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The development of classical interatomic potential for iron is a quite demanding task with a long history
background. A new interatomic potential for simulation of iron was created with a focus on description of crystal
defects properties. In contrast with previous studies, here the potential development was based on force-matching
method that requires only ab initio data as reference values. To verify our model, we studied various features of
body-centered-cubic iron including the properties of point defects (vacancy and self-interstitial atom), the Peierls
energy barrier for dislocations (screw and mix types), and the formation energies of planar defects (surfaces,
grain boundaries, and stacking fault). The verification also implies thorough comparison of a potential with
11 other interatomic potentials reported in literature. This potential correctly reproduces the largest number of
iron characteristics which ensures its advantage and wider applicability range compared to the other considered
classical potentials. Here application of the model is illustrated by estimation of self-diffusion coefficients and
the calculation of fcc lattice properties at high temperature.
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I. INTRODUCTION

An accurate prediction of thermodynamic and mechanical
properties of iron is of vital importance for materials engineer-
ing as Fe-based alloys are widely used as structural materials.
Both thermodynamic and mechanical properties are to a great
extent governed by crystal defects (from point defects to
dislocations and planar defects). The scale of these objects
and understanding of their fundamental properties, such as
the formation, migration, and interaction energies, demands
employment of atomistic modeling techniques such as molec-
ular dynamics (MD). However, the description of interatomic
forces in Fe is highly challenging and there exists a broad
range of models with different levels of sophistication [1–5].

The diversity of the observed structural and magnetic
phases of Fe stems from the complexity of atoms interac-
tions, namely, the mixed metallic and covalent bonding due
to overlapping d orbitals and the itinerant magnetism [6]. A
subtle mixture of these two phenomena gives rise to a complex
dependence of the potential energy and local magnetic order
on the atomic environment. Even a precise description of
elastic moduli is a quite challenging task demanding special
approaches in first-principle calculations [3,4].

The peculiar character of Fe bonding is also reflected
in the properties of its crystal defects. For instance, the
most stable configuration of self-interstitial atom (SIA) in the
body-centered-cubic (bcc) iron (α-Fe) is the 〈110〉 dumbbell
(SIA-D110) [5,7,8]. This contrasts to other nonmagnetic bcc
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metals, where SIA stabilizes in the 〈111〉 dumbbell (SIA-
D111) orientation. Moreover, SIAs in iron tend to cluster
together and form C15 phase inclusions, which is again
atypical for other bcc metals [9–11]. Another outstanding
property of iron is a strong dependence of vacancy forma-
tion and migration energies on temperature, which leads to
a marked non-Arrhenius behavior of the self-diffusion co-
efficient [12–14]. A proper modeling of this phenomenon
requires to take into account both the vibrational and magnetic
degrees of freedom, for instance, by coupling molecular and
spin dynamics (SD) [15–17]. It is important to note that such
coupled simulations can be successful only when the atom-
istic and spin models describe accurately the atomic and spin
interactions, respectively.

There exist a number of classical interatomic potentials for
atomistic simulation of iron [1,18–29]. Mostly, they have been
developed by fitting the potential functions to reproduce fun-
damental properties of Fe bulk phases (e.g., lattice parameters,
elastic constants, or thermal expansion) and, in some cases,
also properties of simple defects (e.g., formation energies of
point defects, surfaces, or grain boundaries). However, these
simplified models, which usually do not contain any explicit
treatment of magnetism, suffer from a limited transferability
and exhibit various deficiencies. Some of the well-known
problems are an underestimation and incorrect shape of the
Peierls energy barrier for the 1

2 〈111〉 screw dislocation, under-
estimated surface energies, or spurious phase transformations
[7,30].

Some of the deficiencies disappear when more sophis-
ticated models are used. For instance, an improvement
in dislocation properties was achieved by the magnetic
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bond-order potential [31–33], which is based on the tight-
binding approximation and includes an explicit treatment of
magnetism within the Stoner model. Recently, a new gen-
eration of machine-learning (ML) potentials have gained a
lot of attention [34,35]. For Fe, there exist the Gaussian
approximation potential (GAP) of Dragoni et al. [5] and a
neural network (NN) potential of Mori et al. [36]. The ML
models are based on fitting a large training database of total
energies, forces, and stresses obtained from density functional
theory (DFT) for a set of diverse reference atomic config-
urations. Hence, they are able to reproduce the formation
energies of the targeted crystal defects with high accuracy [5].
However, the ML models also suffer from the low transfer-
ability outside of the training structures [36–38]. In addition,
even though they are much faster than DFT approaches, ML
potentials are inferior in speed by three to four orders of
magnitude compared to the classical interatomic potentials
[35,39,40]. Hence, large-scale MD simulations, such as stud-
ies of plastic deformation [41,42], crack propagation [30,43]
under dynamic loading, nucleation and solidification from an
undercooled melt [44–46], grains growth kinetics [47–49], or
creation and evolution of defects at primary radiation damage
[50–54] are impractical.

An attractive possibility to create both reliable and com-
putationally efficient atomistic models is to carry out a
ML development of the classical potentials [55,56]. In this
way, the area of applicability can be substantially widened
compared to that of potentials fitted in the conventional
semiempirical way. At the same time, the relatively simple
form of classical potentials is retained allowing simulations
involving extensive timescales (up to 100 ns) and large atomic
configurations (up to tens of millions of atoms). Already in
1994, Ercolessi and Adams [57] proposed to develop embed-
ded atom method (EAM) potentials [58] by a force-matching
procedure using a fitting database containing mostly DFT
data. The key idea was to adjust the potential parameters to
optimally reproduce not only total energies, but also atomic
forces (and stresses) for a fine-tuned set of reference struc-
tures. In the recent years, this approach resulted in accurate
and efficient classical potentials for different atomic systems
such as U-Mo [59], U-N [60], Ti-Nb [61], Mg-H [62], and
W-Re [63].

The aim of this work is twofold. First, we perform a de-
tailed assessment of existing interatomic potentials for Fe by
taking into account both their predictive accuracy and com-
putational speed. We focus in particular on the behavior of
crystal defects that are often the most challenging. Second,
we carry out development of an angular-dependent potential
(ADP) for Fe based on the ML approach by using the force
matching for a large training set of DFT energies and forces.
The predictive power and computational efficiency of the
ADP potential is demonstrated on large-scale MD simulations
of phase transformations, self-diffusion, and coupled MD and
spin dynamics.

II. EXISTING INTERATOMIC POTENTIALS

In this section, we give a brief description of potentials
for Fe developed in the last decades and available publicly
through the NIST database [64,65]. In Table I, we have listed

TABLE I. List of the interatomic potentials for iron supple-
mented by the internal notations given within the frame of current
work.

Reference Notation

Ackland et al. (1997) [18] Ac97
Mendelev et al. (2003) [19] Fe-5 ver. Men03
Zhou et al. (2004) [20] Zh04
Chamati et al. (2006) [21] Ch06
Malerba et al. (2010) [25] Mar07
Olsson (2009) [24] Ol09
Chiesa et al. (2011) [26] Chi11
Proville et al. (2012) [27] MCM11
Mrovec et al. (2011) [31] BOP11
Asadi et al. (2015) [28] MEAM15
Dragoni et al. (2018) [5] GAP18

all models considered in our study, accompanied by the orig-
inal reference and an acronym that is used throughout the
paper. It should be noted that we considered only potentials
from the NIST database for which LAMMPS [66] parameter
files are available. There exist additional potentials, accessi-
ble, for instance, via the KIM framework [67], which were
omitted here. The current section concentrates mostly on po-
tential functional forms, fitting techniques, and application
purposes. The detailed validation of the models will be pre-
sented in Sec. IV.

