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Relationship between two-level systems and quasilocalized normal modes in glasses
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Tunneling two-level systems (TLSs) dominate the physics of glasses at low temperatures. Yet TLSs are
extremely rare, and it is thus difficult to directly observe them in silico. Developing simple structural predictors,
which can provide markers for determining if a TLS is present in a given glass region, is crucial for a more
efficient search. It has been speculated that vibrational quasilocalized modes (QLMs) are closely related to
TLSs, and that one can extract information about TLSs from QLMs. In this work we address this possibility.
In particular, we investigate the degree to which a linear or nonlinear vibrational mode analysis can predict the
location of TLSs independently found by energy landscape exploration. We find that even though there is a
notable spatial correlation between QLMs and TLSs, in general TLSs are strongly nonlinear, and their global
properties cannot be predicted by a simple vibrational mode analysis.
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I. INTRODUCTION

The thermodynamic behavior of low-temperature amor-
phous solids has been a topic of considerable interest since the
seminal experiments of Zeller and Pohl demonstrated marked
deviations between the thermal properties of glasses and those
of crystalline solids nearly 50 years ago [1]. In particular,
in the range of one degree Kelvin, these experiments and
numerous others that have followed [2–10] have demonstrated
that the specific heat of a disordered solid is much larger
than that of a crystal composed of the same material, with
a temperature dependence that varies linearly, as opposed to
cubically, and a thermal conductivity that varies quadrati-
cally, as opposed to cubically, with temperature. A theoretical
framework provided independently by Anderson, Halperin,
and Varma [11] and by Phillips [12,13], ascribes the origin
of this puzzling behavior to dilute defects that tunnel between
their lowest lying quantum states at low temperatures. This
two-level system (TLS) picture has successfully rationalized
diverse experimentally observed properties, although several
outstanding puzzles lie beyond its reach [13–15]. In particular,
understanding the microscopic nature of the TLSs as well as
the almost universal aspects of the thermodynamic data have
remained as outstanding challenges [16–18].

Over the last five years, the swap Monte Carlo technique
has provided a major advance in computational glass physics,
opening the door to the creation of in silico glasses that
have comparable stability properties to those found in the
laboratory [19]. Using this technique, and building on pre-
viously developed landscape exploration algorithms [20–29],
we recently provided a detailed computational investigation of
the TLS model [30], obtaining a direct microscopic descrip-
tion of TLSs and demonstrating that their density decreases
as the cooling rate decreases, similar to what is seen in
several recent experiments [6–10] and was proposed theo-

retically in [31]. Although this work considered only one
model system, and thus the question of the universality [3]
of low-temperature thermodynamic anomalies could not be
investigated, a detailed description of the nature of TLSs was
provided. Specifically, tunneling motion in TLSs was found
to comprise defect-vacancy-like motion of one or a handful
of particles, although occasionally highly collective tunneling
motion of a large number of particles was observed.

A major issue with the landscape exploration methods
currently used to identify TLSs in silico [22,25,29,30] is that
they are computationally very expensive. This bottleneck is
due to (1) the need to accumulate a sufficient number of
inherent structures (ISs) [20,21] and then, for at least the most
promising pairs of ISs (see [30] for details), (2) the need to
identify a relaxation pathway between the two minima in the
3N-dimensional energy landscape achieved via a computa-
tionally expensive minimization of a path function in the space
of possible paths [25,32–35]. Hence, it would be extremely
helpful to identify a priori the glassy configurations (or sub-
regions of them) that are most likely to include TLSs with
the proper energy splitting, via some sort of simple structural
indicator.

