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Many interesting systems, such as interfaces, surfaces, grain boundaries, and nanoparticles, contain so many
atoms that quantum-mechanical atomistic simulations become inconvenient or outright impossible. It is therefore
desirable to develop accurate and flexible general-purpose interatomic potentials to make it possible to explore
the potential energy surface of such structures. In this work we generate a neural-network potential through
charge equilibration technique (CENT) for TixZr1−xO2 with 0 � x � 1. Optimized symmetry functions for
multicomponent systems make it possible to train the potential on less than 10 000 diverse structures containing
different cation ratios x, from pure TiO2 to ZrO2, in free and periodic boundary conditions in the framework
of density functional theory. The combination of the CENT potential with the symmetry functions generates a
flexible and reliable method to reproduce the complexity of the energy landscape of these mixed materials with
different boundary conditions at zero pressure. The reliability and transferability of the potential are verified by
calculating some properties of bulk and slab configurations. Moreover, in order to investigate the performance
of potential for different crystal phases and cluster configurations which are not included in our training data
set, we performed a crystal structure search by minima hopping method. Beside reproducing known results in
agreement with DFT calculations, we discovered novel crystal structures for bulk TiZr3O8 and TiZrO4, as well
as for small clusters and ZrO2 nanoparticles.
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I. INTRODUCTION

Atomistic simulations are recognized as an important tool
to model and simulate material properties. Methods based on
ab initio calculations like density functional theory (DFT) [1]
can accurately predict properties in many cases, but are com-
putationally expensive and therefore remain restricted to small
cells with a few hundred atoms. This represents a severe
limitation for the simulation of complex systems, like disor-
dered structures, interfaces, and nanoparticles. On the other
side, until recently, classical interatomic potentials struggled
to reproduce DFT results in most cases. The field has changed
through the introduction of artificial neural networks (ANN),
which are very promising tools to generate reliable and fast
interatomic potentials [2–6]. In recent years, ANN force fields
have made tremendous progress, and are very good at mim-
icking DFT forces and energies at much lower computational
cost.

The high-dimensional ANN method introduced by Behler
and Parrinello is one of the most promising approaches for
constructing the potential energy surface (PES) of materials
and has been successfully employed in different applica-
tions [5]. In this model, a feed-forward ANN is built to
interpolate the total energies as a function of environment de-
pendent atomic descriptors through a learning process from a
database obtained by electronic structure calculations. In most
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ANN methods, the atomic descriptors are directly mapped to
the atomic or total energies through the neural network; in
this way, any physically interpretable connection is lost. In
2015, an alternative method based on a charge equilibration
scheme was introduced to interpolate the electrostatic energy
of systems with ionic interactions [7]. In this method, the
charge equilibration via neural-network technique (CENT),
only the environment-dependent electronegativity of atoms is
interpolated by an ANN, and fed to an electrostatic model
of the total energy. In this way, the total energy retains an
expression which is interpretable with physical argument, and
the black-box-like ANN interpolation is only used to connect
the electronegativity of an atom to its environment. The relia-
bility and transferability of CENT has been tested in different
applications [8] and this model has been used to predict new
crystal structures for ionic materials like ZnO [9], TiO2 [10],
and SrTiO3 [11].

In the CENT potential, like in any ANN-based interatomic
potential, the local atomic environment is described by
environmental atomic descriptors, called symmetry functions.
In the original form of the symmetry functions, introduced
by Behler et al. [12,13], the number of symmetry functions
increases quadratically with the number of atomic species.
This becomes quickly problematic for multicomponent
systems. As a result, the ANN potentials developed so
far for multicomponent materials, while showing good
transferability and accuracy, have been mostly applied to
homogeneous systems and at fixed stoichiometry [11,13–15].
Only few studies show machine learning potentials at

2475-9953/2021/5(6)/063605(14) 063605-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9573-7010
https://orcid.org/0000-0002-7918-0790
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.5.063605&domain=pdf&date_stamp=2021-06-29
https://doi.org/10.1103/PhysRevMaterials.5.063605


ROSTAMI, SERIANI, GHASEMI, AND GEBAUER PHYSICAL REVIEW MATERIALS 5, 063605 (2021)

FIG. 1. A schematic representation of the CENT model.

varying stoichiometries, for amorphous LixSi [16],
MnxGey [17], LixMn2O4[15], and (CoxMn1−x )3O4

compounds [18] just in specific lattice structures. The
difficulties in generating ANN potentials for multicomponent
materials stem from a large number of atomic descriptors,
and also from the huge number of diverse structures
needed as a reference database for the training process.
Systems containing different species involve very diverse
bonding between atoms and different atomic coordinations,
resulting in a very complex energy landscape. Therefore, to
generate a general potential for such a system, sampling of
different parts of the complex energy surface is needed.
As a result, it is common to use a large number of
configurations for training and validation, even for binary
compounds with fixed stoichiometry. Moreover, the root
mean square error (RMSE) decreases linearly with the
number of reference configurations [19]. So it would be
useful if a method can suggest conditions which require
many smaller databases to decrease computational costs

for generating the reference data and preparing the ANN
potential.

