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Energy-efficient spin injector into semiconductors driven by elastic waves
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The generation of significant spin imbalance in nonmagnetic semiconductors is crucial for the functioning
of many spintronic devices, such as magnetic diodes and transistors, spin-based logic gates, and spin-polarized
lasers. An attractive design of spin injectors into semiconductors is based on spin pumping from a precessing
ferromagnet, but the classical excitation of magnetization precession by a microwave magnetic field leads to the
high-power consumption of the device. Here, we describe theoretically a spin injector with greatly reduced
energy losses, in which the magnetic dynamics is excited by an elastic wave generated in a ferromagnet-
semiconductor heterostructure by an attached piezoelectric transducer. To demonstrate the efficient functioning
of such an injector, we first perform micromagnetoelastic simulations of the coupled elastic and magnetic
dynamics in Ni films and Ni/GaAs bilayers traversed by plane longitudinal and shear waves. For thick Ni
films, it is shown that a monochromatic acoustic wave generates a spin wave with the same frequency and
wavelength, which propagates together with the driving wave over distances of several micrometers at excitation
frequencies ν ≈ 10 GHz close to the frequency of ferromagnetic resonance. The simulations of Ni/GaAs
bilayers with Ni thicknesses comparable to the wavelength of the injected acoustic wave demonstrate the
development of a steady-state magnetization precession at the Ni|GaAs interface. The amplitude of such a
precession has a maximum at Ni thickness amounting to three quarters of the wavelength of the elastic wave,
which is explained by an analytical model. Using simulation data obtained for the magnetization precession at
the Ni|GaAs interface, we evaluate the spin current pumped into GaAs and calculate the spin accumulation in
the semiconducting layer by solving the spin diffusion equation. Then the electrical signals resulting from the
spin flow and the inverse spin Hall effect are determined via the numerical solution of the Laplace’s equation. It
is shown that amplitudes of these ac signals near the interface are large enough for experimental measurement,
which indicates an efficient acoustically driven spin pumping into GaAs and a rather high spin accumulation in
this semiconductor.
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I. INTRODUCTION

Semiconductors are attractive for the development of spin-
tronic devices due to their large spin diffusion lengths in
comparison with transition metals [1,2], long spin relaxation
times [3], and the possibility of manipulating the electrons’
spin by polarized light [4,5]. However, the application of con-
ventional nonmagnetic semiconductors in spintronics requires
the generation of an internal spin imbalance by an external
stimulus or via an attached magnetic material [6]. The sim-
plest method to create such an imbalance would be the direct
injection of a spin-polarized charge current from a metal-
lic ferromagnet through Ohmic contact, but the conductance
mismatch at the semiconductor-metal interface makes this
method inefficient [7]. The presence of a thin insulating inter-
layer acting as a tunnel barrier solves the mismatch problem
[8–11], but requires the fabrication of a high-quality inter-
layer unless the formation of a natural Schottky barrier with
the appropriate parameters occurs [8]. Alternatively, the spin
imbalance in the semiconductor can be created by bringing it
into direct contact with a precessing ferromagnet [12,13]. The
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resulting spin pumping into the nonmagnetic semiconductor
is due to the modulation of the interface scattering matrix by
the coherent precession of the magnetization [12].

Typically, in spin pumping experiments magnetization dy-
namics is excited by an external microwave magnetic field
with the frequency matching that of the ferromagnetic res-
onance. The efficient generation of spin currents in normal
metals by this technique has been demonstrated experimen-
tally [14–19]. The spin pumping into semiconductors from
metallic ferromagnets [20–23] and ferrimagnetic insulators
[24] subjected to microwave radiation has been revealed as
well. However, the power consumption associated with the
generation of microwave magnetic fields appears to be rather
high, which impedes applications of magnetically driven spin
injectors in low-power spintronics. For this reason, alternative
spin pumping techniques have been studied during the past
decade, one of which is based on the excitation of magne-
tization dynamics in ferromagnets by injected elastic waves
[25–34]. Since such waves can be generated by a piezoelectric
transducer coupled to the ferromagnet and subjected to an ac
electric field, the power consumption of elastically driven spin
injectors is expected to be comparatively low [34–36]. Exper-
imental and theoretical studies have demonstrated an efficient
generation of spin currents in normal metals by surface and
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bulk acoustic waves, but the strain-driven spin pumping into
semiconductors was not investigated so far.