Chronologically, one can see how the potential develop-
ment followed enhancement in the computational resources
and techniques during the last decades. The first many-body
potential was developed by Ackland et al. [18] in 1997 (Ac97)
as part of a binary Fe-Cu model. It was based on the Finnis-
Sinclair model [68] and fitted to reproduce the experimental
lattice parameter, elastic constants, cohesive energy, and va-
cancy formation energy of bcc Fe. In later work, Mendelev
et al. [19] extended the fitting database to generate several
EAM parametrizations that give a better description of defects
as well as the liquid phase of Fe. The potential parameters
were found to depend sensitively whether first-principles or
experimental fitting data for liquid Fe were used in the fit-
ting. From the five different parametrizations presented in
Ref. [19], we used the Fe-5 version that shows the best overall
representation of Fe bulk properties and was fitted to repro-
duce the experimental pair-correlation function of the liquid
phase. The melting temperature modeled with the Mendelev’s
potential (Men03) [19] is only about 5% lower than the
experimental value, while the previous Ac97 potential [18]
overestimates it significantly (by about 30%). The Mendelev’s
potentials were further refined by Marinica et al. [25] resulting
in an updated version (Mar07). This updated model shows a
better representation of the thermal expansion of bcc Fe, and
improved surface and point defect formation energies refitted
to amended DFT data.

The EAM scheme presents a basis for several other Fe
potentials. Zhou et al. [20] constructed a set of EAM poten-
tials for 16 different metals including Fe (Zh04). All these
potentials use the same formalism which makes it possi-
ble to combine them to simulate multicomponent systems.
For example, simulation of misfit dislocations in CoFe/NiFe

063607-2



ANGULAR-DEPENDENT INTERATOMIC POTENTIAL FOR … PHYSICAL REVIEW MATERIALS 5, 063607 (2021)

multilayers was carried out using these models. Similarly,
Olsson [24] developed a set of EAM potentials, including
that for Fe (Ol09). The constructed models were used for a
detailed study of the formation and migration of point de-
fects. The initial fitting was performed in a similar way as
that for Ac97 and afterwards corrected to ensure the correct
stability of self-interstitial configurations. The EAM potential
MCM11 reported in Ref. [27] was developed specifically to
reproduce properties of the screw dislocation in Fe. Even
though the predicted Peierls barrier compares well with that
of first-principles calculations, the MCM11 sacrifices other
properties.

An important aspect of Fe phase diagram is the bcc-fcc-bcc
phase transitions occurring at high temperatures. The work of
Chamati et al. [21] focused on reproducing properties of these
two phases. They developed EAM potential (Ch06) using a
fitting database containing the energies of bcc, face-centered-
cubic (fcc), simple cubic, and diamond phases as functions of
volume. The Ch06 potential is able to reproduce the thermal
expansion, phonon spectra, and surface properties of fcc and
bcc phases, but gives a poor description of the point defects.
A different approach, based on Tersoff’s empirical bond-order
potential [23], was also shown to reproduce the phase transfor-
mations in Fe, but it significantly underestimated the surface
energies.

As Fe bonding is mediated by directional d orbitals, sev-
eral potentials with angular dependence have been developed
recently [28,29] based on the modified EAM (MEAM) model.
The MEAM15 model reported by Asadi et al. [28] is aimed
at high-temperature properties of Fe. Here the melting point,
volume changes at melting, and characteristics of solid-liquid
interface were of highest interest, so the potential param-
eters were tuned to match the experimental melting point.
An updated version of that model [29] also adds the correct
representation of high-temperature elastic constants. Unfortu-
nately, this version predicts the A15 phase to be more stable
than the bcc phase so we used the original MEAM15 potential
in our comparison.

As mentioned above, the classical potentials cannot de-
scribe different magnetic Fe phases so they usually aim at
an effective description of some, mostly the ground mag-
netic state. Chiesa et al. [26] have attempted to complement
an EAM interatomic potential by an approximate magnetic
contribution via a second term to the embedding function,
resulting in embedding energy being a sum of nonmagnetic
and ferromagnetic contributions. The potential was aimed at
the description of radiation damage and fitted to experimental
bulk properties together with the nonmagnetic ab initio point
defect energies and the screw dislocation core structure. In our
tests, we adopted the CS3-33 version of their parametrization,
here noted as Chi11.

Along with the classical potentials, we considered two
more sophisticated models in our study: The magnetic bond-
order potential (BOP11) [31,69] and the GAP model (GAP18)
[5]. Both these models are significantly more computationally
demanding than the empirical potentials. However, they allow
to simulate some properties with higher accuracy than classi-
cal potentials. In addition, BOP11 gives opportunity to take
into account various magnetic phases of Fe.

III. DEVELOPMENT OF ADP POTENTIAL

A. Force-matching technique

In this section, we detail the fitting of the ADP interatomic
model using force matching. The form of the potential func-
tions follows Ref. [70]. The potential energy U is given as

U =
∑

i> j

ϕ(ri j ) +
∑

i

F (ρ i ) + 1

2

∑

i,k

(μk
i )2

+ 1

2

∑

i,k,l

(λkl
i )2 − 1

6

∑

i

ν2
i , (1)

where

ρi =
∑

j �=i

ρ(ri j ), μk
i =

∑

j �=i

u(ri j )r
k
i j,

λkl
i =

∑

j �=i

w(ri j )r
k
i jr

l
i j, νi =

∑

k

λkk
i . (2)

The indices i and j enumerate atoms while k, l = 1, 2, 3
refer to the Cartesian components of vectors and tensors. The
first term in Eq. (1) corresponds to pair interactions between
the atoms via a pair potential ϕ. The summation is performed
over all j neighbors of the ith atom within the cutoff distance
rcut (which we set to 6.2 Å). The second term F is the em-
bedding energy that is a function of the total electron density
ρ. Hence, the first two terms in Eq. (1) correspond to the
conventional EAM model [71]. The additional terms μ and
λ introduce noncentral interactions through the dipole vectors
and quadrupole tensors. These terms give the ADP model
additional flexibility to describe angular interactions that be-
come especially important in distorted bonding environments
around crystal defects [72].

Each of the functions in Eqs. (2) is described by a set of
cubic splines, whose parameters are optimized using force-
matching algorithms realized in the POTFIT code [73,74].
The fitting procedure proceeds by minimization of the cost
function Z , which includes two parts: (i) Z f corresponding
to atomic forces f , and (ii) ZA corresponding to an integral
quantity A (in our case, A is either the energy or one of the
six components of the stress tensor of the reference configu-
ration), such as

Z = Z f + ZA, (3)

Z f =
Nf∑

i=1

∑

α=x,y,z

WC
(

f ADP
iα − f DFT

iα

)2
, (4)

ZA =
7NC∑

j=1

WCWA
(
AADP

j − ADFT
j

)2
. (5)

Nf is the number of atoms for which the values of forces
f are taken into account during the minimization. NC is the
number of reference configurations with weights WC . For a
single configuration, we have one value of the energy and six
components of the stress tensor. Moreover, general weights
WA are included to allow an independent optimization of the
function ZA for all energies and stress components. We chose
WA = 2000.
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TABLE II. Description of the reference configurations. Here Nc

is the number of structures of the given type included in the fitting
database. nat is the number of atoms in a given structure, WC is the
attributed individual weight. For convenience, configurations with
the same structure are grouped and the minimum and maximum
values of the effective temperature T (in K) and atomic volume V
(in Å3 per atom) are specified.

Structure Nc nat WC Tmin–Tmax Vmin–Vmax

Configurations with attributed forces
bcc 3 128 1 600–700 10.5–11.5
bcc 6 250 2 300–1800 9.5–13
dis-bcc 8 ∼360 2 300–600 9.7–14
def-bcc 4 250 10 300 10.8–12.2
fcc 1 256 2 1600 11.1
liquid 1 249 2 2300 11.2
(210)GB 1 240 2 350 10.8
(332)GB 1 176 2 350 10.9

Configurations without attributed forces
bcc 1 250 100 0 11.5
bcc 1 250 100 0 10.5
vacancy 1 249 100 0 11.5
di-vacancy 1 248 100 0 11.5
SIA-D110 1 251 200 0 11.5
SIA-D111 1 251 200 0 11.5
di-SIA 1 252 200 0 11.5
fcc 1 108 50 0 14.0
fcc 1 108 10 0 11.5
fcc 1 108 10 0 10.1
hcp 1 192 10 0 8.5
(111)GB 1 144 25 0 11.5
(112)GB 1 192 25 0 11.5
(320)GB 1 192 25 0 11.5
(510)GB 1 312 25 0 11.5

B. Description of the reference structures

Information about atomic configurations used for the ADP
fitting is given in Table II. Each of the reference structures
contained about 100–360 atoms in a simulation box with
periodic boundary conditions (PBC). All configurations were
obtained from classical atomistic simulations (MD or static)
using the Chi11 potential, carried out at different temperatures
T and volumes V . Hence, averaged displacements of atoms
from their equilibrium lattice sites correlate with the given T .
All classical calculations were performed using the LAMMPS

molecular dynamics simulator [66].
The configurations listed in Table II are divided into two

groups. The first group of structures contains the fragments
of classical MD trajectories and aims at the DFT calculations
of forces, energies, and stresses. These configurations corre-
spond to various Fe phases (bcc, fcc, and liquid) at different
T and V . The “dis-bcc” configurations represent largest su-
percells containing screw dislocations (one or two) and open
surface. In addition, this group includes also configurations
of several tilt grain boundaries (GB). Most configurations
were fitted with the weight WC equal to 1 or 2. The only
exception was made for the uniaxially deformed bcc lattices
“def-bcc” which were attributed higher weights WC = 10 to
achieve accurate elastic properties. The broad ranges of T and

V used for sampling these configurations provide an extensive
representation of distinct atomic arrangements in the fitting
database.