Along this line of thought, Rostami et al. [20] introduced
optimized symmetry functions with atom-dependent weights,
which made the number of input nodes linear with respect
to the number of atomic species. These descriptors over-
come some of the problems of symmetry functions, and have
been successfully applied to alkali-halide systems MX with
six chemical species (M = {Li, Na, K} and X = {F, Cl,
Br}) [20]. Here we show that a combination of the CENT
method with the symmetry functions by Rostami et al. con-
stitutes a powerful tool to describe multicomponent materials,
which is accurate and generalizes well. To demonstrate its
capabilities, we apply it to materials of considerable scien-
tific and technological interest. In this work we construct an
ANN potential for TixZr(1−x)O2 with 0 � x � 1 for free and
periodic boundary conditions. The potential is trained on less
than 10 000 DFT reference energies of diverse structures in
different boundary conditions. Although our training data set
is much smaller than in similar works, our developed ANN
potential shows to be very reliable to reproduce different
features of materials with a reasonable error with respect to
the DFT reference results. We investigate its flexibility and
transferability for a variety of complex systems like mixed
bulk, interfaces, surfaces, clusters, and nanoparticles. More-
over, one of the important aspects of this potential is its ability
to predict new material phases. Employing the minima hop-
ping method (MHM) [21,22], we discover new structures for
mixed bulks, small clusters, and ZrO2 nanoparticles.

II. MATERIAL BACKGROUND

Titanium dioxide (TiO2) and zirconium dioxide (ZrO2) are
important materials for a wide range of applications thanks

(a)

(b)

(c)

FIG. 2. Example of structures used for training and validation process in (a) bulk, (b) slab, and (c) free boundary conditions. In all figures,
green, blue, and red balls indicate Zr, Ti, and O, respectively.
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TABLE I. Number of configuration in the database and root
mean square error on energy for different x in TixZr(1−x)O2.

RMSE(E)
No. of structures (meV/atom)

Group Training Validation Training Validation

x = 0 1444 267 6 7
x = (0, 0.33] 1868 285 7 8
x = (0.33, 0.66) 1799 302 8 8
x = [0.66, 1) 1636 266 7 8
x = 1 1723 270 6 6
Total 8470 1390 7 7

to their excellent physical and chemical properties. They are
widely used, also at industrial level, either as pure materials,
or, more often, with added impurities or in close contact with
other compounds, which play significant roles in determining
the performance of these materials.

These mixed compositions are crucial in many applica-
tions, like perovskite solar cells [23–25], dye-sensitized solar
cells [26–28], and metal-insulator-metal (MIM) capacitors
used in memory storage applications [29–31]. Instances of
recent work comprise the investigation of the effect of Zr
doping on stabilization and mechanical properties TiO2 struc-
tures [32–34], enhancing current density of perovskite solar
cells using using TiO2/ZrO2 layers [23], and enhanced photo-
catalytic performance of TiO2 by depositing ZrO2 [35,36].

The degree of intermixing of the two compounds can vary
strongly; as a consequence, much work has been devoted to
explore this variety, to design and synthesize appropriate sys-
tems for the different applications, ranging from well-defined
TiO2/ZrO2 interfaces [23–25,37], and coating one of these
materials on substrates of the other one [26,32,38–40], to
doping with small fraction of the cations [27,33,34,41,42]
and completely mixed compositions [23,28–31,35,36,43–46].
Even fully mixed oxides display a variety of bonds, specially
regarding Ti-O-Zr edges, and atomic coordinations, all of
which affect chemical and electronic properties. Atomistic
simulations can help to understand the underlying mechanism
of formation of these structures and to design novel materials
with useful properties.

ZrO2 appears in three main polymorphs: a monoclinic
structure, stable at low temperature, which converts to a
tetragonal phase above 1170 ◦C; at 2370 ◦C a cubic phase
forms [47]. The well-known structure of pure TiO2 at low
temperature is anatase and a phase transition to rutile occurs in
range 400–1200 ◦C [48]. More scarce information is available
on the mixed crystals: one reported phase for TixZr(1−x)O2,
ranging from x = 0.43 to 0.67, is the α-PbO2-type struc-
ture with space group Pbcn where Ti and Zr are distributed
randomly in the two cation sites [49–52]. Moreover, x-ray
diffraction suggests the existence of crystallized anatase-type
phases for x < 0.5 [41,53–57], and amorphous phases for
other ratios. In addition to these structures, the crystallo-
graphic database of Materials Project reports another phase
with space group I42m for TiZrO4 [58]. No other structures
can be found in literature.

Also theoretical work on the mixed phases is much more
scarce than on the well-studied TiO2 and ZrO2 structures. In
different works, the band gap of some mixed configurations
containing four different TiZrO4 structures in Pbcn space
group symmetry, Zr doped TiO2, and ZrO2 by Ti doping
have been determined by means of DFT calculations [59–61].
Recently, Ismail and his co-workers simulated a bilayer of
cubic ZrO2 on a TiO2 substrate [62]. Also the formation of
mixed Zr-O-Ti bonds are briefly studied by simulation of the
interface of two very thin slabs [63]. Clearly all the work
published to date is far from providing a systematic view of
the energy landscape of the mixed compositions. The high
computational cost of such an investigation has been so far
the limiting factor, and in the following we are going to show
how CENT overcomes these limitations in a fast and accurate
way.

