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Capillary control of collapse in soft composite columns
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Euler buckling is the elastic instability of a column subjected to longitudinal compression forces at its
ends. The buckling instability occurs when the compressing load reaches a critical value, and an infinitesimal
fluctuation leads to a large amplitude deflection. Since Euler’s original study, this process has been extensively
examined in homogeneous, isotropic, linear-elastic solids. Here, we examine the nature of the buckling in
inhomogeneous soft composite materials. In particular, we consider a soft host with liquid inclusions both
large and small relative to the elastocapillarity length, which lead to softening and stiffening, respectively, of
a homogeneous composite. However, by imposing a gradient of the inclusion volume fraction or by varying the
inclusion size we can deliberately manipulate the spatial structure of the composite properties of a column and

thereby control the nature of Euler buckling.
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I. INTRODUCTION

An elastic beam under a sufficiently large compressible ax-
ial load collapses or buckles when an infinitesimal deflection
destroys the equilibrium. The critical load for the buckling
of homogeneous, isotropic, linear-elastic rods with a constant
cross section was derived by Euler in 1744 [1,2], and La-
grange analyzed the higher-order modes in 1770 [3]. From the
mechanical failure of structural elements in civil engineering
to the storage of information through controlled buckling of
nanoscale beams for future nanomechanical computing [4],
the buckling of slender structures has been a focus of studies
in engineering, biology, and physics for nearly 300 yr [5].

The macroscopic response of a solid body to an exter-
nal force lies at the heart of buckling, the details of which
depend on the body shape, material composition, and inter-
nal structure. A vast range of distinct responses is displayed
in materials with geometric inclusions of different elastic
moduli [6], foams modeled by anisotropic Kelvin cells [7],
porous and particle-reinforced hyperelastic solids with cir-
cular inclusions of variable stiffness [8], fiber-reinforced
elastomers with incompressible Neo-Hookean phases [9],
long cylindrical shells with localized imperfections [10],
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finitely strained porous elastomers [11], and hyperelastic
cylindrical shells [12] to mention but a few. Attempts to
describe buckling have lead to, among other things, the
celebrated theory of elasticity [5,13] and to finite-element
simulation methods [14].

Kirchhoff [15,16] and Clebsch [17,18] described the basic
theoretical analysis of elastic rods by replacing the stress
acting inside a volume element with a resultant force and
the moment vectors attached to a body defining curve. These
“Kirchhoff equations” relate the averaged forces and moments
to the curve’s strains, e.g., Ref. [19].

Recent work shows how the elastic response of soft
materials with liquid inclusions is governed by interfacial
stresses [20-23] and suggests the possibility that capillarity
may play an important role in buckling instabilities. To that
end, we reformulate the study of compressed rods viewed
from the perspective of the theory of elasticity [5,13] to ac-
count for the surface tension effects of the inclusions. We
incorporate the physics of capillarity into the Kirchhoff equa-
tions through the elastic moduli as given by a generalization
of the Eshelby and Peierls theory of inclusions [22-24]. The
theory of Eshelby and Peierls describes how an inclusion of
one elastic material deforms when it is embedded in an elastic
host matrix [25]. However, it has recently been discovered
that Eshelby and Peierls inclusion theory breaks down when
the inclusion size R approaches the elastocapillary length
L = y /E, where y is the inclusion/host surface tension and E
is the host Young’s modulus [22-24]. Importantly, when R >
L (R < L) the composite softens (stiffens). This basic physi-
cal process, wherein the inclusion size controls the Young’s
modulus of the the composite E, reveals the possibility of
controlling the buckling process through the properties and
distribution of the inclusions.
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A quantitative treatment of how the inclusion size R and
volume fraction ¢ in soft composites influences their bulk
mechanical properties underlies our understanding of their
response under loads. In particular, by determining how the
spatial variation of R and ¢ modify Euler buckling we
provide a framework of either tailoring a material response
or explaining observations in naturally occurring soft com-
posites. Canonical examples of the latter include slender
composite structures, such as insect extremities [26,27], plant
stems [28,29], bones [30], bacterial biofilaments [31], and
plant tendrils [32]. Indeed, these latter systems [31,32] very
often grow into axisymmetric elongated structures by adding
new material at a small active growing zone located near the
tip, creating a varying composition along the growth axis.

Although our analysis is confined to static elastic Kirchhoff
rods, our results are clearly of use in interpreting the buckling
instabilities prompted by tip growth [33,34] as well as the
phenomenon of morphoelasticity induced by time-dependent
compression [35,36].

The paper is organized as follows. In Sec. II, we: (i) review
the general concepts of the Kirchhoff rod theory and the
small deflection approximation; (ii) introduce some concepts
of static stability; and (iii) describe the models of composite
mechanics that are used throughout the paper. In Sec. III,
we outline classical Euler buckling of homogeneous rods,
and then in Sec. IV, we examine in detail the buckling of
inhomogeneous composite materials. In particular, we: (i) de-
scribe the stability analysis; (ii) study stiffened and softened
composites; (iii) quantify the effect of inhomogeneity on the
critical compression; and (iv) consider the case with a “polar”
inclusion configuration. Conclusions and implications for ex-
perimental examination of our results are presented in Sec. V.

II. PRELIMINARIES

In this section, we formulate the equilibrium configura-
tions of inhomogeneous compressed rods in terms of planar
elastica, we derive the corresponding approximation of small
deflections, we introduce the key concepts of static stability of
elastic rods adapted to the particular case at hand, we review
the generalized Eshelby and Peierls theories for composite
elastic materials with capillary effects, and we describe the
nondimensionalization of the problem.

A. The planar equilibrium

Consider a straight, isotropic, inextensible, and unshear-
able rod with a constant circular cross section of area .4 that
can deform under end loading. The absence of shear defor-
mation and stretching are the fundamental assumptions of the
Kirchhoff rod theory [15-18], wherein the stress acting inside
a volume element is replaced by the corresponding resultant
force T and moment m vectors attached to the centerline
as shown in Fig. 1. The center line is the space curve r(s)
defining the rod axis in which s € [0, 1] is the dimensionless
arc length.