In this paper, we theoretically describe a spin injector
into nonmagnetic semiconductors, which employs spin pump-
ing generated by a dynamically strained ferromagnetic film.
The injector has the form of a ferromagnet-semiconductor
bilayer coupled to a piezoelectric transducer excited by a
microwave voltage. Such a transducer creates a bulk elastic
wave propagating across the bilayer, which induces a radio-
frequency magnetization precession providing efficient spin
pumping into the semiconducting layer. To quantify the elas-
tically driven magnetic dynamics in the ferromagnetic film,
we employ state-of-the-art numerical simulations allowing for
two-way coupling between spins and strains (see Sec. II).
The simulations are performed for (001)-oriented Ni films
and Ni/GaAs bilayers traversed by plane longitudinal and
transverse acoustic waves. For thick Ni films, tightly cou-
pled elastic and magnetic dynamics are described (Sec. III),
which involve the generation of a spin wave carried by the
propagating elastic wave. In Sec. IV, we report the results of
numerical simulations performed for Ni/GaAs bilayers with
the Ni thickness comparable to the wavelength of the propa-
gating elastic wave and discuss the influence of the thickness
of the ferromagnetic layer and the excitation frequency on
the amplitude of the magnetization precession at the Ni|GaAs
interface (Sec. IV). Numerical results obtained for the steady-
state magnetization precession at the interface are then used
to calculate the spin pumping into the GaAs film and to deter-
mine the spin accumulation in the semiconductor by solving
the spin diffusion equation (Sec. V). It is shown that the
proposed injector has a high efficiency ensuring significant
spin flux in GaAs, which can be detected experimentally via
the inverse spin Hall effect. The results are summarized in
Sec. VI.

II. MODELING OF MAGNETOELASTIC PHENOMENA
IN FERROMAGNETIC HETEROSTRUCTURES

Owing to the magnetoelastic coupling between spins and
strains, the excitation of an elastic wave in a ferromagnetic
material can induce a precessional motion of the magne-
tization and the generation of a spin wave [25,27,37–42].
The backaction of the induced magnetization precession
on the strain state of a ferromagnet may significantly af-
fect the propagation of the driving elastic wave and lead
to the appearance of additional “secondary” waves [31,33].
Therefore, the two-way interplay between the elastic and
magnetic variables [43] should be fully taken into account
for an accurate modeling of the magnetoelastic phenomena
in ferromagnets. Such micromagnetoelastic modeling can be
realized via the numerical solution of the system of differen-
tial equations comprising the elastodynamic equation for the
mechanical displacement u and the Landau-Lifshitz-Gilbert
(LLG) equation for the magnetization M [31,33,44,45]. The
elastodynamic equation should allow for the magnetoelas-
tic contribution δσ ME

i j to the mechanical stresses σi j in the
ferromagnet, which can be calculated as δσ ME

i j = ∂FME/∂εi j ,
where FME is the magnetoelastic energy density, and εi j are
the elastic strains (see the Appendix for equations and the
definition of εi j). The influence of strains on the magnetization

FIG. 1. Ferromagnet-semiconductor heterostructure comprising
Ni and GaAs layers. An elastic wave (longitudinal or transverse)
with the wave vector k is injected into the Ni layer by the attached
piezoelectric transducer. The thicknesses of the Ni and GaAs layers
are denoted by tF and tN, respectively. Precessing magnetization in
Ni creates a spin imbalance in GaAs, which then produces a measur-
able voltage Vs between an attached iron probe and a nonmagnetic
contact.

orientation can be quantified by adding a magnetoelastic term
HME = −(1/μ0)∂FME/∂M to the effective magnetic field Heff

involved in the LLG equation (μ0 being the magnetic perme-
ability of free space). For cubic ferromagnets such as nickel,
the magnetoelastic contribution to the total energy density F
can be written as

FME =B1

[(
m2

x − 1

3

)
εxx +

(
m2

y − 1

3

)
εyy +

(
m2

z − 1

3

)
εzz

]

+ 2B2[mxmyεxy + mxmzεxz + mymzεyz], (1)

where m = M/Ms is the unit vector in the magnetiza-
tion direction, which we will call simply “magnetization”
below, Ms is the saturation magnetization regarded as a
strain-independent quantity, and B1, B2 are the magnetoelastic
coupling constants [46].

In this work, we performed micromagnetoelastic simu-
lations of Ni films and Ni/GaAs bilayers subjected to a
periodic displacement u(x = 0, t ) = u0(t ) imposed at the Ni
surface x = 0 (Fig. 1). Such a displacement models the ac-
tion of a piezoelectric transducer coupled to the Ni film and
generates a plane elastic wave traversing the heterostructure
[31,33]. To excite a longitudinal wave characterized by the
strain εxx(x, t ), we introduced surface displacement with the
components u0

y = u0
z = 0 and u0

x = umax sin (2πνt ), while a
transverse wave with shear strain εxz(x, t ) was created by
setting u0

x = u0
y = 0 and u0

z = umax sin (2πνt ). The excitation
frequency ν was varied in a wide range spanning the reso-
nance frequency νres of the coherent magnetization precession
in the unstrained Ni film, which was determined by sim-
ulations of the magnetization relaxation to its equilibrium
orientation. To ensure the same maximal strain in the elastic
wave at any excitation frequency ν, the displacement ampli-
tude umax was taken to be inversely proportional to ν. Namely,
we used the relations umax = εmax