III. METHOD

The CENT potential is a neural-network force field. In
typical high-dimensional neural-networks models, the neural
network accepts symmetry functions, which contain informa-
tion on the atomic coordinates [12], as inputs, and evaluates
directly the total energy as output. In this way, little physical
information is encoded in the functional form of the energy.
On the contrary, in CENT the neural network itself is not used
to directly evaluate the energy, but to describe an atomic quan-
tity, the electronegativity [7], which enters in the expression
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FIG. 3. Comparison of the DFT and CENT energies for x = 1, x = 0.5, x = 1 in TixZr(1−x)O2. Filled and empty circles indicate the
validation and training data, respectively.
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TABLE II. Formation energy and lattice information of seven
different compositions obtained by CENT and DFT calculation:
ZrO2 in monoclinic (ZrO2_m) and tetragonal (ZrO2_t) phases,
TiO2 in anatase (TiO2_a) and rutile (TiO2_r) phases, two reported
structures for TiZrO4 (TiZrO4_s1 and TiZrO4_s2), and a novel con-
figuration of TiZrO4 in anatase crystal (TiZrO4_at). All energies are
printed in eV/atom and lattice constant are in Å.

Bulk (space group) CENT DFT Error

ZrO2_m Energy −829.745 −829.747 0.002
(P21/c) a 5.190 5.187 0.06%

b 5.235 5.238 0.05%
c 5.367 5.379 0.23%

α, γ 90 90
β 99.90 99.68
B 149.98 148.77 1%

ZrO2_t Energy −829.708 −829.710 0.002
(P42/nmc) a 3.616 3.619 0.08%

b 3.616 3.619 0.08%
c 5.300 5.281 0.37%

α, β, γ 90 90
B 174.76 173.02 1%

TiZrO4_at Energy −875.114 −875.118 0.004
(P − 1) a 3.955 3.972 0.43%

b 5.795 5.794 0.01%
c 7.801 7.811 0.13%
α 109.59 109.69
β 90.03 90.09
γ 109.86 109.88
B 148.31 150.91 2%

TiZrO4_s1 [58] Energy −875.093 −875.094 0.001
(P1) a 4.818 4.822 0.09%

b 5.624 5.651 0.46%
c 10.155 10.149 0.01%
α 91.0569 90.5687
β 91.7157 91.4902
γ 90.19 90.2256
B 273.91 274.95 0.5%

TiZrO4_s2 [58] Energy −875.073 −875.076 0.003
(P21212) a 4.740 4.761 0.44%

b 5.111 5.125 0.27%
c 5.700 5.699 0.01%

α, β, γ 90 90
B 189.77 184.18 3%

TiO2_a Energy −920.516 −920.518 0.002
(I41/amd ) a 3.799 3.798 0.02%

b 3.799 3.798 0.02%
c 9.719 9.700 0.19%

α, β, γ 90 90
B 189.36 187.58 1%

TiO2_r Energy −920.483 −920.486 0.003
(P42/mnm) a 4.634 4.642 0.18%

b 4.634 4.642 0.18%
c 2.962 2.963 0.05%

α, β, γ 90 90
B 240.56 211.94 13%

FIG. 4. TiZrO4 structures.

of the total energy which has a clear physical interpreta-
tion. Indeed, the expression is based on the electronegativity
equalization method (EEM) [64], which is a second order
expansion of total energy with respect to atomic charges. As a
consequence, the CENT energy is given by

Utot({qi}) =
N∑

i=1

(
E0

i + χiqi + 1

2
Jiiq

2
i

)

+ 1

2

∫∫
ρ(r)ρ(r′)
|r − r′| drdr′, (1)

where E0
i are the energies of isolated atoms, qi are the atomic

charges, Jii are the element-dependent atomic hardnesses, and
χi is the environment dependent electronegativity of atom i.
The charge density of the system ρ(r) is a superposition of
Gaussian charge densities on individual atoms which define
by the following equation:

ρi(r) = qi

α3
i π

3/2
exp

(
−|r − ri|2

α2
i

)
, (2)

where αi is the Gaussian width of each atomic type. In the
EEM model, the charges are allowed to flow among other
atoms which lead to a equilibrium. Therefore, the atomic
charges can be determined by minimizing the total energy of
Eq. (1) with respect to qi with a constraint that

∑
i qi = qtot:

∂Utot

∂qi
= χi + Jiiqi + gi = 0, ∀i = 1, . . . , N, (3)

where the gradient gi is given by

gi =
∫

∂ρ(r)

∂qi
dr

∫
ρ(r′)

|r − r′|dr′. (4)

The CENT potential has improved the original EEM model
through the assumption that the electronegativity explicitly
depends on the atomic environments. The role of the ANN is
to determine the functional relation of the electronegativity of
an atom with the local environment given by the positions of
the neighboring atoms. In this way, a physically interpretable
form of the total energy is retained while harvesting the ca-
pabilities of the neural network. In Fig. 1, the whole structure
of this feed-forward model is depicted. The atomic positions
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FIG. 5. Relative error on volumes and energies of our found structures with respect to PBE relaxed structures. Different colors in panels
indicate the different ratio of x in TixZr(1−x)O2 formula.