The structures in the second group were used for an en-
ergy minimization with DFT approach. Therefore, only the
energies of these structures were used in the fitting. These
configurations included perfect fcc, hexagonal-closed-packed
(hcp), and bcc bulk phases, different tilt GBs, and point de-
fects. Individual weights WC chosen for these structures are
also listed in Table II.

In total, 41 configurations were used for the potential con-
struction. Apart from the 40 structures listed in Table II, we
used a configuration representing Fe at low density. Such
structure is necessary to ensure that the potential energy goes
to zero for large interatomic distances. In total, the reference
data set included 41 energy values, 150 stress tensor values (6
stress components per configuration with forces), and 20 040
values of the force components.

The reference DFT calculations were done using the Vi-
enna ab initio simulation package (VASP) [75]. The Brillouin
zone was sampled using a 2×2×2 Monkhorst-Pack k-point
mesh. The cutoff energy of the plane-wave basis set was
equal to 430 eV. We used the projector augmented wave
(PAW) pseudopotential included in the VASP package (ver-
sion 5.4.1) and the exchange-correlation functional within
generalized-gradient approximation (GGA) in the form of
Perdew-Burke-Ernzerhof [76]. The achieved electronic con-
vergence of total energy in each calculation was lower than
0.001 eV (or 10−5 eV/atom).

For each configuration, we carried out both nonmagnetic
and magnetic (spin-polarized) calculations. The initial mag-
netic ordering for most configurations in the spin-polarized
calculations was the ferromagnetic (FM) state. Only the fcc
and hcp phases were initially given with the antiferromagnetic
(AFM) single-layer magnetic ordering since the FM phases
have higher energies. For some defect configurations, the DFT
calculations predict local magnetic moments on some atoms
to deviate strongly from the bulk FM values. Hence, for each
reference configuration the ground magnetic (GM) state cor-
responding to the minimal potential energy was used at the
fitting. It should also be noted that the nonmagnetic calcula-
tions were used later to fit an additional ADP parametrization
(see below).

C. ADP parametrization

Figure 1 shows all fitted ADP functions. Each function
is described by cubic spline and the total number of the
fitted parameters (i.e., total number of splines nodes for all
functions) is 73. The estimated accuracy of the fitted model
with respect to the reference DFT data is about 105 meV/Å
for the forces, 14 meV for the energies, and 0.22 GPa for
the stresses. The energy and force comparisons are shown
in Fig. 2. This accuracy is close to the limit that can be
achieved with a classical potential of ADP (or EAM) type
[35,72]. The final potential parametrization in the LAMMPS
setfl format can be downloaded from the NIST interatomic
potential repository [64,65]. Also, the Supplemental Material
[77] contains the cubic spline parameters of the developed
potential.
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FIG. 1. Fitted functions of the developed ADP potential.

As this ADP parametrization is fitted to spin-polarized
DFT results, it is aimed at reproduction of the GM state
energies. Owing to this fact, this ADP model can provide a
trustworthy description of Fe only at moderate temperatures
up to about 600 K where magnetic excitations are not so im-
portant. A similar application range was stated for the Chi11
potential of Chiesa et al. [26]. At higher temperatures, the
results of atomistic simulations should be analyzed with cau-
tion. An improved description of high-temperature behavior
may be obtained by combination of MD and SD simulations
[15–17]. However, as will be shown later, the ADP model is
able to predict qualitatively correct results for properties of
disordered structures (e.g., liquid phase or some grain bound-
aries) even when no SD is employed. This is probably related
to the fact that the temperature-induced magnetic excitations
do not play significant role in behavior of poorly ordered
structures [78,79] where magnetic disorder takes place even
in GM state at low temperature.

As an additional task, we developed another ADP
parametrization fitted to nonmagnetic (NM) DFT results that
may be combined with advanced SD simulation [16] to study
the properties at temperatures close to or higher than the Curie
temperature. The NM model is described in more detail in
Appendix A.

IV. COMPARISON OF POTENTIALS

This section provides an extensive validation of all con-
sidered potentials together with our ADP potential. Here, we
mostly analyze the properties that can be also computed using

FIG. 2. Comparison of ADP prediction with respect to the refer-
ence DFT data: (a) energy per atom averaged over all atoms in the
configuration; (b) force per atom.

DFT to obtain an unbiased comparison. The aim of this critical
assessment is to delimit clearly the applicability range for all
potentials.

A. Fundamental properties of the bcc Fe phase

Table III presents a comparison of the fundamental prop-
erties for the bcc ground state predicted by all potentials
together with DFT and experimental results. It can be seen
that all potentials agree very well with the DFT and/or ex-
perimental data since the basic properties such as the lattice
parameter, elastic constants, and the cohesive energy were
used in the fitting. Surprisingly, the GAP model shows the
most pronounced disagreement with the experimental data for
the cohesive energy. This discrepancy is due to nonphysical
behavior of the model at low densities (the energy-volume
curves for the whole interatomic range are shown in
Appendix B).

Table III also contains approximate values of normalized
MD computational time tc illustrating relative computational
costs of the potentials. We estimated tc using a benchmark MD
simulation of 3456 atoms at room temperature for 1000 steps
(on a single CPU). The LAMMPS molecular dynamics simula-
tor [66] was used for all potentials except for BOP11 which
was carried out using the BOPFOX code [85]. The analysis of
the computational efficiency indicates that BOP and GAP are
significantly slower than the other potentials while the ADP
model is only in three to four times slower than the most
efficient EAM potentials. Such result ensures applicability of
the ADP for large-scale MD simulations, as will be shown
below.

B. Energy-volume curves

A correct representation of the relative phase stability is
one of the fundamental requirements for any interatomic po-
tential. For this purpose, we evaluated the energy E versus
volume V curves for four important lattice types: bcc, fcc,
A15, and C15. Figure 3 shows the E -V dependencies for all
potentials and DFT taken from Refs. [10,86].

According to DFT, the FM state is the most stable magnetic
ordering for bcc, A15, and C15 phases. However, for the fcc
lattice, the most stable magnetic state changes with decreasing
volume from the FM state to the antiferromagnetic double-
layer (AFMD) state and further to the AFM state. In contrast
to models based on the electronic structure [2,12,31], classical
interatomic potentials are not able to differentiate between the
magnetic phases. Among the tested models, only BOP11 can
take into account various magnetic orderings. Nonetheless,
two features on the DFT E -V dependencies shown in Fig. 3
deserve additional discussion: (1) an intersection of the bcc
and fcc curves at compression, and (2) the absence of an
intersection of the bcc curve with any other curves at expan-
sion (at least for 12 < V < 14 Å3). A correct reproduction
of these features is significant for a reliable description of Fe
phase transformations. Specifically, the fact that the fcc phase
becomes more stable than the bcc phase under compression is
a necessary condition for the existence of thermodynamically
stable fcc phase in the Fe phase diagram (see Ref. [86]). This
feature is correctly reproduced only by BOP11, Ch06, and
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TABLE III. Basic properties of bcc Fe described by the investigated interatomic potentials. The listed properties include lattice parameter
at zero temperature a0 in Å, cohesive energy Ecoh in eV/atom, elastic constants Ci j in GPa, and linear thermal expansion αL (in temperature
range from 300 to 600 K) in 10−5 K−1. The last column contains normalized values (by 7.9 × 10−7 s/step/atom) of a computational time tc

from an MD simulation.