xx /kL and umax = 2εmax
xz /kT

for longitudinal and transverse waves, respectively, where
kL = 2πν/cL and kT = 2πν/cT are the wave numbers of
these waves having velocities cL and cT . In a real experi-
ment, once the optimal excitation frequency that maximizes
the magnetization precession is known from simulations, only
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TABLE I. Elastic stiffnesses and mass densities of Ni and GaAs
[50] used in numerical calculations. Velocities cL = √

c11/ρ and
cT = √

c44/ρ of longitudinal and transverse elastic waves in these
materials are also given for information.

Ni GaAs

c11 (1011 J m−3) 2.481 1.188
c12 (1011 J m−3) 1.549 0.537
c44 (1011 J m−3) 1.242 0.594
ρ (kg m−3) 8910 5317
cL (m s−1) 5277 4726
cT (m s−1) 3734 3344

one transducer with the desired output displacement at that
specific frequency needs to be manufactured, which can be
achieved by appropriately choosing its thickness, material
parameters, and the strength of the applied voltage signal
(for a detailed discussion, see Sec. II in Ref. [33]).

The magnetization dynamics in the Ni film was quantified
using the LLG equation with the effective magnetic field
Heff comprising contributions resulting from the exchange
interaction, cubic magnetocrystalline anisotropy, magne-
toelastic coupling, Zeeman energy, and dipolar interactions
between oscillating spins [30]. For numerical calculations,
we characterized Ni by the saturation magnetization
Ms = 4.78×105 A m−1 [47], exchange constant Aex =
0.85×10−11 J m−1 [47], magnetocrystalline anisotropy con-
stants K1 = −5.7×103 J m−3, K2 = −2.3×103 J m−3 [48],
magnetoelastic constants B1 = 9.2×106 J m−3, B2 =
10.7×106 J m−3 [48], and Gilbert damping parameter αG of
0.045 [49]. The elastic stiffnesses c11, c44 and mass densities
ρ of Ni and GaAs, which are involved in their elastodynamic
equations of motion, were taken from Ref. [50] and listed
in Table I together with the velocities cL and cT of elastic
waves in these materials. No elastic damping was added
to the elastodynamic equation in our simulations for the
following reasons. First, we are interested in investigating
the purely magnetic damping of elastic waves in Ni, and
the introduction of intrinsic elastic damping would obscure
simulation results described in Sec. III. Second, in Sec. IV we
consider Ni/GaAs bilayers comprising Ni films much thinner
than the decay lengths of the longitudinal and transverse
elastic waves in Ni, which are measured to be 5.8 and 29 μm,
respectively, at the relevant frequency of 9.4 GHz [51].

Micromagnetoelastic simulations were performed with the
aid of homemade software operating with a finite ensemble of
nanoscale computational cells (for details of the algorithm, see
Refs. [30,31,33]; the code for computation was written in JU-
LIA language and for processing and visualization in PYTHON

language). Our software solves the elastodynamic equations
of Ni and GaAs films by a finite-difference technique with a
midpoint derivative approximation and numerically integrates
the LLG equation by the projective Runge-Kutta algorithm.
We employed a fixed integration step δt = 100 fs and set the
size of cubic computational cells to 2 nm, which is smaller
than the exchange length lex = √

2Aex/(μ0M2
s ) ≈ 7.7 nm of

Ni. The system of partial differential equations was appended
by appropriate boundary conditions. At the free surface of

the GaAs layer, the stresses σix were set to zero, and the
“free-surface” condition ∂m/∂x = 0 was imposed at both
boundaries of the Ni layer, which follows from the interfacial
magnetic boundary condition [52] and reflects the absence
of any significant influence of the exchange interaction from
either GaAs or the piezoelectric transducer. Since a unified
ensemble of computational cells covering the whole Ni/GaAs
bilayer was employed in the simulations, the continuity con-
ditions at the Ni|GaAs interface were satisfied automatically.
The layers comprising the heterostructure were considered
infinite in the y-z plane and the dynamical quantities were
allowed to change only along the x direction; this infinite
geometry was accounted for in the computation of the demag-
netizing field.