When the couples and forces exerted at either end of the
rod are the only loads, the balance of the total forces and the
total couple on a reference segment ds are

T'(s) =0, 1)

FIG. 1. Schematic of a Kirchhoff rod with the quantities de-
scribed in the main text.

and
m'(s) +r'(s) x T(s) =0, 2)

where the primes denote differentiation with respect to arc
length.

The orientation of the normal cross section of the rod at
s is specified by two material unit vector fields d;(s) and
d;(s) that lie in the cross section (Fig. 1). Adopting the same
conventions as in Refs. [37,38], we define a right-handed
orthonormal basis {d;, d,, d3} so that

dz(s) =r'(s). 3)

The orthonormal directors {d;(s)} change their orientation rel-
ative to a Cartesian fixed basis {e;} smoothly, and this change
can be expressed as

d=kxd, i=1-3, )

where the components of the strain vector x with respect to
{di(s)} are

k= (X1, X2, T)- 5)

The components x; and y, are associated with bending, that
is, associated with the centerline curvature. The twisting or
rotation of the local basis around the d3 vector is described by
7. It describes the torsion of the centerline (a measure of the
curve nonplanarity) and the rotation of the cross section as the
arc length increases.

The rod is assumed to be hyperelastic, and, hence, there is
a strain energy density function W(x1, x2, 7, s) such that
L L L !

X1 dx2 at
where the m;(s)’s denote the components of m(s) with re-
spect to the local basis {d;(s)}. Recalling that we assume an
isotropic rod with constant circular cross section, and, hence,
the case of linear constitutive stress-strain relations gives the
strain energy density function as

W(x1, x2. T, 8) = SE(I(x] + x3) + 3Cs)T% (7

where E.(s) is the composite Young’s modulus, / is the second
moment of area about either d; or d,, and C(s) is the torsional
rigidity of the cross section at s.
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The orientation of the local basis {d;(s)} with respect to
the fixed basis {e;} is described by the set of Euler angles
O(s) = {0(s), d(s), ¥ (s)}. Explicit expressions for the direc-
tors in terms of the Euler angles can be found in Ref. [38], and
the strain components are

X1 = —¢’sin 6 cos ¥ + 0’ sin ¥, ®)
X2 = ¢’ sin 6 sin ¥ + 6’ cos ¥ 9)

and
T =¢ cos 6+ Y. (10)

We consider the undeformed rod to be aligned along the e;
axis and subject to an axial compressional external force T at
s = 1, and, hence,

T=-Te, an

with T > 0. We treat the boundary value problem wherein
both ends lie on the undeformed configuration axis, giving two
isoperimetric constraints,

1
/ sin 0(s)sin ¢(s)ds = 0, (12)
0

and

I
/ cos O(s)ds = 0. (13)
0

Moreover, the ends are held in a “ball-and-socket joint” in
that they can freely rotate and, hence, no moment is applied at
either end,

m(0) = m(1) = 0. (14)

By virtue of the linear constitutive strain-stress relations, these
boundary conditions can be rewritten in terms of the Euler
angles as

0'(0)=0'(1)=0, ¢'(0)=¢'(1)=0,
and ¥'(s) = ¥/(s) = 0. (15)

Because the compression force is constant, Eq. (1) and the
constraint of moment nullification Eq. (14) allow the equilib-
rium condition Eq. (2) to be integrated to yield

m(s) +r(s) x T = 0, (16)

after using the condition that both ends lie in the undeformed
configuration; r(0) = 0.

By computing the scalar product of d; with Eq. (2) and
integrating with boundary conditions (15) we have t(s) = 0.
Therefore, all physical twist vanishes, and, hence, the rod
undergoes planar buckling.

We assume that any planar equilibrium lies on the (e;, e;)
plane [or O(s) =m/2] so that planar solutions can be

described by
0(s) = % Vi) =a, @)= D), 17

1
/ sin ®(s)ds = 0. (18)
0

We will further consider throughout that the director d; lies
on the (e, e;) plane, and, thus, « = 0 and

k= (—9',0,0). (19)

Thus, any equilibrium configuration will be characterized
by the coordinates on the (e, e;) plane, [x, Y (x)], or, alterna-
tively, by the pair [s, ®(s)] in which ®(s) is the angle between
the deformed rod tangent vector d; and the undeformed rod
axis e;.

Given the linear constitutive stress-strain relations Egs. (6)
and (7), the total angular momentum is

m(s) = _%dl = E()ID'(s) €3, (20)
where we have used the set of Euler angles to characterize
the orientation of the local basis {d;} with respect to the fixed
Cartesian basis {e;} as per the criterion in Ref. [38].

Finally the balance of the total couple Eq. (2) of the planar
rod under consideration is

d
d_[EC(S)I @'(s)]+ T sin ®(s) =0, 2n
s
which is also known as the Euler-Bernoulli equation of planar
elastica. Its integral, corresponding to Eq. (16) for planar
elastica, is

E.()I®'(s)+ T / sin ®(u)du = 0. (22)
0

B. The small deflection approximation

We now further simplify Eq. (21) by considering the limit
of small deflections.

Given the definition of ®(s) following Eq. (19), we note
that its derivative with respect to the arc length is related to
the turning rate of the tangent along the centerline. Hence,
using Eq. (3) we have

o' =" (23)

‘When deformations are small, so too is @, and, hence, we
can approximate the arc-length derivative by the derivative
along the undeformed axis as

| d’r d’r
r'|=|— —
ds? dx?
where |r”| is the local curvature.
Now, upon substitution of Egs. (23) and (24) into Eq. (22),
and recalling that Y(s) =r(s)e, = fos sin ®(u)du as per
Eq. (3) and the planar equilibrium constraints Eq. (18), the
small deflection approximation of planar elastica Eq. (22) is
d*Y (x) T
——+ ——Y(x)=0. 25
e + ol (x) (25)
The corresponding isoperimetric constraint (18) for the
small displacements Y (x) of the elastic line from the straight

_sz(x)
Todx2

~

(24)
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configuration is as follows:
Y0)=Y(1)=0. (26)

C. Remarks on stability

Standard calculus of variations asserts that an equilibrium
configuration d(s), namely, an extremal of the potential en-
ergy of the rod (27) is stable if the second variation of the
potential energy at ®(s) is positive definite. Caflisch and
Maddocks [37] showed that stable equilibria according to this
static criterion are also stable in the dynamic sense due to
Liapounov.