Over the last two decades a seemingly distinct type of
(partially) localized entity, namely, vibrational quasilocalized
modes (QLMs) [36], have been intensely scrutinized. QLMs
are characterized by a defect-like localized core with a power-
law decaying elastic background and are prominently found in
the low-frequency wing of the density of states of amorphous
systems. They have been connected to the universal non-
Debye behavior of the low-frequency density of states [37–44]
and to the attenuation of sound waves in glassy systems
[45–48], to the dynamical heterogeneity upon approaching
the glass transition from the high-temperature side [49,50],
to the plasticity of the glass under strain [51–53], and to the
critical-like behavior in jamming [54,55].
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It is natural to assume a connection between QLMs and
TLSs. Indeed, it is known from computer simulations that
as model supercooled liquids are cooled, the concentration
of real-space localized cores associated with QLMs rapidly
decreases [41,42], as is also the case for TLSs. It is thus
reasonable to assume that at the glass transition these QLM
cores are “frozen” into the sample and provide the seeds for
low-temperature defects. Indeed, this notion is central to the
successful soft potential model [44,56–59] of low-temperature
glasses, which extends the models of Anderson et al. [11]
and of Phillips [12] to somewhat higher temperatures by con-
necting TLSs to anharmonic vibrational modes in the glass.
If this connection is precise, QLMs could then be used as
structural predictors for the location of TLSs in glass sam-
ples, thus aiding the computational search for tunneling states.
Moreover, establishing this connection more precisely could
help validate or invalidate models of low-temperature glasses
based on interacting anharmonic modes [44,59–62].

In this work, leveraging our ability to prepare realistically
cooled samples and extract detailed information about both
TLSs and QLMs, we explore their putative connection in
detail. In our system we find that, in real space, TLSs and
QLMs are well correlated, in the sense that particles that move
the most in a TLS are typically close to particles that move
the most in a QLM. On the other hand, in phase space, we
demonstrate a surprisingly weak correlation between TLSs
and both linear and nonlinear QLMs: the 3N-dimensional
vector rAB that encodes the displacement in phase space of all
particles in a TLS is often completely unrelated to the vectors
that define QLMs.

II. SYSTEM

Our study is based on our previous work [30], in which
we prepared in silico glasses at different cooling rates, from
poorly annealed to ultrastable, and explored their energy land-
scape. For completeness, we will give a very brief summary
of the methodology, but we refer to [30] for details.

Our system is a nonadditive polydisperse mixture of
N = 1500 particles. In the following, r denotes a 3N-
dimensional phase space vector encoding the position of all
particles, ri denotes the three-dimensional coordinate of par-
ticle i = 1, . . . , N , and ri j = |ri − r j | is the scalar distance
between particles i and j. We use the following interparticle
interaction potential:

vi j (ri j ) =
{

ε
(

σi j

ri j

)12
+ εF

(
σi j

ri j

)
, ri j < rcut,

0, ri j > rcut,
(1)

where rcut = 1.25σi j , and σi j is the nonadditive interaction
length scale associated to particle pair i j. The function F (x)
is a fourth-order polynomial which guarantees the continuity
of the potential up to its second derivative at rcut. We express
all dimensional quantities in units of energy ε, length 〈σ 〉 = 1
(the average being over particle pairs), time

√
ε/(m〈σ 〉2), and

the number density is set to ρ = 1 in these units. The mode-
coupling temperature, which sets the onset of strongly glassy
dynamics, is TMCT = 0.104 [19].

Using the swap Monte Carlo algorithm [19] we prepare
fully equilibrated configurations at three different preparation

local minimum A local minimum B

saddle point

FIG. 1. Schematic illustration of the multidimensional minimal
energy transition path between two energy minima within a DW po-
tential. Also illustrated are the displacement vector rAB between the
two minima, the displacement vector rAS between the first minimum
and the saddle point, and the tangent vector r12 in the first minimum.