are encoded into environment descriptors, the symmetry func-
tions {Gi} [12], which are the input layer of the ANN. To
explore similarities of structures, we use optimized symmetry
functions prepared for multicomponent systems which have
a linear complexity with the number of different chemical
species, as introduced in Ref. [20]. In these descriptors, the
local environment of each atom is described by functions con-
taining parameters and weights which depend on the chemical
properties of atoms in its neighborhood. The radial G2

i and
angular G5

i symmetry functions are given as

G2
i =

∑
j

ω je
−η j (Ri j−Rs )2

fc(Ri j ), (5)

G5
i = 21−ζi

∑
j,k

ωi jk (1 + λi cosθi jk )ζi e−(η j R2
i j+ηkR2

ik )

× fc(Ri j ) fc(Rik ), (6)

where ζi, λi, and ηi are the parameters which depend on the
properties of atom i, while fc is a cutoff function. Both atoms
j and k are in the neighborhood of atom i in a cutoff radius.
The weights ω j and ωi jk are governed by the electron affinities
of the involved atoms, such as

ω j :=
{−1 if atom j is a cation,

+1 if atom j is an anion,

ωi jk := ωi(ω j + ωk ) − 1. (7)

In the present work, the ANN architecture contains two
hidden layers and an output associated with the atomic
electronegativity χi. The different layers of ANN are fully
connected with weight parameters which have to be adjusted
in order to find a correct energy landscape of the systems. In
general, the expression of the atomic electronegativity with
51-8-8-1 architecture is given by

χi = f 3
1

{
b3

1+
8∑

l=1

a23
l1 f 2

l

[
b2

l +
8∑

k=1

a12
kl f 1

k

(
b1

k +
51∑
j=1

a01
jk G( j)

i

)]}
,

where ai j
lk and bl

k are ANN weights which have to be optimized
during the training process. A hyperbolic tangent activation

function f l
k is used for all layers. Furthermore, we employ

51 symmetry functions G( j)
i including 8 radial and 43 angular

functions. The goal of the training process is to minimize the
cost function � with respect to ANN weights. In the current
implementation of the CENT potential, the learning occurs
through the reference energies ERef and the forces are used to
evaluate the performance of the method for reproducing the
derivative of the energy with respect to the space coordinate.
Hence, the cost function is given by

� = 1

Nstructure

Nstructure∑
i=1

(
ERef

i − ECENT
i

Natom

)2

,

where ECENT is the CENT energy and Nstructure and Natom

are number of structures in the training database and num-
ber of atoms in each structure, respectively. For the fitting
process, the global extended Kalman filter method [65,66] is
employed.

Once χi are determined, in the charge equilibration process
the atomic charges qi can be obtained by minimizing the total
energy in Eq. (1) with respect to qi. The description of the
CENT method and symmetry functions can be found in more
detail in Refs. [7,20].

Summarizing, we use 51 symmetry functions (8 radial and
43 angular), and a neural network with 51-8-8-1 architecture.
As a comparison, the original ANN by Behler et al. used 282
symmetry functions consisting of 3 × 8 radial and 6 × 43 an-
gular symmetry functions to describe the atomic environments
in the presence of different elements in a ternary system [12].

In order to predict new structures, we employ the minima
hopping method (MHM) [21,22], which works with a se-
quence of short molecular dynamics simulations for escaping
from local minima, followed by a geometry optimization.
MHM ends up in local minima of the energy landscape and
occasionally meets saddle points.

A. Computational details

To generate a database required for training and testing
of ANN, we performed DFT calculations using the Perdew-
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FIG. 6. New configurations of TixZr(1−x)O2 predicted by the CENT potential. Below each structure is their index and in parentheses the
space group in Hermann-Mauguin notation is listed.

Burke-Ernzerhof (PBE) [67] exchange correlation functional
as implemented in the Quantum Espresso package [68]. Ul-
trasoft pseudopotentials [69] with a wave function energy
cutoff of 50 Ry, a charge density cutoff of 200 Ry, and dense
k-point meshes are chosen to converge the total energies to
within 1 meV/atom. The k-point mesh is set by choosing
the k-point density to be 0.04 Å−1. For simulating clusters
and surfaces, in nonperiodic boundary condition directions a
12 Å vacuum is employed to avoid the periodic effects. The
ionic relaxations are converged to the threshold on forces to
be 0.001 Ry/bohr. For all the calculations related to the ANN
potential and crystal structure prediction approach, we employ
a version of CENT and MHM method as implemented in the
FLAME package [70] which is a library of atomistic mod-
eling environments. At the end, the dynamical and thermal

properties are determined within the harmonic approximation
through the Phonopy package [71].

B. Preparation of reference data and training the network

The CENT potential has to be trained by a set of reference
structures with their energies and forces obtained in a frame-
work of DFT calculations, analogously to the force-matching
method used for conventional interatomic potentials [72,73].
To generate an appropriate and diverse database, we have
performed different cycles of potential generation. The initial
point was constructing a potential for pure ZrO2. First, we
generated random configurations in bulk and cluster phases;
moreover, starting from ZrO2 phases reported in crystallo-
graphic databases, we produced structures where the atoms
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FIG. 7. Comparison of the phonon dispersion for four different
compositions obtained by DFT (dashed lines) and CENT (solid
lines) calculations: TiO2 in anatase (TiO2_a), ZrO2 in monoclinic
(ZrO2_m), TiZrO4 in anatase crystal (TiZrO4_at), and TiZr3O8

(B136).
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FIG. 8. Comparison of the thermal properties for four different
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phase, TiZrO4 in anatase crystal (TiZrO4_at), and TiZr3O8 (B136).

were slightly dislocated with random distance from their re-
laxed position. All these structures were used to train an ANN.
Since our first generation of structures is not diverse enough
and random configurations are not reasonable for the ZrO2

energy landscape, the ANN potential could not work properly;
still, we used it for short-time molecular dynamic simulations
and geometry optimization with poor accuracy, to generate
new structures so as to improve the reference data set of the
following cycles. The new structures were selected either from
snapshots of MD simulations, or from structural search via
MHM, or by picking structures during the optimization path.
This procedure is then repeated in subsequent cycles.