III. MAGNETIC DYNAMICS EXCITED
BY LONGITUDINAL AND TRANSVERSE

ELASTIC WAVES IN THICK Ni FILMS

An elastic wave perturbs the ferromagnetic state when it
creates a nonzero magnetoelastic torque TME = M × HME

acting on the magnetization M. In the case of the longi-
tudinal wave εxx(x, t ), the effective field HME has the only
nonzero component HME

x = −2B1εxxmx/(μ0Ms). Therefore,
an external magnetic field H creating the direction cosine
mx in the in-plane magnetized Ni film should be applied to
generate the magnetization dynamics. To additionally stabi-
lize the single-domain state, we introduced the field along
the [111] crystallographic direction (easy axis), taking Hx =
Hy = Hz = 1000 Oe. At such a field, the magnetization in
the unstrained Ni film has an elevation angle ψ ≈ 46◦ (mx =
0.137) and equal projections on the [100] and [010] directions
(my = mz = 0.700 44). The same magnetic field was used in
the simulations of magnetic dynamics induced by the shear
acoustic wave εxz(x, t ), which facilitates the comparison of
results obtained for two types of elastic perturbations.

At the chosen magnetic field H, the resonance frequency
νres of the unstrained Ni film with in-plane dimensions much
larger than the film thickness tF was found to be 9.6 GHz.
Accordingly, the excitation frequency was varied in a wide
range around 10 GHz. By selecting the appropriate amplitudes
umax(ν) of the surface displacements u0

x (t ) or u0
z (t ), we created

the maximal strains εmax
xx = εmax

xz = 10−4 in the excited elas-
tic waves near the Ni surface x = 0. Simulations were first
performed for Ni films with thicknesses tF much larger than
the wavelengths λL = cL/ν and λT = cT /ν of the pure elastic
waves, which amount to λL = 550 nm and λT = 389 nm at
the resonance excitation ν = νres. This allows the observation
of several wave periods inside the ferromagnetic film. Since in
this section we concentrate on the propagation of elastic waves
in Ni and their interaction with the magnetic subsystem, the
simulation time was limited by the period needed for the wave
to reach the opposite boundary of the Ni film. The effects of
the wave reflection from the Ni|GaAs interface are discussed
in Sec. IV.

The simulations of the coupled elastic and magnetic dy-
namics in thick Ni films confirmed the creation of periodic,
almost sinusoidal elastic waves at all studied excitation fre-
quencies ν (see Fig. 2). The wave emerges at the Ni surface
and propagates away with the velocity cL or cT characteristic
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FIG. 2. Spatial distributions of strains in the driving (a) longitu-
dinal and (b) transverse elastic waves and strain-induced variations
of the magnetization direction cosines mi in the 2-μm-thick Ni film.
Excitation frequency ν is equal to the resonance frequency νres =
9.6 GHz, and snapshots are taken at (a) 0.37 ns and (b) 0.52 ns.

of a pure elastic wave despite an inhomogeneous magnetiza-
tion precession excited by the magnetoelastic torque TME (see
Fig. 2). However, the strain-induced precession manifests it-
self in the generation of additional elastic waves caused by the
magnetoelastic feedback (see Fig. 3). These secondary strain
waves were already revealed by micromagnetoelastic simu-
lations performed for Fe81Ga19 and CoFe2O4 films [31,33],
but were not detected in simulations of the propagation of
longitudinal elastic waves in Ni [44]. When the driving wave
is a longitudinal one, two transverse secondary waves with the
strains εxy(x, t ) and εxz(x, t ) having amplitudes ∼10−7 appear
in Ni. Their profiles depend on the position in the film, exhibit-
ing a peculiar behavior similar to that of the secondary waves
arising in CoFe2O4 excited by longitudinal elastic waves [33].
This behavior is caused by the interference of the two compo-
nents of each secondary wave, which have the form of a shear
wave with the wavelength λT and velocity cT freely propa-
gating from the Ni surface and a forced shear wave with the
wavelength λL and velocity cL generated in the whole driving
longitudinal wave. When the driving wave is a transverse one
[εxz(x, t )], a longitudinal secondary wave εxx(x, t ) and another
shear wave εxy(x, t ) with amplitudes ∼10−6 are generated by
the magnetization precession. Similarly to the aforementioned
situation, the longitudinal wave appears to be a superposition

FIG. 3. Secondary elastic waves generated by the magnetization
precession induced by the primary (a) longitudinal and (b) transverse
waves in the 2-μm-thick Ni film. Snapshots are taken at 0.37 ns.

of a free wave with the wavelength λL and velocity cL and
a forced wave with the parameters λT and cT . In contrast,
the secondary shear wave can be regarded as a single wave
because its wavelength λT and velocity cT match those of the
driving wave.