temperatures Tf = 0.062 (ultrastable glasses), 0.07 (liquid
cooled glasses), and 0.092 (poorly annealed glasses). Normal
molecular dynamics (MD) initialized in these configurations
is fully arrested (except for Tf = 0.092, at which slow residual
diffusion is observed), and each configuration thus defines a
glass basin in the potential energy landscape. The temperature
Tf corresponds to Tool’s “fictive temperature” [63] and en-
codes the degree of glass stability. For each of the glasses, we
explore the glass basin in the energy landscape and determine
a set of local energy minima, or “inherent structures” (ISs),
by running MD at a slightly lower temperature TMD = 0.04
and periodically minimizing the system’s potential energy
[20,21]. Pairs of energy minima that are subsequently visited
a large enough number of times (see [30] for details) are
further analyzed with the Nudged Elastic Band (NEB) method
[32,33] to find the minimum energy pathway connecting them
(see Fig. 1) and the associated value of the classical energy
barrier. This procedure allows us to obtain a library of distinct
double-well (DW) potentials in the high-dimensional energy
landscape [64]. For each DW potential, we then solve an
effective one-dimensional Schrödinger equation to obtain the
quantum tunnel splitting E = E2 − E1 between the first two
energy levels. We find that the relevant DW potentials, which
define active TLSs in the quantum regime (namely, those with
a tunnel splitting equal to or below the temperature TQ which
defines the low-temperature regime in [30]), have E < 0.0015
for argon parameters [25], and E < 0.0002 for NiP metallic
glass parameters [22]; see [30] for details.

III. NORMAL MODES

Having curated a library of DW potentials along with asso-
ciated displacement fields rAB, we can perform a normal mode
analysis in each of the two minima A and B (because our
search procedure is statistically symmetric, in the following
we focus on minimum A without loss of generality), and check
if the normal modes overlap with the DW displacement field,
to be defined below. We now define more precisely the linear
and nonlinear normal modes and their relationship with the
minimum energy path illustrated in Fig. 1.

Several displacement fields can be associated with a DW
transition: the difference between the two energy minima, rAB,
the difference between the first minimum and the saddle point,
rAS , and the tangent direction r12 of the minimal energy path in
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FIG. 2. Participation ratio of normal modes versus their fre-
quency, for one selected energy minimum. Modes shown in red stars
are considered to be quasilocalized. In the inset, the mode frequency
is shown as a function of the mode index. Data are for glasses with
Tf = 0.062.

A (see Fig. 1). The vector r12 is estimated by a discretization
of the minimum energy path, as the difference between the
position of the first two beads (or images) of the NEB path.

Next, we define the tensors M and U as follows:

Mαβ = ∂2V

∂rα∂rβ

, Uαβγ = ∂3V

∂rα∂rβ∂rγ

, (2)

where V (r) = ∑
i< j vi j (ri j ) is the total potential energy,

Greek indices such as α = 1, . . . , 3N run over all the 3N co-
ordinates of phase space vectors, and the particle coordinates
are evaluated in minimum A after derivatives are taken. The
linear vibrational modes vα , for α = 1, . . . , 3N , are defined
as the eigenvectors of the Hessian matrix M,

Mv = ω2v, (3)

and ω is the corresponding frequency. For a system of size
N = 1500, we can find all the eigenvectors by using standard
matrix diagonalization packages. It has been shown that in
glasses, collective excitations such as phonons coexist with
QLMs, which feature a localized core decorated by a power-
law decaying elastic tail [36,38–43,48]. Unfortunately, there
is no clear way of separating delocalized phonon modes from
QLMs. Here we use an arbitrary threshold on the mode’s
participation ratio,

PR(v) =
[

N
N∑

i=1

|vi|4
]−1

, (4)

where vi is the displacement of particle i in the mode v,
normalized to |v| = 1. In Fig. 2 we show the participation
ratio as a function of the modes’ frequency. We consider
low-frequency modes with PR < 0.1 to be QLMs.