Once a potential for pure ZrO2 was created, the diverse set
of structures for ZrO2 in bulk, slab, and clusters was used also
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TABLE III. Surface energies and root mean square error of ionic displacements of surfaces for ZrO2, TiO2, and TiZrO4, obtained by
DFT-PBE and CENT. The last columns show the atoms with largest displacement during geometry optimization from their bulk equilibrium
positions.

Surface energy �rrms ionic
(meV/Å2) relaxation (Å) Displacement (Å)

Bulk Face Thickness (Å) CENT PBE CENT PBE CENT PBE

ZrO2_m (001) 21 77 79 0.206 0.196 O −0.333 −0.288
ZrO2_m (010) 21 92 101 0.173 0.177 O 0.244 0.282
ZrO2_m (100) 20 91 88 0.091 0.099 O 0.080 0.112
ZrO2_t (001) 21 62 65 0.073 0.070 O −0.180 −0.176
ZrO2_t (100) 19 60 56 0.988 1.038 Zr −0.524 −0.561
ZrO2_t (101) 20 68 65 0.098 0.092 Zr 0.124 0.165
TiZrO4_al (001) 26 33 34 0.120 0.108 Ti 0.178 0.146

Zr −0.099 −0.132
TiZrO4_al (010) 30 61 65 0.040 0.058 Ti 0.133 0.109
TiZrO4_al (100) 23 37 35 0.161 0.192 Ti 0.339 0.376

Ti −0.317 −0.408
TiO2_a (001) 24 56 65 0.035 0.019 Ti 0.095 0.060
TiO2_a (100) 23 34 35 0.104 0.104 O −0.173 −0.202
TiO2_a (110) 16 65 63 0.179 0.184 Ti 0.310 0.307

as a starting point for structures of the mixed oxides. Thus,
instead of generating random structures for these oxides, we
took the ZrO2 structures and substituted a random number
of Zr by Ti, taking care to cover the whole range of mixing
ratios of ZrO2:TiO2. Since the bond lengths of Ti-O and Zr-O
are different, swapping Zr with Ti will generate an unstable
structure; for this reason, we selected 1000 structures and we
let them undergo a few steps of structural optimization with
DFT in order to create more reasonable reference data. Once
we generated an ANN for mixed TiO2/ZrO2, for the next steps
the geometry optimizations were performed by our CENT
potential to achieve acceptable bond lengths. Analogous to
the approach explained for producing the ZrO2 potential, after
eight cycles of improving the reference data set, we selected
9860 diverse structures to train our main CENT potential.
Some of our configurations are shown in Fig. 2. Our final
data set contains 7797 bulk and slab structures with sizes
from 12 to 72 atoms in their cell and 2063 clusters consisting
of 24 to 57 atoms. 86% of them were used for the training
process and the remaining 14% for validation of the ANN
potential.

The employed ANN architecture is 51-8-8-1, i.e., 51 sym-
metry functions (8 radial and 43 angular functions), and two
hidden layers each with eight nodes, and the one-node output
layer which produces the atomic electronegativity. The root
mean squared error (RMSE) of the energy drops below 7
meV/atom within around 27 epochs. In Table I the distri-
butions of error in training and validation set for different
ratios x in TixZr1−xO2 are listed. As illustrated, the highest
errors belong to combinations within x = (0.33, 0.66) where
the structures are more complex then in other groups. In Fig. 3
the CENT energies of TiO2, ZrO2, and TiZrO4 are plotted
against the DFT energies. In the panels, all data points for free,
bulk, and slab boundary conditions are separated with differ-
ent colors and the training and validation data are indicated
via empty and filled circles, respectively. As illustrated in the
figures, our data set continuously covers the range of energies

up to 0.7 eV above the lowest energy in each material group.
The results show a good agreement between the reference and
CENT energies.

Up to now we have shown that our CENT potential can
reproduce energies of a given data set; now its flexibility
and applicability should be examined for different structures,
not included in the database. In the following sections we
represent some structural and dynamical properties in bulk,
slab, and free boundary conditions.