The magnetization precession induced by the primary elas-
tic wave also affects its propagation at long distances from the
Ni surface. A careful evaluation of the local strain amplitudes
εmax

xx and εmax
xz in the driving longitudinal and transverse waves

reveals that they decrease with increasing distance x from the
Ni surface. This decay is caused by the energy transfer to
the magnetic subsystem, where the strain-driven magnetiza-
tion precession is hindered by the Gilbert damping [33]. The
analysis of the simulation results shows that the dependences
εmax

xx (x) and εmax
xz (x) can be fitted by an exponential function

e−x/Ldec , where the decay length Ldec depends on the wave
frequency ν. At a resonance excitation ν = 9.6 GHz, Ldec

amounts to approximately 350 μm for the longitudinal wave
and about 19 μm for the shear wave. This finding explains
why no damping of a magnetic origin was detected in sim-
ulations of the propagation of longitudinal elastic waves in
Ni through a short distance of 300 nm [44]. At the same
time, it was shown experimentally that surface acoustic waves
(SAWs) can propagate in a Ni film over a distance of sev-
eral millimeters [42]. This absence of significant damping
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observed for the studied SAWs with frequencies not exceed-
ing 500 MHz is very different from the results of Homer et al.
[51], who reported a decay length Ldec ≈ 5.8 μm for a longi-
tudinal wave with a frequency of 9.4 GHz in Ni. The reason
for such a difference most probably lies in a drastic reduction
of damping, which should happen when the frequency of the
elastic wave changes from about 10 GHz to several hundreds
of MHz. As for the damping of transverse elastic waves in
Ni, our results show that the magnetic damping of elastic
waves (Ldec ≈ 19 μm) could be stronger than the damping
of electronic origin (measured Ldec ≈ 29 μm [51]) at wave
frequencies around 10 GHz.

Most important of all, the magnetoelastic interaction leads
to the formation of a spin wave tightly coupled to the driving
elastic wave. The spin waves predicted by our simulations
have sinusoidal time dependences under both types of elastic
excitation, which differs from a nonsinusoidal time depen-
dence reported in Ref. [44] for the spin wave generated by a
longitudinal acoustic wave having a near-resonance frequency
of 10 GHz. Regarding the spin-wave amplitude, the trans-
verse elastic wave appears to be much more efficient for the
generation of spin waves in Ni than the longitudinal wave
at the chosen equilibrium magnetization orientation [com-
pare Figs. 2(a) and 2(b)]. Similarly to elastically generated
spin waves in Fe81Ga19 and CoFe2O4 films [31,33], the spin
wave propagating in a thick Ni film has the same frequency
and wavelength as the driving strain wave. Since both waves
(spin and elastic) travel with the same velocity cL or cT

and obey a purely elastic dispersion relation kL = 2πν/cL

or kT = 2πν/cT , the driving wave acts as a carrier of the
spin wave having a forced character. Furthermore, the decay
length of the spin wave carried by the longitudinal acoustic
wave matches the decay length Ldec ≈ 350 μm of the latter
in our simulations, which agrees with the behavior predicted
for CoFe2O4 films [33]. However, in the case of the excitation
by a shear wave, the spin-wave decay length is significantly
smaller than that of the driving wave, being roughly 9 μm
instead of 19 μm. Despite this peculiarity, the acoustically
driven spin waves with frequencies ν ≈ 10 GHz can still
propagate in Ni over long distances of several micrometers,
which is important for magnon spintronics.

IV. MAGNETOELASTIC DYNAMICS
IN Ni/GaAs BILAYERS

Now we turn our attention to Ni/GaAs bilayers comprising
relatively thin Ni layers with the thickness tF comparable to
the wavelength of the driving elastic wave with a frequency
ν ∼ νres, which are most suitable for applications in miniature
spin injectors (see Sec. V). The magnetoelastic dynamics in
such bilayers is of a more complicated character due to re-
flections of the elastic waves from the Ni|GaAs interface and
the GaAs free surface. Fortunately, owing to similar acoustic
impedances of Ni and GaAs, the transmittance of the driving
longitudinal or transverse wave through the Ni|GaAs interface
is close to unity (about 0.9 with respect to energy). In contrast,
the driving wave fully reflects from the GaAs free surface,
and the reflected wave strongly disturbs the magnetization
dynamics when it penetrates back into the Ni layer. In order to
avoid this complication, we imparted a strong artificial elastic

FIG. 4. Time dependence of the magnetization precession at the
Ni|GaAs interface excited by (a) longitudinal or (b) transverse elastic
waves with the frequency ν = νres = 9.6 GHz. Thickness tF of the Ni
film in each case is equal to a corresponding wavelength λL or λT .
The first 2 ns are shown; after that the magnetization continues to
precess in a stationary mode with a constant amplitude.

damping to GaAs by adding a term proportional to veloc-
ity v = ∂u(x, t )/∂t to Eq. (A2), which is sufficient to force
any elastic wave to vanish before it reaches the free surface,
but does not change significantly the strain dynamics at the
Ni|GaAs interface. In a real device, the reflected wave could
be eliminated by attaching a perfect elastic absorber to the
GaAs film. Such absorbers can be based on the transformation
method [53] or the use of metamaterials [54–56].