Nonlinear modes are defined as follows. From the theo-
retical point of view, in order to define a DW potential, one
needs to use a polynomial of at least fourth order along a given
coordinate. However, it has been observed that the expansion
of the potential energy up to the third order around an energy
minimum already yields a reasonable approach to disentangle

FIG. 3. Displacement fields of the linear and the nonlinear modes
that have the largest overlap with the displacement field rAB of a
DW potential. The size of the particles is proportional to the particle
displacement. The 10 particles that move the most in the rAB field
are shown in red. In the box faces, the corresponding projections are
shown. Data are for a glass with Tf = 0.062. The overlap coefficients
defined by Eqs. (7) and (8) are c ≈ 0.95, a ≈ 0.97 for the nonlinear
mode and c ≈ 0.14, a ≈ 0.19 for the linear mode.

soft QLMs from phonons [38]. In our analysis we thus con-
sider cubic nonlinear normal modes, defined as vectors that
minimize the energy barrier in the third-order approximation
[38], i.e., vectors π that satisfy

Mπ = M : π π

U
... π π π

U : π π, (5)

where a colon denotes the contraction of a Greek index. In
contrast to linear modes, it is difficult to find all the solutions
of the nonlinear Eq. (5). In our analysis, we thus find nu-
merically only one particular solution, by using the iterative
scheme suggested in [38]. We start from an initial guess π0

(to be specified below), and we iterate a recursive equation
derived from Eq. (5),

πn+1 = M : πnπn

U
... πnπnπn

M−1U : πnπn, (6)

to find π1, then from π1 to find π2, and so on. After several
iterations, the vector πn converges to a nonlinear mode. Of
course, such a procedure does not allow one to find the full
set of nonlinear modes of the system, and it is not guaranteed
that the nonlinear mode is the closest one to the initial guess.
Nevertheless, with these caveats in mind, this is the algorithm
that we will use in our analysis due to the difficulty of finding
a complete set of nonlinear modes.

IV. RESULTS

We now report the results of the calculations described
above, for all DW potentials in the data set obtained in [30].
For Tf = 0.062, 0.07, 0.092, there are 14 202, 21 109, and
117 339 DW potentials, respectively. Of these, 61, 291, 1008
are active TLSs using argon units, and 28, 46, 248 are active
using NiP units, respectively.

As a measure of overlap between a displacement field r and
a normal mode v, we will focus on two quantities: the simple
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FIG. 4. Normalized scalar product cα of the linear vibrational modes with r12 versus their participation ratio, for different number Nb of
images in the NEB, for a selected active TLS (energy splitting E = 8.54 × 10−4) for Tf = 0.062. The modes are numbered starting from 4,
mode 4 being thus the softest mode.

normalized scalar product of 3N-dimensional vectors,

c(v) = |r · v|
|r||v| , (7)

and the scalar product of N-dimensional vectors obtained by
collecting the absolute values of particle displacements,

a(v) =
∑N

i=1 |ri||vi|√∑N
i=1 |ri|2

∑N
i=1 |vi|2

, (8)

where ri and vi are the displacements of particle i in the r and
v vectors. The parameter a ignores the polarization of vectors
and compares only the mobility of particles, and hence is an
analog of the “softness” field used in [41] for a single mode.

A. Tangent vectors are parallel to a soft QLM

For a given energy minimum, we can compute all the linear
modes. Their participation ratio as a function of frequency
is given in Fig. 2, and an example of the real-space profile
of a linear and a nonlinear QLM are given in Fig. 3. In this
specific case linear and nonlinear modes give significantly
different results. The statistical differences between those two
approaches will be discussed in the following.

Our first result is that, in the limit of an infinite number of
NEB images (Nb → ∞), when the path becomes continuous,
the tangent vector r12 to the minimal energy path in minimum

A coincides with one of the softest linear modes in the same
minimum. To prove this, for a selected DW potential, we show
in Fig. 4 the scalar product cα between r12 and all the vibra-
tional modes in minimum A, here labeled by α = 1, . . . , 3N .
Note that the first three modes are trivial zero modes related
to translational invariance, hence the nontrivial modes are la-
beled by α = 4, . . . , 3N . We clearly see that, upon increasing
Nb from 40 to 600, the overlap with mode 4, which is a QLM,
increases while all the other overlaps decrease. Hence, we
conclude that in the limit Nb → ∞, r12 becomes essentially
parallel to a soft QLM. Note that most of our simulations have
been conducted with Nb = 40, and that increasing the number
of beads to Nb = 600 makes the NEB calculation very com-
putationally expensive, forcing us to restrict this investigation
to a small number of DW potentials.