The potential energy as given by Maddocks [38] of a
Kirchhoff rod whose planar configurations are described by
Egs. (17) and (18) is

1
VD, T] :/ {%Ec(s)l(cb’)2 + T cos CD(s)}ds, 27
0

where the first term in the integrand is the stored energy
density of the rod and the second term is the work performed
by the external force.

The corresponding Euler-Lagrange equation for Eq. (27)
with respect to the variable @ is the Euler-Bernoulli Eq. (21)
derived in Sec. II A. This equation was exhaustively analyzed
by Antman and Rosenfeld [39]. The solution set consists of
the unbuckled solution ®(s) = 0 for any compressing load T
and an infinite number of buckled modes bifurcating symmet-
rically from the trivial solution-pitchfork bifurcations.

Stability of the trivial solution ®(s) =0 is assessed by
considering perturbations of the form

D (s) = en(s), (28)
wherein only variations satisfying
n'(0)=n'(1)=0 (29)

need be considered because of the boundary conditions (15),
and

1
/U®M=0, 30)
0

which correspond to the linearization of constraint (18) about
®(s) = 0. Note that, when estimating the second variation,
linearization of the isoperimetric constraint suffices because
nonlinear terms can be absorbed into the dominant linear term
for small perturbations [38].

The second variation of V[®,T] about ®(s) =0 is
given by

1 2
82V[0,T]=/ {EC(S)I(Z—D —Tnz(s)}ds. (31)
0

Integration by parts and imposing the boundary condi-
tions (29) yields

1 d’l 2 )
f {Ec(Sﬂ(d—) —Tn (S)}ds =(n, P(®=0)n), (32)
0 N

where P(® = 0) = P(0) is a second-order Sturm-Liouville
operator defined by

d d
P0) = 7 (EL.(s)I%> -T, (33)

and (, ) is the L2-inner product.

The question of whether the second variation Eq. (31) is
positive definite is then reduced to the study of the following
eigenvalue problem:

P(0)n = un, (34
n'(0)=7n'(1)=0, (35
n, 1) =0. (36)

D. Composite mechanics

The theory of effective elastic moduli of solid composites
is generally ascribed to Eshelby and Peierls [25]. Initially con-
ceived to treat composites of host materials, such as glass or
steel with £ = O(GPa), containing dilute inclusions, Eshelby
and Peierls theory has been extended to nondilute compos-
ites [40-42]. However, the Eshelby and Peierls approach does
not account for the energy between the inclusion and the
host. Although this is quantitatively valid when the inclusion
size R is much larger than the elastocapillary length L as
defined above, such is not the case otherwise, which can be
particularly important for a soft host.

Recently the other limit, where R < L and surface-tension
effects in soft solids are important, has been a major focus
of research, e.g., Refs. [43-46] and references therein. In this
limit a counterintuitive situation can occur wherein a soft
composite is stiffened when the inclusions are liquid. This
effect is operative when, for example, liquid droplets of size
R = 0100 pum) are embedded in soft materials, such as gels
with E = O(kPa), whereas host materials with £ = O(MPa),
such as elastomers, may only exhibit composite stiffening
when R = O(0.1 um) [22,23].

Following the Eshelby and Peierls original approach,
Style and co-workers [22,23] calculated the effective elastic
modulus of composites consisting of a dilute dispersion of
liquid droplets embedded in a homogeneous isotropic elas-
tic solid matrix when the elastic stress at the surface of the
droplets satisfies a generalized Young-Laplace equation, e.g.,
Refs. [47,48]. Style and co-workers [22,23] showed that, in
terms of the elastic moduli of the host material (Young’s
modulus £ and Poisson’s ratio v), the dimensionless number
y’ = L/R, and the inclusion volume fraction ¢, the effective
elastic modulus of soft composite solids in the dilute limit is

143y

E.¢.y)=E :
@.7) 3y/(1—¢)+ (1+ 29)

(37

where the solid is assumed to be incompressible; v = 1/2. We
denote the dilute theory result Eq. (37) as DT.
In the limit that surface tension vanishes y’ — 0, the

Eshelby and Peierls result E./E = (1 + %qﬁ)_l [25] of a soft-
ening composite as ¢ increases is recovered from Eq. (37). In
the surface tension dominated limit y’ >> 1, we have E./E =
(1-— ¢)’1, the inclusions maintain sphericity, and, hence, the
composite stiffens as ¢ increases. The delineation between
these two different behaviorsis y’ = 2/3 when E./E = 1, and
the surface tension effect leads to elastic cloaking wherein the
inclusions are mechanically invisible.
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Two approaches have been used to treat the nondilute
limit. In the first, Mancarella et al. [49], and Mancarella and
Wettlaufer [50] used a three-phase generalized self-consistent
(GSC) theory, which replaces the actual inclusions by com-
posite spheres. In the second, Mancarella et al. [24] (MSW)
extended the multiphase scheme of Mori and Tanaka [51] to
treat the fluid inclusions in the solid matrix—with isotropic
interfacial tension—as elastic inclusions with no interfacial
tension. Although both the GSC and the MSW approaches
recover Eq. (37) in the dilute limit; the results of the former
are too cumbersome for incorporation into the buckling of
composite rods we study here. Therefore, we use the MSW
approach for which the effective Young’s modulus of the
composite is

2-2¢+vy'(5+39)
2+ @/ +y'(5-2¢)

in which the transition between stiffening and softening at
y’ = 2/3 is the same value as for the DT expression Eq. (37).
Therefore, we will use the effective composite Young’s mod-
uli in Egs. (37) and (38) in our analysis of the collapse of
composite columns.