The simulations demonstrated that the elastically driven
magnetization dynamics in Ni layers with thicknesses tF about
λL or λT remains to be highly inhomogeneous at the reso-
nance excitation ν = νres. Initially the magnetic dynamics has
the form of a spin wave, but it assumes a complex charac-
ter after several reflections of the driving elastic wave from
the boundaries of the Ni layer. However, near the interface
the magnetization precesses with a constant frequency and
amplitude in a steady-state regime, which settles in after a
transition period of about 1 ns (Fig. 4). Performing a series of
simulations at different thicknesses of Ni layers, we found that
the amplitude of the magnetization precession at the interface
has local maxima at Ni thicknesses amounting to 0.25, 0.75,
1.25, and 1.75 of the wavelength λL or λT (Fig. 5). This result
differs from that obtained for Fe81Ga19/Au and CoFe2O4/Pt
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FIG. 5. Amplitude of the magnetization precession at the
Ni|GaAs interface as a function of the Ni thickness tF normalized
by the wavelength λ of the driving longitudinal or transverse elastic
wave. The plots show the maximal change �mx of the out-of-plane
direction cosine mx (x = tF, t ) normalized by the largest value of
�mx in the studied thickness range. The excitation frequency equals
νres = 9.6 GHz.

bilayers in our previous works [31,33], where such an ampli-
tude maximizes at the ferromagnet’s thickness equal to one
wavelength of the driving elastic wave.

To understand the revealed behavior of ferromagnetic-
nonmagnetic (F/N) bilayers, we investigated the dependence
of the strain amplitude at the interface on the thickness tF of
the F layer. The analysis of the results of simulations showed
that in all studied bilayers the precession amplitude in the
steady-state regime becomes maximal whenever the strain
amplitude maximizes. Therefore, we considered a general
elasticity problem of finding the strain distribution in an elas-
tic F/N bilayer subjected to a periodic surface displacement
uF

i (x = 0, t ) = umaxe−iωt . Despite multiple reflections of the
elastic waves from the boundaries of the F layer, the steady-
state solution for the elastic displacement uF

i (x, t ) inside this
layer can be written as a superposition of two waves with
the same frequency ω = 2πν. Indeed, due to the principle
of superposition in linear elasticity any number of interfering
sinusoidal waves with the same frequency but different ampli-
tudes and phases produce another sinusoidal wave of the same
frequency with its own amplitude and phase [57]. Hence, we
can write

uF
i (x, t ) = AF

i ei(kF
i x−ωt ) + BF

i e−i(kF
i x+ωt ), (2)

where the first term corresponds to the waves propagating
towards the F|N interface, while the second term describes
the waves reflected from the F|N interface; AF

i and BF
i are

the unknown amplitudes of these waves, and kF
i is the wave

number of the longitudinal (i = x) or transverse (i = y or z)
wave in the F layer. Since we neglect the reflections from the
free surface of the N layer, only the transmitted elastic wave
exists in it, and the displacement uN

i (x, t ) has the form

uN
i (x, t ) = AN

i ei(kN
i x−ωt ), (3)

where AN
i and kN

i are the amplitude and wave number of
the transmitted wave. The mechanical boundary conditions

FIG. 6. Expected thickness dependences of the strain amplitudes
at the interface between Ni and GaAs layers and CoFe2O4 and Pt lay-
ers. The amplitude of each strain is normalized by its maximal value.
The thickness tF of the ferromagnetic layer is normalized by the
wavelength λ of the excited longitudinal or transverse elastic wave.
The excitation frequency equals 9.6 GHz (Ni/GaAs) and 11 GHz
(CoFe2O4/Pt).

at the F|N interface x = tF yield the displacement continuity
uF

i (x = tF, t ) = uN
i (x = tF, t ) and the stress continuity σ F

ix(x =
tF, t ) = σ N

ix (x = tF, t ). In our model case, the stresses are
given by the relations σ F

ix(x, t ) = cF
αα (1/

√
α)∂/∂x[uF

i (x, t )]
and σ N

ix (x, t ) = cN
αα (1/

√
α)∂/∂x[uN

i (x, t )], where cF
αα and cN

αα

are the elastic stiffnesses of the F and N layers, respectively
(α = 1 at i = x and α = 4 at i = y or z). Combining the
boundary conditions at the F|N interface and the F surface
x = 0 and using Eqs. (2) and (3), one can derive analytic
relations for the unknown amplitudes AF

i , BF
i , and AN

i . The sub-
stitution of these relations back to Eqs. (2) and (3) yields the
formulas for the displacements uF

i (x, t ) and uN
i (x, t ), which

render it possible to calculate the strains εF
ix = (1/

√
α)∂uF

i /∂x
and εN

ix = (1/
√

α)∂uN
i /∂x in the F and N layers. For the strains

εF
ix(x = tF, t ) at the F|N interface after some mathematical

manipulations we obtain

εF
ix(x = tF, t ) = 2iεmax

ix Zαe−iωt

(1 + Zα )F− + (1 − Zα )F+ , (4)

where

Zα =
√

cN
ααρN

cF
ααρF

, F+ = eikF
i tF , F− = e−ikF

i tF .