a0 Ecoh C11 C12 C44 αL tc

Expt. 2.855a 4.28 240b 136c 121c 1.35d

DFT 2.834e 297e 151e 105e

Ac97 2.867 4.316 243 145 116 0.94 1.0
Men03 2.855 4.134 244 145 116 0.91 4.7
Zh04 2.866 4.291 230 136 117 1.17 2.9
Ch06 2.867 4.280 241 147 114 1.32 3.1
Mar07 2.855 4.122 243 145 116 1.05 7.0
Ol09 2.870 4.279 240 136 121 1.29 2.1
Chi11 2.867 5.79 244 138 122 0.8 2.6
MCM11 2.815 4.123 243 145 116 1.61 4.7
BOP11 2.850 4.399 265 164 123 — 2979
MEAM15 2.851 4.292 231 135 116 1.13 10.5
GAP18 2.835 0.14 286 154 104 1.29 54430
ADP 2.830 4.376 255 116 113 1.37 11.4

aReference [80].
bReference [81].
cReference [82].
d Reference [83].
eReference [84].

ADP potentials. On the other hand, many potentials including
Ac97, Men03, Mar07, Ol09, MCM11, and GAP18 incorrectly
predict a phase transformation when the bcc crystal is ex-
panded. It has been shown recently [30] that this deficiency
leads to various artifacts during fracture simulations. Hence,
our validation shows that only BOP11 and ADP reproduce
the features of E -V curves correctly while all other models
exhibit various deficiencies and their overall description of the
structural hierarchy over the considered density range is rather
poor. Complete E -V curves over a broader range of volumes
up to the potential cutoff are shown in Appendix B.

In the analysis of structural stability, we did not include
results for the hcp phase as the calculated energy difference
between the hcp and fcc phases is less than 0.04 eV at all
considered volumes. These results can be found for all tested
potentials in the NIST database [64,65]. In general, most of
the tested models are unable to predict the phase transition
from bcc to hcp under compression, which is observed ex-
perimentally [87–89]. The only exception is the Ch06 model,
which partially reproduces the stabilization of hcp phase in
a narrow pressure region (see Ref. [90] for more detailed
description of the calculated phase diagram).

C. Phonons

Vibrational properties are essential for analysis of the
material behavior at finite temperatures. We computed the
phonon density of states (DOS) for bcc Fe using the small dis-
placement method as implemented in the PHONOPYsoftware
package [91]. All obtained phonon DOS profiles are shown in
Fig. 4. Most potentials demonstrate a good agreement with the
experimental data [92]. Only the MCM11 and MEAM15 po-
tentials exhibit significant inconsistencies with the measured
phonon DOS.

D. Formation and migration energies of point defects

One of the general tests for any interatomic potential is
the representation of vacancy formation energy E f

vac. We eval-
uated the vacancy formation energy for all models using a
periodic supercell with dimensions of 5a0 × 5a0 × 5a0. For
validation, we compared the results with those of three DFT
studies taken from Refs. [5,7,93]. The comparison shown in
Fig. 5 reveals that most potentials underestimate E f

vac with
GAP, ADP, and Mar07 giving the best agreement with DFT.

For Fe self-interstitials, there exist five important configu-
rations that are (in order of decreasing stability) SIA-D110,
tetrahedral SIA, SIA-D111, SIA-D100, and octahedral SIA.
A proper description of SIA thermodynamics and kinetics
requires that not only the ground-state configuration and its
energy is reproduced correctly, but also the hierarchy of the
other SIA configurations is captured well, namely, E f

110 <

E f
Tet < E f

111 < E f
100 < E f

Oct. In Fig. 5, we compare the
calculated formation energies of SIAs with the existing DFT
data [5,7]. It is clear that to capture the subtle energetic of
various SIA configurations is very challenging and only the
GAP18 model, which was, however, fitted using a large data
set of defect configurations including SIA, is able to provide
a reliable description of SIA defects in comparison with DFT.
All other potentials exhibit discrepancies ranging from several
tenths to more than one eV. In addition, only two classical
potentials (ADP and Mar07) predict the right energy hierarchy
of SIA defects.

For the monovacancy, we evaluated also its migration en-
ergy at zero pressure and temperature. For this purpose, we
used the nudged elastic band (NEB) method [94]. The mi-
gration path along the 〈111〉 direction was sampled using 27
images. Due to the large number of models considered, the
results are shown in three panels of Fig. 6. A first noticeable
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FIG. 3. Energy-volume curves for the bcc, fcc, A15, and C15 phases of iron. DFT data are taken from Refs. [10,86].

feature is a double-hump migration profile with a metastable
transition state predicted by many potentials. Such peculiarity
is not seen in the DFT calculations, which do not predict any
local minimum corresponding to the transition state. Our DFT
migration barrier of 0.7 eV is consistent with other reported
values [93,95,96]. The best agreement with DFT data was
obtained for Zh04, Ol09, and GAP18 potentials. In general,
the vacancy migration energy Em

vac, corresponding to the max-
imum height of the barrier, lies within 0.6–0.8 eV for most
potentials. The exceptions are the Ch06 and MEAM15 po-
tentials with significantly underestimated values and BOP11
which gives a much higher value of more than 1.0 eV.

We also estimated the sum of the energies describing for-
mation and migration of a vacancy: E f

vac + Em
vac. With the ADP

its value is close to the experimentally obtained self-diffusion
activation energy (≈2.9 eV) for the FM bcc phase [97,98].
Generally, the same agreement is seen between the experiment
and E f

vac + Em
vac obtained from DFT calculations. Summa-

rizing characteristics of a vacancy given by ADP, we can
conclude that the accurate representation of the involved ener-
gies can ensure adequate simulation of the vacancy diffusion

in FM bcc Fe. A more detailed description of diffusion-related
phenomena is given in Sec. V.

E. Binding energies of point defects

Interactions between point defects are crucial for simu-
lations of collision cascades and microstructural evolution
during radiation damage. For example, a pair of SIA de-
fects attract each other, eventually forming a nonparallel
(NPC) di-interstitial configuration with triangular symmetry
[25,99,100]. Such defect configuration may be considered as
a component of C15 inclusion. We calculated the binding
energy for this defect (Eb

NPC) as shown in Fig. 7. For most
potentials, the computed Eb

NPC is close to the DFT value [5].
However, only three potentials (MCM11, GAP18, and ADP)
yield the NPC configuration as the most stable one. For the re-
maining nine potentials, the di-SIA ground state corresponds
instead to a 〈110〉 linear arrangement. Since MCM11 predicts
a wrong energy hierarchy of SIA configurations, ADP and
GAP18 are the most preferred models for atomistic simulation
of SIAs clusterization and formation of the C15 inclusions
[10,101].
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FIG. 4. Phonon DOS for bcc Fe calculated with various interatomic potentials. The experimental data [92] are shown by the black solid
line.

We also paid attention to the nature of vacancy binding.
According to the previous research, the binding energy for
two vacancies in bcc Fe is relatively small, about 0.2 eV for
the nearest-neighbor (1NN) orientation and about 0.25 eV
for the second-nearest-neighbor (2NN) position [5,102]. We
did not limit our validation to these two configurations but
investigated the divacancy interactions up to the fourth-nearest
neighbor (4NN). The calculated energies are plotted in Fig. 8
together with DFT results from Ref. [5]. Most tested potentials
reproduce the binding energies with acceptable accuracy, and
only Ol09 and MEAM15 show a significant disagreement
with DFT.

F. Grain boundaries and surfaces

In this section, we move from the point defects to
more challenging configurations including surfaces and grain
boundaries. First, we focus on four symmetric tilt GBs,
namely, �3(112), �5(310), �5(210), and �13(510). The GB
structures were optimized by relaxing atomic positions, cell
dimensions, as well as lateral translations of the two grains.
A detailed description of the investigated GBs is given in
our recent work [103]. The calculated GB energies for all
potentials together with reference DFT values [104] are
displayed in Fig. 9. The results show that most classical po-
tentials strongly underestimate the GB energies as was found

also in other studies [30,105]. The best agreement with DFT
data is seen for the Chi11, ADP, BOP11, and GAP18.