Ec(¢7 V,) =E

(38)

E. Scaling

We note that because of the inextensibility of the rod, from
the outset the arc-length s has been dimensionless. In order
to avoid clutter in notation, the other independent variables
mass (m*), space (x*), and time (t*) were not labeled in the
usual manner (e.g., with a superscript *) to distinguish that
they carried dimensions. We now render them dimensionless
as follows:

* * *

m X t
= s = = — 39
RPVY JITA ‘= piae Y

where p is the mass per unit reference volume, A denotes
the rod cross-sectional area, and E is the Young’s modulus
of the host matrix as above so that the dimensionless com-
posite Young’s modulus is E.i(s) = E.(s)/E and, hence, the
dimensionless force is I' = T /(E A).

Under this rescaling, the small-deflection equilibrium
Eq. (25) is given by

d%Y (x) r
dx? Ei(x)

Y (x) = 0. (40)

III. BUCKLING OF HOMOGENEOUS COMPOSITE RODS

The classical Euler buckling problem [1] treats a com-
pressed homogeneous rod (E. = constant) as a boundary-
value problem for the small-deflection Euler-Bernoulli equa-
tion Eq. (40) with Dirichlet boundary conditions. The trivial
solution Y (x) = 0 corresponds to the undeformed rod. How-
ever, such a configuration is only stable if the compressing
force T is less than the critical value I'; [1],

Iy = 7T2Erel» 41

which corresponds to the smallest nonzero eigenvalue of the
Dirichlet problem. At the critical compression a first bifurca-
tion of the solution is encountered: The unbuckled solution

becomes unstable, and two buckled stable symmetric config-
urations appear

Y (x) o £sin(mwx). 42)

Beyond the bifurcation, that is, for I > [, the solu-
tion can be computed explicitly because the Euler-Bernoulli
Eq. (21) is integrable. The solutions of the nonlinear Kirchhoff
equations are beyond the scope of this paper. Here we treat
the isoperimetric linearized planar elastica Eq. (40), whose
eigenvalues,

ry = mn)YEa, n=12,... (43)

describe the bifurcation points. The associated buckled con-
figurations are described by the corresponding eigenfunctions,

Y, (x) o< = sin(nmx). 44)

IV. BUCKLING OF INHOMOGENEOUS COMPOSITES

Given the expressions for the effective Young’s modulus of
a soft composite Eqs. (37) and (38) an axially inhomogeneous
elastic modulus can be constructed by varying either the in-
clusion volume fraction ¢ (x) or the ratio of the elastocapillary
length to the inclusion radius y’(x) = L/R(x) both of which
we discuss presently.

A linear inclusion volume fraction profile,

¢(x) = do(1 — x), (45)

where ¢(x = 0) = ¢y leads to the bulk modulus decreasing
(y’ > 2/3) or increasing (¥’ < 2/3) with the distance along
the column.

A linear variation in y’(x),

V' () =v— g — vx, (46)

where y; and y| are the values of y’ at x =0 and x =1,
respectively, leads to the possibility of a polar configuration
in which one side of a column will be stiffer than the bulk
host and the other will be softer.

Equipped with Egs. (45) and (46) in what follows we
examine the nature of the buckling in inhomogeneous soft-
composite rods by studying the dimensionless small deviation
equilibrium equation (40) with Dirichlet boundary conditions
Y(0) =Y (1) = 0. The operator associated with this second-
order differential equation is Hermitian for the functionals of
E.(x) given by the DT, Eq. (37), and the MSW, Eq. (38),
theories with spatial inhomogeneity introduced through either
Eq. (45) or Eq. (46).

A. Stability analysis for inhomogeneous elastic rods

We follow the framework described in Sec. II C and ana-
lyze the stability of the trivial solution Y (x) = O of Eq. (40)
via the eigenvalue problem given by Eqs. (34)—(36) in which
the dimensionless version of the operator P(0) Eq. (33) is

d d
P0) = _E<Erel(x)a> =T, (47)

which is a Hermitian Sturm-Liouville operator on x € [0, 1]
with Neumann boundary conditions (35). Note that the small
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deflection approximation of Eq. (24) leads to approximating s
with x in (47).

The eigenvalue problem in Egs. (34)—(36) corresponds to
the first-order approximation in ® (i.e., ® small) of the Euler-
Bernoulli Eq. (21) when u(I") = 0. Thus, the eigenfunction
n(x, I') associated with w(I") = O constitutes a first-order so-
lution of the equilibrium Euler-Bernoulli Eq. (21) and, hence,
gives an equilibrium configuration of the rod.

On the other hand, the equilibrium configurations for small
deformations, also to first order in &, correspond to the
eigenfunctions of the eigenvalue problem (40), which are de-
termined by the sequence of critical tensions I'") or loads at
which the rod is in equilibrium.

Therefore, because equilibrium configurations require both
['=T" and u(T") = 0, we have

P(®@=0, T =TY)y(x,T¥) =0, (48)
and, hence, Eq. (34) can be rewritten as
(Cy =T)n = pn. (49)

Namely, eigenvalues 1" (I") of operator (47) that each corre-
spond to a certain ') are

pu"(C) =Ty -T, (50)

and, hence, they are positive definite when I' < I'{(").

As implied by Eq. (11), compression occurs for positive
values of I' and, hence, Fg’r’) >0, Vn > 0. In the case of
no compression, the lowest eigenvalue of Eq. (40) is I'") =
0, whose eigenfunction is the undeformed trivial solution
Y (x) = 0. Therefore, the eigenvalue problem (34) with Neu-
mann boundary conditions (35) can be integrated to give
the lowest eigenvalue 1©(I") = —T" and the associated con-
stant eigenfunction ¥ (x, I') = 1. However, we note that this
solution does not satisfy the isoperimetric constraint (36).
Therefore, the second variation will be positive definite when

() > 0, (51)
and, hence,

C<r®

[

(52)

where T'{]) denotes the first buckling critical compression
[provided that the corresponding eigenfunction 1" (x, T")
is orthogonal to the first eigenfunction n®(x, I")]. Impor-
tantly, although I'{l) is the first buckling load, it is the
force at which the second eigenvalue of Eq. (34) crosses
zero. In consequence, we recover Euler’s classical buckling
result for a homogeneous column [1]: Namely, the unde-
formed equilibrium configuration ® = 0 will be stable when
the compressive force does not exceed 'l and unstable
otherwise.