IV. RESULTS AND DISCUSSIONS

A. Lattice constants

First, using the CENT potential, we compute the lattice
constant of the known structures of ZrO2, TiO2, and TiZrO4.
Table II contains energy and lattice information obtained by
PBE and CENT potentials for ZrO2 in monoclinic (ZrO2_m)
and tetragonal (ZrO2_t) phases, TiO2 in anatase (TiO2_a)
and rutile (TiO2_r) phases, and two reported structures for
(TiZrO4) with space group of P1 (TiZrO4_s1) and P21212
(TiZrO4_s1) [49,50,58]. Both TiZrO4_s1 and TiZrO4_s2 have
a similar α-PbO2-type structure in which Ti or Zr are substi-
tuted in cation lattice sites as shown in Fig. 4. We also add
a novel phase for TiZrO4, which is discovered in our crystal
structure search. This new configuration (TiZrO4_at) has an
anatase crystal, with a partial substitution of Ti through Zr, as
depicted in Fig. 4. Even if these structures are present in the
training database, still, they represent a small fraction of the
structures used in the training, and therefore it is important
to check that they are well described by the final potential. As
illustrated in Table II, for these phases the relative error on lat-
tice constant in comparison to PBE results is less than 1% and
the absolute error on energies for pure and mixed components
are less than 3 and 5 meV/atom, respectively. Our DFT-PBE
calculation verifies that our new structure TiZrO4_at is ener-
getically 20 meV/atom lower than the already reported phase
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for TiZrO4. Thus, already at this level, the potential shows
its usefulness by predicting a novel, hitherto unseen crystal
structure for TiZrO4.

To investigate the performance of CENT potential for
mechanical properties, we calculated the bulk modulus of
these seven compounds by fitting volume-energy data to the
Birch-Murnaghan equation of state. The values of the bulk
modulus B are listed in Table II and their corresponding
energy vs volume plots are presented in the Supplemental
Material (SM) [74]. Except the TiO2_r structure, the error
on the bulk modulus is less than 1% for our pure material
and less than 3% for our mixed systems. The energy/volume
plots show that the CENT results for all of our material in a
compressed situation is well fitted to the PBE and the error
on bulk modulus is mostly due to the error for energies in the
expanding state. So it indicates that our CENT potential works
better at higher pressures.

B. Predicting new phases

An appropriate potential should reproduce different parts
of the energy landscape apart from the vicinity of data points
involved in the training process. Therefore, to investigate
the flexibility of potential, we explored the potential energy
surfaces TixZr(1−x)O2 with (0 < x < 1) by applying a crystal
structure method to discover new phases.

We performed MHM for different ratios of Ti and Zr in
configurations consisting of 9 to 30 atoms in fully periodic
boundary conditions. Due to the diversity caused by using
different ratios of Zr and Ti atoms, we generate 60 categories
for all possible components from 9 to 30 atoms. In fact, substi-
tuting Ti or Zr in a cell containing n formula unit of MO2 (M =
Ti, Zr) we have n + 1 possible stoichiometric compounds. For
each category we carry out about ten different MHM searches,
with different initial configurations and with short-time sim-
ulations. In this way we discovered more than 50 000 new
different structures. It is a sign of the capability of the methods
that, even though only short-time simulations were employed,
we were able to find thousands of different configurations. Our
training and validation reference data contains 7797 periodic
phases, which are different from one another, but do not rep-
resent different phases, since, for example, many of them are
snapshots from the same MD simulation. As a consequence,
we can conclude that more than 90% of our found structures
are not included in the training process and are totally new and
untrained parts of the energy landscape. For this study we do
not mean to focus our attention on searching and finding all
global minima and stable structures of these mixed materials.
This number of new phases is sufficient for us to explain that
our potential is flexible enough to produce new forms of these
components.

As a further check, we took 460 of the novel structures
and optimized again by DFT-PBE. After full optimization
with DFT-PBE, 411 structures, i.e., 90% of the considered
structures, stayed in the same shape with a small deformation
in the lattice constants and atomic positions.

In Fig. 5 we plot the relative error of volume error on
energy and volume of these phases relaxed by the CENT
potential with respect to the PBE relaxed ones. In the fig-
ures we separate the difference cation ratio by colors and

indicate the structures with the largest error in each panel.
The related configurations together with some of our found
phases are depicted in Fig. 6. As shown in this figure, our
potential generates very diverse and complex structures with
different densities and even layered structures. As illustrated
in Fig. 6, the largest error in the volume for pure material
belongs to the layered structures B009 and B406. In the mixed
phases, the largest errors on energy and volume are associated
with complicated phases. For these relaxed structures, the root
mean square error of the CENT energy with respect to PBE
is 7 meV/atom, in the range of error in our training and
validation process. In total, the results show that the relative
error on volume of 92% of structures is less than 2% and the
energy difference of 87% of our found phases is less than 10
meV/atom.

C. Dynamical properties

For the next step of assessing the accuracy of CENT
potential, we evaluate the phonon dispersions. For this aim
we perform Phonopy package [71] which is based on the
finite-displacement method. Since for mixed structures the
phonon calculation needs a large number of displacements,
and the computations on supercells are computationally ex-
pensive, we just computed it for a few structures and found
a good agreement between PBE and CENT results. In Fig. 7
the phonon dispersion for our four important structures are
illustrated. We choose the global minima of pure materials
ZrO2_m and TiO2_a, and our found global state for equally
mixed component TiZrO4_at. We also pick a novel struc-
ture for TiZr3O8 with a high symmetry, with space group
215 (P − 43m), which is depicted as B136 in Fig. 6. For
these structures we generate 3 × 3 × 3 supercells for ZrO2_m
and TiZr3O8, 4 × 4 × 2 supercells for TiO2_a, and 4 × 3 × 2
supercells for TiZrO4_at. As we show in Fig. 7, the PBE
frequencies (dashed lines) are in good agreement with the
CENT results (solid lines), specially for low frequencies and
acoustic modes. Furthermore, all frequencies of TiZrO4_at
and TiZr3O8 are positive, showing that they are dynamically
stable at zero temperature.