In addition to GBs, we also investigated several low-index
surfaces which play an important role in simulations of frac-
ture [30] or crystal growth. In diffusion studies, open surfaces
allow to achieve the equilibrium concentration of point de-
fects inside the bulk [103,106–109]. We calculated the surface
energy Esur using supercells with PBC along the lateral di-
rections and 10 Å of vacuum region normal to the surface.
Four different surface orientations were studied: (100), (110),
(211), and (111). Figure 10 summarizes the energies obtained
for all tested potentials. Ch06, ADP, MEAM15, and GAP18
reproduce the absolute surface energies with the highest ac-
curacy in comparison with DFT [5]. However, we observed
that in MD simulations using GAP18 most of the surfaces
become unstable at finite temperature. Due to the small cohe-
sive energy and unphysical E -V curves at large volumes (see
Appendix B), surface atoms tend to spontaneously detach at
surface steps or curved surfaces, leading to a spontaneous va-
porization. The GAP18 potential is therefore not suitable for
any simulations involving surfaces at elevated temperatures.

G. Dislocations and stacking faults

Classical atomistic simulations have been used extensively
in studies of dislocations to gain insights into microscopic
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FIG. 5. Formation energy of point defects in bcc Fe at zero pressure and temperature. Each bar shows the value calculated with one of the
potentials. Formation energies of SIA in nonground states are shown relative to the energy of 110 dumbbell. Black horizontal lines correspond
to DFT calculations reported in various works: Solid line, Ref. [5]; dashed line, Ref. [7]; dashed-dotted line, Ref. [93].

origins of the plasticity of bcc metals [41,42,110–112]. In
this work, we considered two types of dislocations, the screw
(S111) and the mixed (M111) dislocation, both with the Burg-
ers vector b = 1

2 〈111〉. The S111 dislocation has a compact,
nonplanar core and governs the low-temperature plastic de-
formation while the M111 dislocation is planar and expected
to possess a low Peierls stress.

For S111, DFT calculations [5,10,113–115] predict the
so-called nondegenerate ground-state structure, also known
as the “easy” core. We investigated the S111 core structures
for all tested potentials and compared them using the usual
differential displacement (DD) plots. All potentials, which

correctly reproduced the nondegenerate core structure (except
of the Ac97, Ol09, and MEAM15 models), were further tested
for additional dislocation properties.

The most important property related to dislocation mobility
is the Peierls barrier [116]. We evaluated the Peierls barrier
under zero stress using the the NEB method. The obtained bar-
rier profiles are shown in Fig. 11 together with the reference
DFT values. Most potentials exhibit marked quantitative or
even qualitative deficiencies, with their Peierls barriers having
a “double-hump” shape with a local minimum corresponding
to an intermediate state, which contrasts with the DFT result
[26,31,117]. The intermediate minimum usually corresponds

FIG. 6. Vacancy migration barrier calculated using NEB for different interatomic potentials; full black circles show DFT result from this
work.
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FIG. 7. Binding energy of di-SIA in the NPC configuration.
Solid horizontal line shows the energy calculated with DFT in
Ref. [5]. Stars indicate potentials predicting 〈110〉 di-SIA ground
state.

to a spurious split core configuration that may alter the pre-
ferred dislocation glide system. These deficiencies have been
extensively analyzed [115,117,118] and are most likely re-
lated to the simplified functional forms of the potentials and
the lack of a proper description of the unsaturated directional

FIG. 8. Binding energy of divacancy in bcc Fe as function of
the separation. Full black circles correspond to the DFT results from
Ref. [5].

bonds. Marinica et al. [27] were able to specifically fit the
correct shape and the height of the barrier but only by signif-
icantly sacrificing the overall transferability of the potential.
The correct description of dislocation properties, especially its
response and variations under applied stress, therefore present
an extremely stringent test for classical interatomic potentials.
Aside from the MCM11 potential, the only model that repro-
duces well both the shape and the height of the Peierls barrier
is the more sophisticated BOP11 model.

For M111, there exist two core variants with distinct sym-
metries and different locations of dislocation center along the
[112] direction on the {110} glide plane [119]. One of the
cores is centered on the atoms (labeled as AC core), the other
core is centered on the bonds between the atoms (labeled
as BC core). Recent DFT calculations [119] revealed that in
transition bcc metals the AC core corresponds to the minimum
energy configuration while the BC core corresponds to the
transition state (energy maximum). However, in Fe the energy
difference is extremely small (about 1 meV/b) and both cores
are energetically almost degenerate with a very flat Peierls
barrier. Similarly to S111, most potentials have difficulty to
reproduce the M111 energetics (see Fig. 11). Most correct
descriptions of the Peierls barrier are provided by BOP11
while Ch06, Mar07, and GAP18 give small barrier heights but
a reversed stability of both cores. ADP predicts the right shape
of the Peierls barrier, but the height is slightly overestimated.

In relation to dislocation properties, we paid attention to
relevant stacking faults (SF). The properties of stacking faults
are related not only to dislocation core structures, but also
to twinning processes and fracture. Based on the concept
of generalized stacking fault energy (GSFE) surface [120]
(also known as γ surface), we evaluated variations of the
cross sections of relaxed (110) γ surfaces along [110] and
[111] directions for the tested potentials. Similar dependen-
cies for some potentials have been reported previously in
Refs. [30,121]. As in Ref. [121], we examined how the pro-
files change with strain, namely, 5% equibiaxial strain in
the [110] and [110] directions. The computational results for
ADP, Chi11, GAP18, and MCM11 are shown in Fig. 12.
Results obtained for Ch06, BOP11 (see Ref. [121]), GAP18,
and ADP potentials show the best agreement with DFT for
both unstrained and strained cases. In contrast, Men03, Zh04,
Mar07, Chi11, and MCM11 potentials show a propensity for
phase transformation to a close-packed structure under ap-
plied stress that lead to unphysical fracture behavior [121].
Moreover, Mar07 and MCM11 models revealed the structure
transformation even for the strain crystal without shift.

H. Strengths and limitations of the ADP potential
in comparison with other models

Based on the extensive validation presented above, we can
assess general accuracy of the tested interatomic potentials.
The stability of different crystal structures is the first key
benchmark providing an estimation of the model accuracy.
The comparison of E -V plots in Fig. 3 shows that BOP11
and ADP models provide the most accurate representation of
the energy hierarchy for the considered structures. It is worth
mentioning that none of the tested models included the A15
and C15 phases in the potential fitting. Hence, the E -V curves
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FIG. 9. Energies of different symmetric tilt grain boundaries. Horizontal solid lines show results of DFT calculations from Ref. [104].

FIG. 10. Surface energies calculated for the different surface ori-
entations. Black horizontal lines show DFT results from Ref. [5].

for these two structures can be considered as one indicator
of transferability of the tested potentials. For instance, the
inability of GAP18 to reproduce correctly the structural hi-
erarchy is clearly due to absence of these structures in the
training set used for the model development. In principle,
this shortcoming can be fixed by adding new reference data,
but it is necessary to pinpoint all essential configurations in
advance.

One of the most valuable characteristics of our ADP model
is a reliable description of point and planar defects. In this
respect, the model stands out in accuracy among the tested
potentials, second only to the GAP18 model. For instance,
only the GAP18 and ADP potentials reproduce quantitatively
correctly both GB and surface energies, while the other mod-
els describe either one or the other. The predicted formation,
migration and binding energies for the point defects calculated
with GAP18 and ADP models deviate from the DFT reference
values by less than 0.2 eV.

