014.

[86] W. E. Leithead and Y. Zhang, O(N 2)-operation approximation
of covariance matrix inverse in gaussian process regression
based on quasi-newton BFGS method, Commun. Stat. –
Simul. Comput. 36, 367 (2007).

[87] J. Nocedal, Updating quasi-newton matrices with limited stor-
age, Math. Comput. 35, 773 (1980).

[88] J. A. Nelder and R. Mead, A simplex method for function
minimization, Comput. J. 7, 308 (1965).

[89] M. McIntire, D. Ratner, and S. Ermon, Sparse Gaus-
sian processes for Bayesian optimization, in Proceed-
ings of the Thirty-Second Conference on Uncertainty in
Artificial Intelligence (AUAI Press, Jersey, NJ, 2016),
p. 517–526

[90] J. Quiñonero-Candela and C. E. Rasmussen, A unifying view
of sparse approximate gaussian process regression, J. Mach.
Learn. Res. 6, 1939 (2005).

[91] R. B. Gramacy and H. K. H. Lee, Bayesian treed gaussian
process models with an application to computer modeling,
J. Am. Statist. Assoc. 103, 1119 (2008).

[92] R. B. Gramacy and D. W. Apley, Local gaussian process
approximation for large computer experiments, J. Comput.
Graph. Statist. 24, 561 (2015).

[93] A. V. Vecchia, Estimation and model identification for contin-
uous spatial processes, J. R. Stat. Soc. B 50, 297 (1988).

[94] D. A. Cohn, Neural network exploration using optimal exper-
iment design, Neural Netw. 9, 1071 (1996).

[95] S. R. Kalidindi et al., Application of data science tools to
quantify and distinguish between structures and models in
molecular dynamics datasets, Nanotechnology 26, 344006
(2015).

[96] Y. C. Yabansu and S. R. Kalidindi, Representation and calibra-
tion of elastic localization kernels for a broad class of cubic
polycrystals, Acta Mater. 94, 26 (2015).

[97] F. Nie, H. Zhanxuan, and X. Li, An investigation for loss
functions widely used in machine learning, Commun. Inf. Sys.
18, 37 (2018).

[98] D. P. Kingma and J. Ba, Adam: A Method for Stochastic
Optimization, arXiv:1412.6980.

[99] B. Weaver et al., Computational enhancements to bayesian de-
sign of experiments using gaussian processes, Bayesian Anal.
11, 191 (2016).

[100] P. K. Kaundinya, K. Choudhary, and S. R. Kalidindi, https:
//materialsdata.nist.gov/handle/11256/994.

063802-14

https://doi.org/10.1016/j.actamat.2019.07.048
https://doi.org/10.1088/1361-651X/ab413e
https://doi.org/10.1080/03610910601161298
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1198/016214508000000689
https://doi.org/10.1080/10618600.2014.914442
https://doi.org/10.1111/j.2517-6161.1988.tb01729.x
https://doi.org/10.1016/0893-6080(95)00137-9
https://doi.org/10.1088/0957-4484/26/34/344006
https://doi.org/10.1016/j.actamat.2015.04.049
https://doi.org/10.4310/CIS.2018.v18.n1.a2
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1214/15-BA945
https://materialsdata.nist.gov/handle/11256/994