From the phonon frequencies, thermal properties have been
calculated in the harmonic approximation. Free energy F , en-
tropy S, and heat capacity at constant volume CV are expressed
as

F = 1

2

∑
q,s

h̄ω(q, s)+ kBT
∑
q,s

ln{1− exp[−h̄ω(q, s)]/kBT },

S = −kB

∑
q,s

ln{1 − exp[−h̄ω(q, s)]/kBT }

− 1

T

∑
q,s

h̄ω(q, s)

exp[h̄ω(q, s)/kBT ] − 1
,

CV =
∑
q,s

kB

[
h̄ω(q, s)

kBT

]2 exp[h̄ω(q, s)/kBT ]

{exp[h̄ω(q, s)/kBT ] − 1}2
,

where ω(q, s) is frequency of different modes, and T and kB

are temperature and Boltzmann constant, respectively. The
thermal properties for mentioned structures are plotted in
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Fig. 8. The results show a good match between thermal prop-
erties obtained by CENT and PBE.

D. Surfaces

We investigated the accuracy of the CENT potential also
for surface properties, by considering low-index surfaces of
stable TiO2, ZrO2, and TiZrO4-al phases. The surface energy
for the relaxed surfaces were computed as

E = 1

2A
(Es − nEb),

where Es and Eb are the energies of the relaxed surface and
the energy per formula unit of the perfect bulk, respectively.
The factor 2 in the denominator comes from the fact that
the slab geometry includes two equivalent surfaces with area
A. As an indicator of geometric changes of the surface, we
calculated the root mean square of displacement of the atoms
with respect to their bulk positions. Low-index surfaces were
calculated for the anatase phase of TiO2 and for the tetragonal
and monoclinic phases of ZrO2. We considered also the (001),
(010), and (100) surfaces of the novel TiZrO4_at phase. Ta-
ble III contains the formation energy of different surfaces and
root mean square of atomic displacements. As the movement
of atoms close to the surface are different from the center
of slabs, we also listed the largest individual displacements
of each structure. The CENT potential can reproduce surface
geometry and energies from DFT. The largest errors belong to
the (101) facet of ZrO2_m and to the (001) facet of TiO2_a,
both being 9 meV/Å2. In both PBE and CENT, ZrO2_t (100)
is not stable; relaxation induces a deformation of the whole
slab and the appearance of a different phase.

E. Cluster

We tested the CENT potential also for the energy landscape
of clusters and nanoparticles. We applied MHM to explore the
energy landscape of the limiting cases (Zr2O4)n, (Ti2O4)n, and
(TiZrO4)n for n � 6. We expect the potential to be equally
accurate also at intermediate stoichiometries, but we limited
ourselves to these stoichiometries to limit the computational
cost.

The difficulty of finding new structures is that for ev-
ery n, there are n + 1 different combinations in the form of
(TiO2)m(ZrO2)n−m with 0 � m � n, and for each of them one
should perform several MHM jobs separately to be sure that
the entire PES is fully explored. At last, in consideration of the
errors of the CENT potential, all structures with energies 20
meV/atoms above the global minimum were optimized gain
by DFT to confirm the correct energetic ordering. Moreover,
for each combination, we need diverse initial configurations
for MHM runs. Indeed, for our multicomponent configuration,
swapping a Ti with Zr will generate a new configuration and
MHM needs so many steps to find and cross the appropriate
barriers through the path of exchanging these elements. To
avoid very long MHM runs, we increase the performance by
using different substitutions of Ti and Zr in initial structures.

In recent times, some studies have been done to inquire
about the global minimum of ultrasmall clusters of ZrO2 and
TiO2 [75–85]. Structural search for (Zr2O4)n, (Ti2O4)n with
our potential predicted all global minima for n � 5, in agree-

ment with the findings of Ref. [84]. Moreover, for (Ti2O4)6

and (Zr2O4)6 we found structures which have a lower energy
than the global minima reported in the literature for these
clusters. For both (Ti2O4)6 and (Zr2O4)6, our new lowest
energy configurations have energies about 5 meV/atom lower
than the global minimum listed in Ref. [84]. All found struc-
tures by ANN are again optimized by DFT and the energies
and configurations are reported. The atomic positions of all
structures are listed in the SM [74]. Clusters of ZrO2 and
TiO2 display a large variety of structural features, but, still,
the CENT potential can deal with them reasonably well. We
would like to note that the smallest cluster we used in our
training data set has 24 atoms, and no structures of this small
size were included in the training.

The low-energy clusters of (TiZrO4)n resemble those of
either TiO2 or ZrO2, with swapped cations. For n = 1, 2,
and 5, the clusters of both TiO2 and ZrO2 are built with the
same construction and as well we can therefore also find
similar clusters for (TiZrO4)n. The predicated global state
for n = 3 and n = 4, 6 are inherited from TiO2 and ZrO2

clusters, respectively. As shown in Fig. 9, every substitution of
elements can change the energies and the position of elements
in configurations are significantly important. Here we present
just a few representative configurations as examples, however
our structural search discovered several identical configura-
tions differing by permutation of cations. MHM predicts a
variety of possible configurations; some of the high-symmetry
clusters are illustrated in Fig. 9.