The most pronounced limitation of our ADP model is the
wrong shape and the underestimated height of the Peierls en-
ergy barrier for the S111 dislocation. However, this feature is
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FIG. 11. The Peierls energy barriers for S111 and M111 dislocations. Black full circles show DFT results for screw dislocation from
Ref. [26] and for mix dislocation (this work).

likely impossible to achieve for simplified potentials without a
strong deterioration of other properties, as is obvious from the
validation of the MCM11 model. One of the reasons of this
difficulty are extremely small changes in the atomic energies

at variation in the dislocation barrier shape: the alternation in
the barrier magnitude by 0.01 eV/b leads to the variation in
the energy of the dislocation core atoms about 2 meV/atom.
Such subtle variations in the energy landscape are difficult

FIG. 12. GSFE of the (110) plane for shifts in [110] and [111] directions. Results for the unstrained crystal are shown by the solid line
(potential calculations) and full circles (DFT) [121]. Calculations for the strained crystal (corresponding to 5% equibiaxial strain in [110] and
[110] directions) are represented by the dashed line (potential) and empty circles (DFT) [121]. All GSFE curves are constructed with respect
to the crystal energy at zero shift for a given crystal state.
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to capture for a classical interatomic potential. Nevertheless,
the impact of the barrier shape on the dislocation mobility at
the finite temperature has not been studied in detail. Based on
the results of several atomistic simulations of S111 dislocation
behavior in bcc metals [118,122], the qualitatively incorrect
barrier shape should not be critical for dislocation behavior at
elevated temperatures.

Overall, GAP18 can be considered as the most quanti-
tatively accurate model for description of defect properties
in bcc Fe, but it has apparent transferability limitations for
atomic configuration outside of its training database, such as
for bulk phases under larger volumetric changes. In addition,
GAP18 is computationally the most demanding of all tested
models. Based on the performed comparisons, the developed
ADP parametrization provides a reasonable balance between
the accuracy and performance, which makes it attractive for
large-scale MD simulations of defect behavior at finite tem-
peratures [123–127].

V. APPLICATIONS OF OUR ADP POTENTIAL

In this section, we present several application examples
that illustrate the predictive ability of the new ADP model in
MD simulations at finite temperatures.

A. Phase stability at finite temperatures and pressures

To describe accurately the behavior of fcc Fe (γ -Fe) is a
difficult task for classical potentials. The first prerequisite is
an adequate representation of the bcc-fcc transformation and
its corresponding energy landscape at zero temperature. To ex-
amine this transformation, it is convenient to consider the fcc
and bcc lattices as particular cases of a body-centered tetrag-
onal (bct) lattice characterized by two independent variables:
Atomic volume (V ) and the ratio of two lattice parameters
(c/a). The well-known Bain path for the bcc-fcc martensitic
transformation corresponds to the change of c/a from 1.0
(bcc) to

√
2 (fcc). Several DFT calculations [5,86,128] have

revealed that the AFM and AFMD fcc phases (which are
the lowest-energy fcc phases) are mechanically unstable at
0 K under the tetragonal distortion and transform to a tetrag-
onal bct phase with the c/a ratio of about 1.5. A detailed
study of the whole energy landscape for various magnetic
orderings can be found in Ref. [86]. We performed similar
calculations (without explicit magnetic interactions) for the
tested potentials and plotted the results for several models in
Fig. 13. We found that only GAP18 predicts the metastable
bct structure but with c/a = 1.71, i.e., significantly more than
the DFT value. ADP captures correctly the minimum energy
path between the bcc and fcc structures while both Chi11
and MCM11 potentials show marked deviations of the energy
landscape.

To examine the stability of the fcc phase at finite temper-
ature, we performed a series of MD simulations at various
temperatures and densities. As the AFM or AFMD mag-
netic order in the fcc phases may be considered as the
first approximation for the paramagnetic state [86,129,130],
temperature-induced changes of the magnetic disorder are
likely to affect properties of the fcc phase less than those of
the bcc phase. Hence, even classical potentials may achieve a

FIG. 13. The energy landscape for the bcc-fcc transformation in
the {c/a,V } space. Results of the DFT calculations [5,86] are marked
by the star (bcc ground state), the triangle (metastable bct phase),
and the dashed curve representing the minimum energy path between
these two structures.

qualitatively correct representation of the fcc phase at elevated
temperatures. Figure 14 shows the calculated V (T ) depen-
dence obtained for isobaric heating and cooling of the fcc
phase, initially equilibrated at T = 1400 K. The graph con-
tains also the volume changes for the bcc phase obtained upon
isobaric heating. The comparison of the ADP predictions with
the experimental data [80,131] shows a qualitative agreement
for the thermal expansion of both phases.

An interesting feature predicted by the ADP model is the
existence of temperature- and volume-dependent lattice in-
stabilities occurring in the fcc phase. As shown on the four

FIG. 14. The calculated dependence of atomic volume on tem-
perature for the bcc phase (blue solid line) and for the fcc phase (red
dashed line) from MD simulations performed at P = 0. The sym-
bols mark available experimental data [80,131]. The MD snapshots
illustrate lattice distortions of the fcc phase at low temperature (left
bottom panel) and a stabilized fcc phase at elevated temperatures
(right bottom panel).
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FIG. 15. Phonon dispersion curves for the fcc phase at various
atomic volumes. The panel illustrating results for V = 11.58 Å con-
tains also experimental data (black dots) obtained at T = 1428 K
[132].

phonon dispersion plots in Fig. 15, the equilibrium (V =
11.03 Å) and moderately compressed (V = 10.45 Å) fcc
phases exhibit a dynamical instability corresponding to the
imaginary phonon frequencies near the L point. This insta-
bility occurs in MD simulations for T < 400 K and is visible
on the MD snapshot in the bottom left panel of Fig. 14. The
thermal expansion of the lattice for T > 400 K leads to dis-
appearance of the imaginary frequencies and stabilization of
the fcc phase. The phonon dispersion for the expanded lattice
(V = 11.58 Å) agrees well with the experimental data [132].
Interestingly, a substantial hydrostatic compression also stabi-
lizes the fcc phase (cf. top left panel of Fig. 15 for V = 9.0 Å).
The large sensitivity of the phonon dispersion curves to vol-
ume variations for the Fe fcc phases has been reported by
several DFT studies. However, while some studies revealed
the presence of the imaginary frequencies in the AFM fcc
phase at 0 K [133], others predicted their absence [129].

To obtain a complete picture of the phase stability, we com-
puted the whole P-T phase diagram using the ADP model.
The calculated results are presented in Fig. 16 together with
the available experimental data [87–89] and DFT-based esti-
mates [86]. The melting lines for both phases were evaluated
for a wide range of pressures using the two-phase approach
[134–136]. The melting temperatures for the bcc and fcc
phases at zero pressure were estimated to be 1770 ± 10 K and
1640 ± 10 K, respectively. The pressure corresponding to the
triple point for the bcc-fcc-liquid transition obtained from the
intersection of the melting lines equals to 3.5 GPa. It is worth
noting that the calculated melting line for γ -Fe agrees well
with the measured data.

It is obvious that ADP does not predict the α-γ transition
at zero pressure and the fcc phase remains metastable with
respect to the bcc phase up to the melting. To estimate the
transition temperature Tαγ for nonzero pressures, we used the
Clausius-Clapeyron relation

dTαγ

dP
= Tαγ 	V

	H
,

FIG. 16. The P-T phase diagram of Fe: Black lines, experimental
data [87–89]; blue dotted line, DFT-based α → γ transition line
from Ref. [86]; red dashed-dotted lines, ADP predictions (the phase
transition to ε phase is absent for the ADP model).

where 	V and 	H are the changes of volume and enthalpy at
the phase transition. To integrate the equation, we first evalu-
ated the enthalpies for both phases at T = 0 K and obtained
the transition pressure PT =0

αγ = 16.9 GPa. By combining the
information about the triple point, the transition pressure at
T = 0 and the calculated dependencies H (P, T ) and V (P, T )
for both considered phases we obtain the α-γ stability line in
Fig. 16.

Despite the lower stability of the fcc phase with respect
to the bcc phase at zero pressure, the physical properties of
the fcc phase at finite T are described with good accuracy.
Table IV presents the ADP results in comparison with exper-
imental values [80,132,137] and DFT predictions [129]. As
we noted above, the magnetic interactions should affect the
thermodynamic properties of the fcc phase much less than
those of the bcc phase at elevated temperatures. A coupling
of the ADP model with spin dynamics [16] may lead to an
improved prediction of the Tαγ below Tm at zero pressure.
This coupling as well as related questions about the transition
between γ -Fe and δ-Fe (PM-bcc) will be a subject of future
study.

TABLE IV. Properties of fcc phase at T = 1500 K. The simu-
lation results obtained by ADP are compared with the experimental
data [80,132,137] and DFT results [129].