B. Stiffened inhomogeneous composites

In this section we examine a stiffened composite (y/ >
2/3) rod with a linear axial gradient of the liquid content
using Eq. (45) and the DT expression for the effective Young’s
modulus Eq. (37). In this manner we can impose a linearly de-
creasing stiffness along the rod. We show in the upper panel of
Fig. 2(a) the effective Young’s modulus for this class of com-
posite rods as we vary the parameters: y’ = 10, 100; ¢¢ =

25
2.0f
& 15¢
= 1.0} . . : . |
0.0 0.2 0.4 0.6 0.8 1.0
1.0F
0.8}
—~ 0.6
B
S
0.4}
0.2} 6
0.0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
X
(a) First buckling mode.
1.0f l
050 |
I 1
& 0.0f 1
\g [ Erel =1
~1 =100, ¢o = 0.3
-0.5F ~1 = 100, ¢o = 0.6
[ vy = ].O, Qbo =0.3
-1.0p 1 =10, ¢0,= 0.6 .
0.0 0.2 0.4 0.6 0.8 1.0

x
(b) Second buckling mode.

FIG. 2. Effective Young’s moduli and buckling modes. The up-
per panel of (a) is the relative effective Young’s modulus Eq. (37)
as a function of Y’ and ¢. The first (a) (lower panel) and second
(b) buckling modes of homogeneous and linearly stiffened soft com-
posite columns with the same potential energy. The vertical lines
in (a) denote the coordinate x at which the color corresponding
column reaches the maximum deflection. The dashed vertical line
in (b) denotes the position of the middle of the undeformed rod;
x=1/2.

0.3,0.6. Clearly, the stiffness of the column E(x) de-
creases with x as the volume fraction ¢(x) decreases from ¢y
to 0.

The small deviation Euler buckling boundary value prob-
lem for Eq. (40) with Y (0) = Y (1) = 0 takes the form of the
Airy equation,

Y'(x)+ (a 4+ bx)TY (x) =0, (53)

where a = 1/Ew(¢ = ¢o) and b= (¢o/1)(y'5/2—5/3)/
(14 y’5/2), the solutions to which can be written in terms

055603-6



CAPILLARY CONTROL OF COLLAPSE IN SOFT ...

PHYSICAL REVIEW MATERIALS 5, 055603 (2021)

TABLE 1. Critical loads of inhomogeneous stitfened rods with a
linear gradient of liquid inclusions Eq. (45) as a function of y" and

%o.

', ¢o re,rey
" =100, ¢ = 0.3 11.574(4), 46.430(4)
y' = 100, ¢o = 0.6 13.929(0), 56.631(0)
"=10, ¢ = 0.3 11.392(9), 45.676(1)

y' =10, ¢9 =0.6 13.427(4), 54.386(4)

of Airy functions Ai and Bi as

_ C
B Bi(_rcra” - l—‘crb|2/3)

o A —Iga —Tbx Bi —I'ga
| - 1_‘crb|2/3 | - Fcrb|2/3
—I'qa

. . _Fcra - Fcrbx
-Al (| - rcrb|2/3) B ( | = Tob3 )] R

where C is a constant. When the compression exerted on
the ends of the inhomogeneous column exceeds a critical
value T, the column deflections are given by Eq. (54) as a
function of the strength of the gradient in inclusion volume
fraction |¢|. The values of I, are now given by the nontrivial
solutions of Eq. (53) and are the roots of the transcendental

equation,
Aj -r Bi —Ta
i i
| — I'b|2/3 | — T'b|2/3

— Aj —Ta Bi T 55
=AM\ ) P\ Trepn ) O

which we solve numerically to determine the failure modes.
Table I shows the results for the two lowest critical loads [i.e.,
the first two nonzero roots of Eq. (55)] of inhomogeneous
stiffened rods for a range of ¥ and ¢y.

Substituting the critical loads of Table I into Eq. (54),
we obtain the first two buckling modes (n = 1,2), which
we compare to the corresponding failure configurations of
a column with a constant elasticity given by Eq. (44) [52].
Figure 2 shows how the axially varying Young’s modulus,
associated with a linear gradient of the liquid volume fraction,
breaks the buckling symmetry associated with the Kirchhoff
rod. The distinction between the classical homogeneous and
the heterogeneous column is seen in the first buckling mode,
through the shift in the apex of the deflection towards the com-
pliant end x = 1 as shown in the magnified inset of Fig. 2(a).
The distinction between the stiffened and the compliant ends
is more striking for the second buckling mode, shown in
Fig. 2(b), and enhanced when we plot the curvature of the
profile as performed in Fig. 3.

Although we can tailor the response of the stiffened in-
homogeneous column by changing y’ and ¢y, their effect
is the same: The more we increase the composite Young’s
modulus at the stiffened end either by reducing the inclusion
size (increasing y’) or by increasing the liquid volume fraction
and gradient ¢, the more asymmetric the response. Moreover,
because we are comparing the buckling modes at the same

Y(x)

Y“(fl:)

a0t

20

—40+

FIG. 3. Buckling curvature. The second derivative of the second
buckling modes of homogeneous and linearly stiffened soft com-
posite columns with the same potential energy. The dashed vertical
line denotes the position of the middle of the naturally straight rod;
x = 1/2. The same color legend as in Fig. 2 applies.

potential energy, a larger stiffness implies a smaller deflection
from the straight configuration.

Finally, we compute the three smallest eigenvalues and
eigenfunctions of operator (47) under different loads I'. This
provides a numerical check of Eq. (50), which is essential in
the stability analysis of inhomogeneous rods as described in
Sec. IV A. Figure 4(a) shows that the eigenvalues decrease
linearly with T', crossing the abscissa at ' =T {T'D =
0, 'V =11.574(4), TP = 46.431(0)} in agreement with
Eq. (50) and the results in Table 1.