F. Nanoparticles

To investigate the performance of our potential for
nanoparticles (NPs), we generated some well-known stable
structures of TiO2 and ZrO2 and optimized them with the
CENT potential. We generated our nanoparticles from tetrag-
onal ZrO2 phase and anatase TiO2 by cutting {101} surfaces,
which are the most stable surfaces for these materials [86–89].
Consequently, stoichiometric NPs for TiO2 and nonstoichio-
metric NPs for ZrO2−x can be shaped. The properties of these
NPs have been investigated by DFT in other studies [90–97]
which we have used to benchmark our results.

The TiO2 NPs have an octahedral shape; the size along
axes perpendicular to its mirror plane is almost twice of other
axes and is terminated in a single O on the top. The optimized
NPs via CENT are in good agreement with PBE results, with
very slight expansion in the top octahedrals along the longest
axes (the final structures are presented in the SM [74]). The
{101} truncation of tetragonal ZrO2 can generate nonstoichio-
metric ZrO2−x structures which can be made stoichiometric
by removing some Zr atoms from corners of octahedrals.
The nonstoichiometric structures are particularly interesting,
because these configurations are not present in the training
database and therefore provide a stronger test of transferabil-
ity for our CENT potential. Zr19O32, Zr44O80, Zr85O160, and
Zr146O280 have been considered. By relaxation of Zr44O80,
Zr85O160, and Zr146O280, novel structures are obtained, which
are not reported in the literature [90–94]. In Fig. 10 these
novel configurations are illustrated. The novel structure of
Zr44O80 [Fig. 10(c)] differs from the one reported in the lit-
erature [Fig. 10(b)] by the displacement of atoms on the four
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FIG. 9. Different clusters for (Ti2O4)n, (Zr2O4)n, and (TiZrO4)n for n = 1–6. In all structures, green, blue, and red spheres belong to Zr, Ti,
and O elements, respectively. The squares indicate the global state of each size and the red and dashed ones belong to our new found clusters
and already reported ones, respectively. The number in parentheses shows the relative energy with respect to the global minimum in each size
in meV/atom. Stars illustrate the already reported clusters.
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FIG. 10. The nanoparticles of ZrO2−x . All structures are presented in top and side views. Two structures (a) and (b) in the dashed box are
already reported in other works and the rest are our predicted configurations.

corners of the octahedrals. DFT-PBE relaxation confirms that
all these structures are local minima; the new configurations
Zr44O80 and Zr85O160 lie 22 and 30 meV/atom, respectively,
lower in energy than the known ones. The structures are re-
ported in the SM [74].

Here we just present optimized structures starting from a
clean cut of bulks and the results show that CENT potential
predicts structures which are energetically are more favorable
than the already reported ones. The facets of octahedrals are
chosen from the stable surfaces of ZrO2 and due to starting
from symmetric structures, the DFT method gets stuck in a
local minimum and could not find other basins with lower
energies. However, small deformations of the original config-
uration and breaking the symmetries on edges may lead to
new local minima with lower energy. Since DFT calculations
for systems with many atoms are computationally expensive,
it does not allow us to explore many such low-symmetry
constructions; as a consequence, the ANN method plays an
important role to predict novel structures.

V. CONCLUSIONS

We generated a CENT interatomic potential for the mixed
oxides TixZr(1−x)O2 with 0 � x � 1 which can reproduce the
energy landscape of these materials in all boundary condi-
tions. The database for the training and validation of the
potential contains only 9860 structures in different boundary
conditions and mixing conditions; this is a smaller data set
than those used in the literature, even for pure materials. The
key factor enabling the use of such a small training data set

is the employment of symmetry functions which have been
recently developed for multicomponent systems [20]. The
potential has been validated by comparing bulk and surface
properties with the corresponding DFT-PBE results.

To further test the capabilities of the CENT potential,
we applied it in the search of novel crystal structures, in
combination with the minima hopping method. The potential
successfully predicted more than 50 000 structures which can
be either a local minimum or a saddle point. Out of these,
we selected 400 low-energy structures and performed a direct
comparison with DFT-PBE calculations; the error on the en-
ergy is in the same range as the error in the training process,
further testifying excellent transferability of the potential. As
a result, we found a new stable phase for TiZr3O8 (B136)
and also a novel anatase type structure for TiZrO4 which is
energetically lower in energy than other reported phases in
crystallography databases. Moreover, in structural prediction
for small clusters, we found new global minima for (ZrO2)12

and (TiO2)12 and also global state and novel structures for
(TiZrO4)n for n = 2–6. Finally, we found that structural mod-
ifications of some ZrO2 nanoparticles lead to their further
stabilization.

In conclusion, we have developed a CENT interatomic
potential for oxides of titanium and zirconium that reproduces
the energy landscape in a wide range of situations, such as
bulk mixed oxides, interfaces, surfaces, clusters, and nanopar-
ticles, for any ratio of TiO2 and ZrO2 and even for complex
structures involving unusual Zr-O-Ti bonds. This potential
creates unprecedented possibilities to simulate complex in-
terfaces and nanostructures of TixZr(1−x)O2 at the atomistic
level.
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