Equation (4) shows that the amplitude of εF
ix(x = tF, t ) de-

pends on the input strain εmax
ix = (1/

√
α)umaxkF

i , the relative
thickness tF/λL or tF/λT of the F layer, and the dimension-
less parameter Zα of the F/N bilayer, which is governed by
the elastic stiffnesses and densities of the involved materials.
Using Eq. (4), we calculated the dependences of the dis-
cussed strain amplitudes on the relative thickness of the F
layer for the Ni/GaAs and CoFe2O4/Pt bilayers subjected
to a resonance excitation ν = νres. The results presented in
Fig. 6 show that, for a given bilayer, the amplitudes of
εF

xx(x = tF, t ) and εF
zx(x = tF, t ) normalized by their maximal

values follow similar curves (almost identical in the case of
Ni/GaAs) when plotted as a function of tF/λL and tF/λT ,
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FIG. 7. Dependence of the amplitude of the magnetization pre-
cession at the Ni|GaAs interface on the excitation frequency ν.
The points show the maximal deviation �mx (ν ) of the out-of-plane
magnetization direction cosine mx from its equilibrium value. The
thickness of the Ni layer equals three quarters of the wavelength of
the driving longitudinal or transverse elastic wave.

respectively. However, the maximal strain amplitude is
reached at thicknesses tF = (0.25 + 0.5n)λ in Ni/GaAs bi-
layers and at tF = (0.5 + 0.5n)λ in CoFe2O4/Pt ones (λ = λL

or λT , n = 0, 1, 2, 3, . . .). These conditions explain dissimilar
results of our micromagnetoelastic simulations performed for
Ni/GaAs and CoFe2O4/Pt bilayers, which showed that the
precession amplitude at the interface has a maximum at tF =
0.75λ (Ni/GaAs) and tF = λ (CoFe2O4/Pt). Furthermore, the
analysis of Eq. (4) reveals that the character of the strain-
amplitude thickness dependence is governed by the magnitude
of the parameter Zα . Namely, when Zα < 1, the strain ampli-
tude maximizes at tF = (0.25 + 0.5n)λ as it happens in the
Ni/GaAs bilayers (Z1 ≈ Z4 ≈ 0.53), whereas at Zα > 1 the
optimal thicknesses satisfy the condition tF = (0.5 + 0.5n)λ
holding for the CoFe2O4/Pt bilayers (Z1 ≈ 2.34, Z4 ≈ 1.91).
The derived simple criteria open the possibility to predict the
optimal thickness of the ferromagnetic layer that maximizes
the strain and precession amplitudes at the interface for any
F/N bilayer.

Next, we discuss the dependence of the amplitude of the
magnetization precession at the Ni|GaAs interface on the
excitation frequency ν. For the optimal Ni thickness tF =
0.75λ and the driving waves with the initial strain amplitudes
εmax

xx = εmax
xz = 10−4, the simulations predict that the maximal

deviation �mx(ν) of the magnetization direction cosine mx

from the equilibrium value varies with the frequency as shown
in Fig. 7. It can be seen that �mx(ν) reaches a peak at a
frequency νmax slightly higher than the resonance frequency
νres = 9.6 GHz. Namely, νmax amounts to 9.9 GHz for the
precession excited by the longitudinal elastic waves and to
10 GHz for that induced by the transverse waves. The dif-
ference between νmax and νres is due to the inhomogeneity of
the magnetization precession in the elastically generated spin
wave. Indeed, the frequency νsw of such a wave differs from
the frequency νres of coherent magnetization precession due
to additional terms in the dispersion relation, which depend
on the wave vector ksw [58]. In agreement with the results

described in Sec. III, the shear waves appear to be much more
efficient for the excitation of the magnetization precession at
the Ni|GaAs interface (see Fig. 7).