To provide further support for this statement, in Fig. 5 we
report the probability distribution of the maximum overlap,
c = maxα cα , between linear modes and r12, over a subset of
DW potentials, as described in the figure caption. We observe
that in all cases, c > 0.4, and that in most cases c is quite
close to one, which confirms that the tangent vector is indeed
parallel to a linear mode. Note that the results of Fig. 5 are for
Nb = 40, and we expect c to increase upon increasing Nb.

The fact that r12 is parallel to a linear mode, typically a
soft QLM, implies that in real space there is always a soft
QLM whose localized core is close to the particles that move

r12 rAS rAB

FIG. 5. Distribution over DW potentials of the largest mode projection, c = maxα cα , calculated over all modes for r12, rAS , and rAB. Here
we used Nb = 600, and since the NEB calculation is expensive, we have used a smaller subset of all DW potentials, selecting only TLSs with
energy splitting E < 10−3 and participation ratio of the DW transition PRDW < 5 (note that the PR for DW potentials is normalized differently
than for normal modes; see [30]) for Tf = 0.062.
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FIG. 6. Scatter plot of the tunnel splitting E versus the frequency
ω in minimum A, for all DW potentials found at Tf = 0.062

the most in the DW. Hence, soft QLMs are good predictors
of the spatial location of DW potentials. Yet, as we show in
the following, the overlap with the displacement vector rAB
is reduced, which suggests that some of the particles’ motion
involved in the rearrangement is not captured by QLMs.

B. The frequency in a minimum is anticorrelated
with the tunnel splitting

Another interesting observation concerns the relation be-
tween the curvature ω of the energy profile along the transition
path (which, as discussed in Sec. IV A, coincides with the
frequency of a soft QLM) and the tunnel splitting E associated
to the DW potential. In Fig. 6 we report a scatter plot of these
two quantities, which shows a marked anticorrelation.

We thus conclude that, although the vector r12 is strongly
associated with a soft linear mode, its frequency is not among
the softest, and in particular the DW potentials with lowest
splitting are associated to relatively higher frequencies. This

behavior likely arises due to the fact that active TLSs typically
display a symmetric DW profile, with a relatively high barrier
and hence a relatively high frequency of the two wells [30].

C. Linear modes are poor predictors of the minimal
energy path curvature

We now discuss whether the linear modes of minimum A
are good predictors of the transition path associated with a
DW, as encoded by the minimum-to-saddle displacement rAS
and by the minimum-to-minimum displacement rAB. In Fig. 5
we compare the statistics of the maximum overlap coefficient
c = maxα cα of linear modes with r12, rAS , and rAB. From
these figures we clearly see that the values of c for rAS and
rAB are much smaller than for r12. We thus conclude that the
minimal energy path between two energy minima, which (as
shown in Sec. IV A) tends to start along one of the softest
modes locally around each minimum, markedly changes its
direction upon approaching the saddle point. We find that
linear modes are poor predictors of this change of direction.

D. Nonlinear modes are better correlated with the minimum
energy path curvature

We next consider whether nonlinear modes can be better
predictors of the direction of the minimum energy path around
the saddle point S or the arrival minimum B. Because most of
the data we will show are qualitatively similar for rAB and rAS ,
we will focus on the former for the rest of this section.