Experiment DFT ADP

a (Å) 3.66 3.61 3.60
C11 (GPa) 154 169 168
C12 (GPa) 122 105 130
C44 (GPa) 77 85 74
E f

vac (eV) 1.7 ± 0.2 1.92
E f

SIA (eV) 3.6
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B. Spin dynamics

A possible way how to simulate α-Fe at high tempera-
tures is to couple a classical interatomic potential with spin
dynamics. Several approaches have been attempted so far. In
a pioneering work, Ma et al. [15,16] used a potential fitted
to reproduce the behavior of NM Fe that was augmented
with a spin Hamiltonian in the Heisenberg-Landau form. The
exchange coupling functions and the Landau coefficients of
the Hamiltonian were adjusted to reproduce the properties
of either bcc or fcc magnetic phases. Tranchida et al. [17]
instead used a classical EAM potential fitted to reproduce the
magnetic Fe phases and coupled it with SD after subtracting
effectively the magnetic interactions. Very recently, they em-
ployed a similar strategy to fit simultaneously the magnetic
interactions with a nonmagnetic ML potential [138]. This
approach is perhaps more flexible than the coupling of SD
with an interatomic potential fitted to the GM state, but it is
also more sophisticated [16,138].

We have developed a nonmagnetic ADP potential (cf.
Appendix A) that can be combined with the advanced SD
modeling. In this work, however, we use the SD simulation
based on the ADP model discussed in the previous section,
which was fitted to reproduce the GM configurations. We
applied the SD approach similar to that of Tranchida et al.,
as realized in the LAMMPS code [17], to investigate the self-
diffusion in bcc Fe (see also the following subsections). In this
coupled approach, the atomic energy contains three different
contributions:

Ui = Uclas −
∑

j �=i

J (ri j )(sisj − |si||s j |), (6)

where the energy term Uclas is the classical contribution
from our ADP potential and J (ri j ) is the exchange coupling
between atomic spins si and sj located on sites i and j, re-
spectively. In this work, we used the function J (ri j ) offered
in Ref. [139]. The dynamics of spins follows the Landau-
Lifshitz-Gilbert equation [140].

The coupling of atomic and spin degrees of freedom in
Eq. (6) allows to take into account the magnetic excitations
as temperature increases. On the other hand, the simulated
properties of bcc Fe at low temperature (approximately at T <

0.5Tc, where Tc is the Curie temperature) are only slightly
affected by the SD contribution, as the second term in Eq. (6)
approaches zero.

The combination of SD and MD gives a qualitative repre-
sentation of Fe properties over a wide range of temperatures.
Figure 17(a) illustrates the dependence of the total magnetic
moment on temperature obtained from the SD simulation. The
simulation results show a somewhat less abrupt reduction of
the magnetic moment than in experiments due to the classical
nature of the simulated magnetic subsystem. Nevertheless, the
estimated Curie temperature for the simulated system (about
900 K) is close to the experimental value.

Figure 17(b) shows the dependence of specific heat (Cp)
on temperature obtained using the coupled MD + SD simula-
tions. The magnitude of Cp is significantly overestimated at
low temperature because of the classical description of the
magnetic subsystem. The value of Cp at T < 600 K should
be less than 30 J/K/mol, due to the quantum suppression of

FIG. 17. The results of the coupled MD-SD simulations. (a) The
dependence of the total magnetic moment on temperature (black
dashed line, experimental data; blue points, simulation results).
(b) The temperature dependence of specific heat (black dots, ex-
perimental data [141]; blue dashed line, MD simulation only; blue
dashed-dotted-dotted line, MD + SD simulation).

the magnetic excitation [142], which is consistent with the
predictions of the classical MD simulation. Nevertheless, the
divergence of Cp(T ) near the Curie temperature is reproduced
correctly.

It is important to note that the employed representation
of the spin subsystem leads to several limitations. First and
foremost, the spin magnitude is kept constant so no longitudi-
nal spin fluctuations are considered in the model. Second, the
exchange parameters J (ri j ) are also fixed and do not vary for
different atomic environments. Hence, the MD + SD simula-
tions of crystal defects are likely to provide only a qualitative
description. Specifically, for the monovacancy in α-Fe, atomic
spins around a vacancy differ only slightly from those in the
bulk lattice while much larger variations of the spin magni-
tude are expected for interstitial defects, grain boundaries, or
surfaces.

C. Self-diffusion in bcc and fcc Fe

The self-diffusion coefficient (Dself ) may be considered as
a product of vacancy concentration (cvac) and single-vacancy
diffusivity (Dvac). To study bulk diffusion in bcc Fe, we cal-
culated the temperature dependencies of cvac and Dvac by
means of the combined MD + SD simulation using ADP. We
performed also MD-only simulation of bulk self-diffusion in
fcc Fe. The general methodology is similar to our recent study
of self-diffusion in Mo [108].

As the first step, we carried out the MD simulation of the
vacancy diffusion. The simulated supercells contained 1999
and 3999 atoms for the bcc and fcc phases, respectively. Each
calculation was performed in the NV E ensemble, the volume
was adjusted to obtain zero pressure. The value of Dvac was
estimated from the squared displacements (δr2

i ) for all N
atoms in the system during the simulation time t using the
following equation:

Dvac =
N∑

i=1

δr2
i /6t . (7)

A total MD time of 2 ns was found sufficient for a reli-
able determination of Dvac at high temperatures while lower
temperatures required much longer times (of up to 30 ns) to
achieve a sufficient number of jump events. The simulation
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FIG. 18. (a) Diffusivity of a single vacancy in bcc and fcc lattices
calculated at various temperatures. (b) Self-diffusion coefficients in
different structures: the experimental data for bulk self-diffusion in
bcc lattice [97,98] and fcc lattice [147,148] are shown by empty
symbols; the experimental data for GB self-diffusion [149–153] are
denoted by full black symbols; the lines correspond to the calculated
bulk diffusion coefficients; full blue symbols indicate results of GB
self-diffusion simulations.

results are shown in Fig. 18(a). For the bcc phase, the slope
of Dvac(T ) in Arrhenius coordinates is close to Em

vac computed
using NEB. Similar values of diffusion coefficients obtained
in MD-only and MD + SD simulations indicate a small
influence of the magnetic excitations on vacancy mobility, at
least in the adopted SD model.

As the next step, we estimated the formation entropy of
a vacancy S f

vac in the bcc crystal at T = 300 K using the
PHONOPY code [91]. This was done by computing phonon en-
tropies for two different simulated systems: Sid for defectless
crystal (with 432 atoms in a simulation cell) and Svac for crys-
tal containing a single vacancy (with 431 atoms in simulation

cell). The value of S f
vac = 2.1 kB, obtained as S f

vac = Svac −
Sid (431/432), agrees with the vacancy formation entropies
calculated for other bcc metals [108,143]. For a metastable
phase, such as fcc Fe, the calculation of S f

vac requires more
sophisticated methods. Thus, here we used S f

vac = 2.0 kB as
this value lies in the range of entropies calculated for other
fcc metals with comparable melting temperatures [144–146].

In the final part of this research, we calculated the vacancy
formation energy at different temperatures in the spirit of
our previous work [108]. The classical MD reproduced the
temperature-independent values of E f

vac for bcc and fcc Fe
(2.05 end 1.92 eV). On the other hand, the coupled SD+MD
simulations revealed a strong dependence of E f

vac on T for
α-Fe. At low temperatures (T < 300 K), the calculated E f

vac ≈
2.08 eV is almost equal to the value calculated in classical
MD. However, the spin disordering at heating causes a gradual
increase of E f

vac, with a maximum value of 2.39 eV at T ≈
860 K. Further heating leads to decrease in E f

vac to 1.94 eV at
T ≈ 1200 K. This value may be considered as the vacancy
formation energy in a PM state. Based on the performed
calculations we estimated the vacancy concentration using the
following equations:

cvac = exp [−Fvac(T )/kBT ],

F f
vac = E f

vac − T S f
vac,

where F f
vac is free energy of a vacancy. To trace the dependence

F f
vac(T ), we performed a thermodynamic integration based on

the calculated E f
vac at various temperatures (see work [108] for

detailed description of the method).
Figure 18(b) shows the final summary of predicted self-

diffusion coefficients Dself = Dvac exp [−F f
vac(T )/kBT ]. For

fcc Fe, the obtained MD results agree well with the ex-
perimental data [147,148]. For bcc Fe, the lack of SD
contribution leads to underestimated Dself compared to exper-
iments [97,98]. As discussed above, the magnetic excitations
lead to enhancement of the diffusion coefficient in the bcc
phase (and deviations from the Arrhenius behavior) due to
the temperature-dependent value of E f

vac. It is clearly seen
that the coupled MD + SD modeling allows to describe the
experimental data on self-diffusion in α-Fe more accurately
than pure classical MD. However, the perfect representation
of self-diffusion in PM state was not achieved due to the
limitations of the model.