Figure 4(b) shows the corresponding eigenfunctions
w@ () of the first buckling load T' = I'{]). Clearly, the eigen-
function n©@(x, I') associated with the lowest eigenvalue is
unity, and, hence, it is not a solution to the eigenvalue problem
given by Egs. (34)—(36).

C. Softened inhomogeneous composites

In contrast to Sec. IV B, here we examine a softened com-
posite (y’ < 2/3) rod with a linear axial gradient of the liquid
content using Eq. (45). Moreover, we compare and contrast
the DT expression for the effective Young’s modulus Eq. (37)
with the MSW theory given by Eq. (38), which is valid in the
nondilute regime [see the top panel in Fig. 5(a)].

In this case, the equilibrium Eq. (40) can be rewritten as

d*Y(x) a+bx
dx? c+dx

where a =2+ (4/3)¢o + y'(5 — 2¢0), b= —(do/1)(4/3 —
2y"), ¢=2—=2¢0+y'(5+3¢), and d = —(¢o/1)(-2+
3yr).

The solution of the boundary value problem for Eq. (56)
withY(0) =Y (1) =0is

C exp [ _ g(xvzrcr)] exp [_g(ovzrcr)]

LE (800, Ter)]
< {U[n(Ter). 0; g(x, Te)] LS, 1 [8(0, Ter)]

— U[n(Ter), 0:8(0, Te)IL, 1, \[8(x, Tel}, (57

T'Y(x) =0, (56)
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p(T)
| — pO(1)
— n(D)

(a) The three lowest eigenvalues.

n® (x,T)

1.5F

1.0f

0.5}

(b) The three lowest eigenfunctions.

FIG. 4. Stability analysis. Eigenvalue problem Egs. (34) and (35)
for an inhomogeneous stiffened rod characterized by the DT ap-
proach with a linear gradient of its liquid volume fraction and
parameters y’ = 100 and ¢y = 0.3. Panel (a): The three lowest
eigenvalues of the operator (47); the dashed vertical line pinpoints the
critical compression I'{". Panel (b): Corresponding eigenfunctions
evaluated at the first buckling load I' = T'{D.

where U[n(T"), 0; ig()c, )] is the confluent hypergeomet-
ric function; qu(}))[g(x, I')] are the associated Laguerre
polynomials;

g0x, T) = 2 HEIT () = jbbed T
constant. Because b < 0 and d > 0 when y’ < 2/3,and " >

0 under compression, then g(x, I') and n(I") are real-valued
functions. The critical buckling forces I, are the roots of

oxp (_g(l, r)
2

and C is a

)U[n(F),O;g(l,F)]

o,r _
X exp (—g( : ))Li,l}’r)[gw, )

( g(0,T)
Xp — 2

>U[n(F), 0; (0, I")]

1,T _
X exp (_g(2 ))Lini%)[ga,r)]. (58)

Substituting the roots of Eq. (58) [53] into Eq. (57), we find
the corresponding buckling modes of the softened composite

1.0 .
0.8
0.6F
0.4
0.2

Erel(z)

o2t Q\

0.0 0.2 0.4 0.6 0.8 1.0

xT

(a) First buckling mode.

S/ E Ea=1

¢o = 0.6, (DT)
b0 = 0.6, (MSW)
¢o =0.3, (DT)

| =~ $9 = 0.3, (MSW) . R
0.0 0.2 0.4 0.6 0.8 1.0

x
(b) Second buckling mode.

FIG. 5. Effective Young’s moduli and buckling modes. The up-
per panel of (a) is the relative effective Young’s moduli from
Egs. (37) and (38) as a function of y’ and ¢. The first (a) (lower
panel) and second (b) buckling modes of homogeneous and linearly
softened soft composite columns with the same potential energy
for y’ = 0.1. The vertical lines in panel (a) denote the coordinate
x at which the color corresponding column reaches the maximum
deflection. The dashed vertical line in panel (b) denotes the position
of the middle of the undeformed rod; x = 1/2.

column. They correspond to the equilibrium configurations
of the rod when the axial load I exceeds the first critical
compression I'{!) and, hence, the trivial solution ¥ (x) =0
becomes unstable.

In Fig. 5 we compare the first two modes with the homo-
geneous reference case of Eq. (44) and with the DT result
Eq. (54).

We see in Fig. 5 the anticipated asymmetric profile for
the inhomogeneous column buckling modes. Namely, the first
buckling mode maximum deflection is shifted towards the
compliant end to a degree that is proportional to the gradient
of liquid content ¢ [lower panel, Fig. 5(a)].
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Per
1al O ~r=100 (DT)
r v/ =10 (DT) _______
— =01 (MSW) e
12}
, 41 = 0.01 (MSW)
10-r"7||I||‘|l|||1\|||||n|||||n||||—
I 0.10 0.15 0.20 0.25 0.30 ¢
sl
o THEEm

FIG. 6. Critical forces for the first buckling mode as a function
of the average inclusion volume fraction, obtained as the numer-
ical roots of the transcendental equation considering the dilute
theory (DT, circles), and of the nondilute Mori-Tanaka approach
(MSW, squares). Both stiffened (' = 100, 10) and softened (y’ =
0.1, 0.01) rods are considered. The analytic critical compression for
the homogeneous rod Eq. (41) is depicted with color lines as per
the color legend for symbols. The color legend also applies for the
dotted lines depicting the perturbation approximation Eq. (60) with
Egs. (41), (61), and (62) to the critical compression.

The curvature of the second buckling mode is a larger
in the softer first half period than in the second as seen in
Fig. 5(b). Moreover, relative to the Kirchhoff case, a soft-
ened rod achieves a greater maximum deflection when the
potential-energy criterion is adopted. We also see in Fig. 5
the expected difference between the MSW and the DT cases
in the nondilute regime (¢y = 0.6) where the latter is invalid,
but the buckling modes are indistinguishable in the dilute
regime.