In order to find the closest nonlinear mode to the minimum
energy path, we use π0 = rAB/|rAB| as an initial guess for the
iterative procedure in Eq. (6), and we iterate until convergence
to the corresponding nonlinear mode. We then compute the
overlap coefficients c and a between the nonlinear mode and
rAB, defined respectively in Eq. (7) and Eq. (8). In order to
provide a direct comparison with linear modes, we find the
linear mode that has the maximum overlap (a or c) with

FIG. 7. Probability distribution of overlap coefficients c and a for linear and nonlinear modes, obtained from a recursive procedure, starting
from rAB as initial guess. Data are for the three preparation temperatures Tf and for the full set of DW potentials.
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FIG. 8. Overlap of the softest localized linear modes, and of the
nonlinear modes that are constructed using those linear modes as an
initial condition, with the displacement field rAB. Data are for Tf =
0.062 and for the full set of DW potentials.

rAB. The statistics of a and c is shown in Fig. 7 for the full
set of available DW potentials at the three Tf values. From
these plots, one can see that nonlinear modes generally have
a much stronger overlap with rAB than do the linear modes,
but nevertheless, for a large fraction of DW potentials, the
overlap remains small even for nonlinear modes. It is very
important to stress that in this analysis we used the a priori
known information encoded in rAB as an initial guess to search
for the closest nonlinear mode to the reaction path. Hence, we
expect the values reported in Fig. 7 to provide an upper bound
on the possible overlaps.

We have repeated the same analysis, without assuming
any a priori knowledge about the second minimum. We first
diagonalize the Hessian matrix in minimum A, and identify
the softest mode, which we use as an initial guess for the non-
linear mode search. We then compare the resulting nonlinear
mode with rAB by computing the overlap c, shown in Fig. 8 for
the linear mode used as initial guess and for the correspond-
ing nonlinear mode. We observe in this case that linear and
nonlinear modes have comparably poor predictive power. Of
course, we cannot exclude that there is another DW starting
from minimum A and connecting to another minimum B′,
which might be better correlated with these modes, although
this scenario seems unlikely to us.

Finally, we investigated whether the energy profile along
the nonlinear modes we found using this procedure, i.e.,
v(s) = V (rA + sπ ), displays a DW shape, and we did not find
any DW in approximately 95% of cases. This is consistent
with results reported in [65] and illustrates the complexity of
the energy landscape in which TLSs reside.

V. CONCLUSIONS

In this paper, we have investigated the relationship between
QLMs and TLSs in silico in a model glass, exploiting the

TLS library constructed in [30]. We find that soft QLMs are
generally associated with the initial direction of the minimum
energy path connecting two minima, and as a consequence,
DW potentials are spatially located close to a soft QLM.
However, the frequency of the QLMs is anticorrelated with
the tunnel splitting associated to the DW, hence TLSs are
typically not associated to the softest modes, which on the
contrary are expected to be responsible for plasticity [53,66].
We conclude that QLMs with properly tuned frequency could
serve as good predictors of the spatial location of TLSs. How-
ever, we also find that the minimal energy path is strongly
curved within the high-dimensional phase space, in such a
way that the saddle point and the secondary minimum are
poorly correlated with the direction of the initial tangent
vector. We find that linear modes are poor predictors of the
minimum-to-saddle or minimum-to-minimum directions.

We have also considered nonlinear cubic modes [38], and
we found that one of these modes is often well correlated with
the minimum-to-minimum direction rAB. However, locating
this individual mode is difficult: if the search is initialized with
rAB itself, convergence to the correct mode is facile. If, on
the contrary, the search is initialized in a soft linear mode,
convergence to the correct nonlinear mode does not occur. We
conclude that in the absence of some prior information about
the direction of rAB, it is difficult to predict the more global
displacement field associated with TLSs via either linear or
nonlinear modes.

The problem of finding good structural predictors for TLSs
thus remains somewhat open. It is possible that better search
strategies could exploit the information contained in linear
or nonlinear modes more efficiently. Machine learning tech-
niques [67,68] might be able to exploit this information (and
perhaps additional structural information) to achieve better
performance at contact prediction. Exploring this possibility
is a clear direction for future work.
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