In addition to bulk diffusion, we investigated also self-
diffusion for several GBs in bcc Fe, similarly as in our recent
study for other Fe potentials [103]. Such modeling demands
to simulate approximately 50 000 atoms for t ∼ 10 ns (107

steps). The results of the simulations using our ADP model are
shown in Fig. 18(b) together with the available experimental
data [149–153]. The ADP results are consistent with those of
our previous work [103], namely, that the GB self-diffusion
is mostly governed by self-interstitial atoms in contrast to the
vacancy-mediated bulk diffusion.

D. Diffusion of SIA and diSIA

An important application of atomistic simulations is stud-
ies of radiation damage. We applied the ADP potential to
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investigate the finite-T behavior of SIA and di-SIA defects,
which are known to play a key role in the irradiated materials
[25,95].

Irradiation of a material and subsequent annealing accom-
panied by measurements of electrical resistivity recovery can
provide primary information about key processes related to
defect migration. According to the pioneering work of Takaki
et al. [154], it is possible to identify several basic stages of
the resistivity recovery in α-Fe. For the current discussion,
two stages are especially important: IE and I2 taking place
at T = 124–144 K and T = 164–185 K, respectively. The
IE stage was attributed to the recombination of uncorrelated
Frenkel pairs (consisting of SIA and vacancy). Thus, the ac-
tivation energy associated with the stage IE is interpreted as
the migration energy of SIA. The I2 stage was explained to
be related to the di-SIA migration. The following migration
energies were originally proposed [154]: 0.27 ± 0.04 eV and
0.42 ± 0.03 for the migration of SIA and di-SIA, respectively.
A compilation of additional measurements [155,156] leads
to a more precise estimation for the SIA migration energy:
Em

SIA = 0.30 ± 0.02 eV.
The SIA diffusion in bcc Fe is expected to take place via

a translation-rotation nearest-neighbor jump mechanism pro-
posed by Johnson [157]. DFT calculations [158,159] predict a
slightly overestimated value of Em

SIA = 0.34 eV in comparison
with the experimental data while most classical interatomic
potentials underestimate the migration barrier [25,160,161].
Only three classical potentials, namely, Men03, Mar07, and
Chi11, predict the SIA migration energy to be about 0.30 ±
0.01 eV [25,26].

We performed several MD simulations using ADP to inves-
tigate the diffusion of a single SIA defect in a cubic supercell
containing 687 atoms. The diffusion coefficient for a given
temperature was estimated from the squared displacement
of the SIA defect tracked during the calculation run. The
obtained simulation results are shown in Fig. 19(a). The cal-
culated Em

SIA for the ADP model equals 0.17 ± 0.01 eV. Even
though the potential underestimates the migration energy, it
correctly reproduces the diffusion mechanism proposed by
Johnson [157].

The diffusion of di-SIA is much less studied than the SIA
diffusion. As discussed above, the DFT calculations [5,25]
revealed that the most stable state of di-SIA is the non-
parallel NPC configuration. Unfortunately, to investigate the
migration of this di-SIA configuration is computationally too
demanding for DFT. MD simulations were also not able to
shed light on the diffusion details because almost all classical
potentials do not predict the NPC but the 〈110〉 dumbbell
configuration as the di-SIA ground state. In some cases, such
shortcoming leads to a higher mobility of di-SIA than SIA
mobility [162]. Among all models tested in this work, only
MCM11, ADP, and GAP18 potentials predict correctly the
energy hierarchy of di-SIA configurations. For ADP, the en-
ergy difference between the two lowest di-SIA configurations
is equal to 0.07 eV, which is close to the DFT results [25].

The computed temperature dependence of the di-SIA diffu-
sion coefficient is plotted in Fig. 19(a). In addition, Fig. 19(b)
presents an example of the squared displacements as a func-
tion of time. It is interesting to note that the di-SIA diffusion
may be considered as a combination of thermally activated

FIG. 19. SIA and di-SIA diffusion in α-Fe. (a) Calculated dif-
fusion coefficients of SIA and di-SIA at different temperatures. The
values of migration energies at low temperature are listed as well.
(b) The squared displacement of di-SIA at T = 350 K. The arrows
indicate configurations of the defect in the NPC and 〈110〉 states.

transition from NPC to the 〈110〉 configuration, and migration
of the latter one. The estimated migration energy of di-SIA
equals to 0.35 eV, which is close to the experimental estima-
tion.

The performed MD simulations reveal that the ADP can
qualitatively reproduce the behavior of interstitial defects at
finite temperatures. Despite the underestimation of Em

SIA, our
model predicts correct diffusion mechanisms and shows a
reasonable difference between the migration energies of the
point defects.

VI. CONCLUSION

In this work, we presented an angular-dependent inter-
atomic potential developed primarily for large-scale atomistic
simulations of crystal defects in Fe. The aim was to utilize
advanced fitting techniques to optimize the potential param-
eters based on large training set of DFT energies and forces
to achieve the best balance between accuracy and computa-
tional efficiency. We carried out a detailed validation of the
developed model together with a number of other potentials
for Fe in order to critically assess the application range and
limitations of each model.

This validation clearly showed that despite extensive effort
in the past decades, there exists no universally applicable in-
teratomic potential for Fe. Even sophisticated models such as
tight-binding based magnetic BOP, which contains an explicit
treatment of magnetic interactions, or machine-learned GAP,
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which was trained on a large DFT data set, do have limitations.
Despite not being perfect, the ADP potential provides a robust
description for a broad range of properties of bulk iron as well
as its crystal defects while allowing to carry out large-scale
MD simulations up to 107 atoms and 100 ns. Our future
activities will focus on the coupling of classical and spin
dynamics as well as further extensions to multicomponent
systems [163].
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APPENDIX A

In this Appendix, we present another ADP parametrization
for description of Fe in the NM state. The construction was
generally the same as for ADP potential in the GM state,
with the differences only in the reference data. The reference
forces used for the fitting of the NM potential are reproduced
with a similar accuracy as for the GM potential in Fig. 2.
The main purpose of the NM potential is its coupling with
the spin-dynamics simulations where the dynamics of atoms
is described by the ADP potential while the spin interactions
are treated by the SD equations [15,16]. In this coupled sim-
ulation, the energy of the atomic system is described as a
combination of magnetic (M) and nonmagnetic (NM) contri-
butions: U = UNM + UM.

Figure 20 shows the E -V curves for several NM phases
obtained by the NM ADP potential and DFT calculations.
The cohesive energy of the NM fcc phase is equal to
4.18 eV/atom. The calculated E -V curves agree well with the
reference DFT results [10,23]. This potential can be down-
loaded from NIST database of interatomic potentials [64,65]
just like the ADP potential for the GM state. In addition
to the spin-dynamics simulation, the joint use of the two
developed angular-dependent potentials allows to estimate
magnetic energy of various crystal defects and states. A com-
parison between the energies calculated for the same atomic

FIG. 20. Energy-volume curves for different NM phases (ener-
gies are plotted with respect to the ground energy of the FM bcc
phase): Blue dashed lines, fcc; solid black lines, bcc; red short dashed
lines, C15. Thick and thin lines correspond to NM ADP and DFT
[10,23], respectively.

configuration in GM and NM states allows to estimate the
magnetic contribution in the energy.

APPENDIX B

Figure 21 illustrates E (V ) curves for four interatomic po-
tentials over a broad range of volumes. The low cohesive
energy of the GAP18 model originates from the nonphysical
behavior at V > 15 Å3/atom.

FIG. 21. The energy-volume curves for four interatomic models
over a broad range of volumes.
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