D. Critical loads

We have studied the basic geometry of the buckling modes
through a comparison and contrast between homogeneous and
inhomogeneous (stiffened and softened) composite columns.
Now we compare these cases in terms the magnitude of the
critical collapse loads. We assume a fixed inclusion size by
holding y’ constant and introduce the average inclusion vol-
ume fraction ¢. We choose ¢ = ¢ /2, which is the constant
inclusion volume fraction for the Kirchhoff case and the av-
erage for the inhomogeneous rod with a linear gradient of
liquid inclusions Eq. (45). In this manner we can compare
composite materials with the same liquid volume fraction
and study the effect of spatial gradients on the collapse of a
column.

We plot in Fig. 6 the critical loads as function of ¢ for
the inhomogeneous stiffened and softened columns together
with the critical compression force of a homogeneous rod
Eq. (41), derived in Sec. III. Unlike the previous sections in
which the reference Kirchhoff rod had a unit Young’s modulus
E.; = 1 as if it were a single compound elastic material, we
now consider the homogeneous rod stiffness to be given by
either the DT Eq. (37) or the MSW Egq. (38) effective Young’s
modulus but with constant values of ¥’ and ¢(x) = ¢ = ¢o/2.

2.0

e=0
1.0r
1 1 Il Il J x
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 7. Effective Young’s modulus Eq. (37) with inclusions vol-
ume fraction profile controlled by ¢ varying between 0 and 1; ¢y =
0.6 and y’ = 100.

The stiffening and softening regimes are in clear evidence
in Fig. 6. As the average fluid inclusion volume increases,
the critical compression becomes larger (smaller) in stiffening
(softening) conditions. This qualitative behavior is found in
both homogeneous and inhomogeneous columns. Moreover,
despite remarkably good numerical agreement between the
analytical critical compression for the Kirchhoff rod Eq. (41)
and the numerical results for inhomogeneous columns, there
is a systematic deviation between them in that the critical
loads of the inhomogeneous rod are smaller. This devia-
tion increases with ¢ and, hence, the spatial gradient of
inclusions.

We use perturbation methods [54] to explain this deviation
as follows. We approximate the inhomogeneous case from
the analytic solution to the equilibrium equation (40) for a
homogeneous rod as a power series in ¢ < 1. The spatial
variation is modeled as

$o 1
¢()C,8):—+¢0 - —X)E, (59)
2 2
so that ¢ = 0 corresponds to the homogeneous rod and the
degree of inhomogeneity increases with &. See the Young’s
modulus in Fig. 7.
To leading order, the perturbation approximation for the
critical compression of the first mode,

o]

I = e (60
=0

equals Eq. (41). The first-order correction vanishes for both
the DT and the MSW models, and, hence, the second-order
correction accounts for the principal deviations from leading
order. For the DT and the MSW approaches, these second-
order corrections are as follows:
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and
o _ 2,10 (2—3y")*(2+5y")
aMsw2 =~ P 3 2 ; 2 ; 3
[2+ 3o+ v/ (5= ¢0)] [2— go+ v/ (5+ 3)]
5 245y’ 1 1 1 12 1 1
SR s .70 N (S U I (62)
1224+ 2¢0+y'G—¢o)\ 24 n 4x? 73 24 4x?

respectively. Further details of the perturbative calculations
can be found in the Supplemental Material [55].

In Fig. 6 we plot the critical compression from
Egs. (43), (61), and (62) along with perturbation expansion
Eq. (60). We note that the numerical results of the inhomo-
geneous rod—symbols in Fig. 6—correspond to ¢ — 1 in
the perturbation theory, although the accuracy of the latter is
restricted to ¢ < 1. Thus, whereas we cannot reproduce the
inhomogeneous case with the perturbation theory, the latter
provides valuable insight into the interpretation of the results.
In particular, the first nonzero correction to the homogeneous
critical compression in Eq. (60) is negative for any set of
parameters in both the DT and the MSW models. Therefore,
spatial gradients in the elastic properties of a column promotes
buckling under smaller loads.

Physically, the fact that an inhomogeneous elastic rod
buckles more easily can be seen in terms of the perturbed
Young’s modulus plotted in Fig. 7. Namely, a gradient in the
elasticity gives one-half of the rod with E.(x) < E.(¢p =
¢0/2), which is softened relative to the homogeneous counter-
part. This weaker region is sufficient to lead to collapse under
lower loads despite the fact that the other half of the rod has
an increased stiffness compared to the homogeneous reference
case.

E. Polar elasticity

In Secs. IVB and IVC we either linearly stiffened or
softened a column using Eq. (45) for a given ratio of elas-
tocapillary length to inclusion radius y’. In consequence, the
bulk modulus either decreased or increased with distance
along the column. Here we consider a constant inclusion
volume fraction ¢ and a linear variation in y’(x) as in Eq. (46)
to create a polar rod that changes from softened to stiffened
along its axis.

As described in Sec. IID the DT and MSW extensions
of the Eshelby and Peierls theory are equivalent in the
dilute limit. However, in the softening (stiffening) regime
in the nondilute limit the effective Young’s modulus es-
timates of Style and co-workers [22,23] deviate from the
three-phase model of Mancarella and co-workers [49,50] (the
MSW method [24]). Here, we solve the equilibrium equation
Eq. (40) for y’(x) as in Eq. (46), ¢ constant, and use the DT
and MSW theories in the dilute limit.

The resulting effective Young’s modulus for both the DT
and the MSW models can be expressed as a ratio of two
linear polynomials. The equilibrium equation corresponding
to Eq. (40) is, thus, mathematically analogous to Eq. (56),
namely, the MSW theory with ¢(x) obeying Eq. (45) with
constant y’ treated in Sec. IV C. Thus, as in Eq. (57), we can
write the deflections of a composite polar rod with hinged

(

ends in terms of the confluent hypergeometric function and
the associated Laguerre polynomials.

The coefficients in Eq. (57) when ¢ is constant and y’
obeys the linear gradient of Eq. (46), are as follows: a =
(1 +¢5/3) + (1 — p)yg5/2. b= —(1 — p)(yg — ¥)5/2, ¢ =
1+ y45/2, and d = —(y; — y{)5/2 for the DT approach;
a=2+¢4/3+ G5 =285 b=—05=29)y5— 1), c=
2—-2¢+(5+3¢)yy and d = —(5+3¢)(y; — y{) for the
MSW approach. Parameters b and d for both models are
negative when y; > y/ (0 < ¢ < 1) yielding complex roots
of Egs. (57) and (58). However, we note that in both of these
equations y;(x) = exp[—g(x, I')/2] U[n(I"), 0; g(x, )] and
ya(x) = exp[—g(x, ') /2] L(__nil)-)[g(x, I')] are eigenfunctions
of the linear differential operator acting on Y (x) and have
eigenvalue 0, corresponding to the equilibrium equation (56).
We noted at the outset of Sec. IV that for either the DT or
the MSW effective Young’s moduli, the second-order linear
operator of Eq. (40) with Dirichlet boundary conditions is
Hermitian. Therefore, Eqs. (57) and (58) can be rewritten in
terms of linear combinations of the real-valued eigenfunctions
yi(x) and y,(x). Hence, since the deflection of a polar
compressed rod given by Eq. (57) is defined up to an
undetermined constant without loss of generality we consider
the real part of Eq. (57) for the remainder of this subsection.

As shown in Fig. 8, the effective Young’s moduli from
Egs. (37) and (38) exhibit a nonlinear dependence on y’.
Therefore, the range of Young’s modulus is limited in the
dilute limit with a linear model, such as that in Eq. (46). The
buckling modes of a compressed polar elastic compressed rod

1.6
1
1
1.4 :
i Stiff
12} 1
e I
< .
R L .
Y 1
1
0.8 1 .
1
1
061 & DT —
mo' Il Il 1 Il Il Il L MSW Il
o 1 2 3 4 5 6 7 8 9 10
v/

FIG. 8. Effective Young’s modulus as a function of ' when ¢ =
0.4 both for the DT Eq. (37) and the MSW Eq. (38) models. The
vertical dashed line delineates the softening ¥’ < 2/3 and stiffening
y' > 2/3 regimes.
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(a) First buckling mode.
1.0} l
I I
l
0.5} l
[ 1
L \
— I I
= oof :
>~
_0_5l Ea=1
[ Linear v/(z), (DT)
1 0: Linear ~/(z), (MSW)
0.0 0.2 0.4 0.6 0.8 1.0

x
(b) Second buckling mode.

FIG. 9. The buckling modes of polar elastic rods from the real
part of Eq. (57) compared to the homogeneous rod. The DT and the
MSW models are used to compute the composite Young’s modulus
Eqgs. (37) and (38), plotted in the upper panel of (a) with yj =
2, yy=0.01, ¢ =04.

using Eq. (46) are shown in Fig. 9 [56] wherein as in previous
sections these modes have the same potential energy, given by
Eq. (27).

Without going too deeply into the nondilute regime, an
intermediate volume fraction (¢ = 0.4) was chosen to tai-
lor the transition of the Young’s modulus midway between
the rod’s ends [see Fig. 9(a), upper panel]. Indeed, although
strictly speaking ¢ = 0.4 is nondilute, we note that there is
near perfect agreement between the DT and the MSW models.

On the one hand, the polar elasticity drives an asymmet-
rical response to a critical compression, qualitatively like the
stiffening (Sec. IV B) and softening (Sec. IV C) cases in that
the maximum of the first buckling mode is shifted towards the
compliant end [(Fig. 9(a)], and the curvature of the second
buckling mode is reduced (increased) in the stiff (compliant)

half-period as shown in Fig. 9(b). On the other hand, the
extreme values of the profiles of the polar configuration are
closer to the reference Kirchhoff rod of the same energy.
Namely, whereas a polar rod buckles unevenly, it does so
within the same deflection range as the Kirchhoff rod.

V. CONCLUSIONS

We have studied the buckling of inhomogeneous soft com-
posite columns or rods with axially varying elasticity. Their
spatial structure is tailored either by changing the volume frac-
tion of inclusions (¢) or the ratio of the elastocapillarity length
to the inclusion size (y’) along the column axis. We have
extended the classical theoretical description of compressed
elastic rods by incorporating these inclusion/host surface ten-
sion effects on the effective elastic modulus of the mixture.
The resulting equilibrium equation that accounts for the rod’s
response to a compressing force has analytical solutions for a
linear model for the variation of either ¢ or y’. This provides
a framework of broad relevance to soft composite materials
and could be tested by considering a distribution of sizes of
the liquid droplets embedded in a soft solid host, which might
be possible by suitable variations of the experiment described
by Style et al. [22].

We studied three different problems of heterogeneous
rods: stiffening (softening) by increasing the volume fraction
of small (large) inclusions [i.e., of radius R < (3/2)L (R >
(3/2)L)] as a function of distance along the axis as described
by Eq. (45) and polar elasticity by introducing a gradient of
the inclusion size by Eq. (46) at a constant volume fraction.
Their principal common feature is the intuitive result that a
compressed column of variable elasticity bends most easily
where it is softer. Accordingly, the symmetric buckling char-
acteristic of a rod with homogeneous properties is broken
whenever a rod with inhomogeneous stiffness is considered.
In both the dilute and the nondilute regimes, these three gen-
eral cases mutatis mutandis include the overall behavior of
the of the buckling instabilities in linearly heterogeneous soft
composite rods.

When comparing the critical compression forces of ho-
mogeneous and inhomogeneous rods with the same average
inclusion volume fraction, we find that the latter exhibit
smaller values. Perturbation theory provided both a phys-
ical and a mathematical rationale for why inhomogeneous
columns fail under smaller loads.

We have studied these rather simple models with the
hope that considering an elementary architecture might mo-
tivate experimental testing of these ideas as well as their
potential for biological relevance [33,34]. Indeed, recent ad-
vances in understanding multiscale morphomechanical effects
in biological systems [57], and experimental realizations of
soft-solid cavitation [58] and of stiffness-modulated elastic
solids [59] provide useful techniques and settings to imple-
ment and explore our models.
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