In conclusion of this section, we consider the influence
of thermal fluctuations on the magnetization dynamics at the
Ni|GaAs interface. To quantify this influence, we ran addi-
tional simulations with a stochastic Gaussian noise added to
the effective field Heff [59]. The modeling was performed
for tF = 0.75λ, ν = νmax, εmax = 10−4, and the temperature
T = 293 K. As expected, the simulations showed that the
elastically driven magnetization precession was mixed with
magnetization fluctuations caused by thermal noise. To eval-
uate the influence of thermal fluctuations on spin pumping
into GaAs, we quantitatively analyzed the results of simula-
tions obtained for the magnetization dynamics at the Ni|GaAs
interface. Since experimentally the pumped spin current can
be measured only over an area S much larger than the cross
section 2×2 nm2 of our computational cell, the calculated
time dependences of the magnetization direction cosines �mi

were averaged over a finite number of interfacial cells. Then
the Fourier spectra of the averaged cosines 〈�mi〉(t ) were
calculated for various areas S. It was found that these spectra
contain a sharp maximum at the excitation frequency and
a thermal noise, the amplitude of which reduces with the
increasing area S. Remarkably, the effect of thermal fluctu-
ations becomes insignificant already at S = 60 nm2 for the
magnetization dynamics excited by the transverse elastic wave
and at S = 240 nm2 for the one generated by the longitudinal
wave. In particular, the full width at half maximum of the
main peak at νmax increases by only ∼5% at these areas.
Hence the spin injector described in this paper should have a
good “signal-to-noise ratio” even at room temperature, which
supports its practical applicability.

V. SPIN PUMPING INTO GaAs LAYER

The magnetization precession occurring near the interface
between the ferromagnet and a nonmagnetic conductor gen-
erates the spin pumping into the latter [13]. Using the results
obtained for the magnetization dynamics m(x = tF, t ) induced
by the elastic waves at the Ni|GaAs interface, we can calculate
the spin current flowing in the GaAs layer. The spin-current
density Js(x, t ) is a second-rank tensor characterizing the di-
rection of spin flow and the orientation and magnitude of the
carried spin polarization per unit volume [60]. In the vicinity
of the Ni|GaAs interface, the density JSP(x = tF, t ) of the spin
current pumped into GaAs can be evaluated via the approx-
imate relation en · JSP � (h̄/4π )Re[gr

↑↓]m × ṁ, where en is
the unit vector normal to the interface and pointing into GaAs,
h̄ is the reduced Planck constant, gr

↑↓ is the reflection spin-
mixing conductance per unit area, and a small contribution
caused by the imaginary part of gr

↑↓ is neglected [61]. Since
Re[gr

↑↓] may be set equal to 1.5×1017 m−2 for the Ni|GaAs
interface [20], the above relation and the simulation data on
the temporal variation of m(x = tF, t ) enable us to evaluate
the spin-current density JSP(x = tF, t ).

Figure 8 shows time dependences of three nonzero com-
ponents JSP

x j of the tensor JSP, which settle in the steady-state
regime of the magnetization precession at the excitation fre-
quency ν = νmax. It can be seen that the transverse wave
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FIG. 8. Time dependences of the spin-current densities JSP
x j

pumped into GaAs by the (a) longitudinal and (b) transverse elastic
waves with the frequencies 9.9 and 10 GHz, respectively. The time
period shown in the figure corresponds to the steady-state regime of
the magnetization precession at the Ni|GaAs interface. The thickness
of the Ni layer equals three quarters of the wavelength of the driving
longitudinal or transverse elastic wave.

creates much stronger spin pumping into GaAs than the
longitudinal one. For both types of elastic excitations, the
amplitude of JSP

xx is about two times larger than almost equal
amplitudes of JSP

xy and JSP
xz .

The averaging over the period 1/ν of (almost sinu-
soidal) spin-current variations shows that 〈JSP

xx 〉t is negligible,
whereas there are very small nonzero dc components 〈JSP

xy 〉t =
〈JSP

xz 〉t of the pumped spin current. It should be noted that,
owing to the relatively small reflection spin-mixing conduc-
tance of the Ni|GaAs interface, the spin pumping into GaAs
does not significantly increase the effective damping of the
magnetization precession in Ni [62].

The pumped spin current generates nonequilibrium spin
accumulation μs(x, t ), which gives rise to a spin backflow
at the interface with the density JSB(x = tF, t ) amounting
to en · JSB ≈ −Re[gr

↑↓]μs/4π [13]. The overall spin-current
density Js(x, t ) decays inside the GaAs layer due to spin
relaxation and diffusion. The spatial distribution of the den-

sity Js depends on that of the spin accumulation μs [63],
which is defined in our one-dimensional model by the relation
en · Js(x, t ) = −[σ h̄/(4e2)]∂μs(x, t )/∂x, where e is the ele-
mentary positive charge, and σ is the electrical conductivity,
which amounts to 3.68×104 S m−1 for n+-GaAs [62,64]. We
find the spin accumulation μs(x, t ) by solving the diffusion
equation [63] appended by the boundary conditions for the
spin currents at the Ni|GaAs interface x = tF and the GaAs
free surface x = tF + tN, which read Js(x = tF) = JSP(x =
tF) + JSB(x = tF) and Js(x = tF + tN) = 0. The calculation
yields

μω
s = 4πe2 cosh [κ (tN + tF − x)]

e2 Re[gr
↑↓] cosh (κtN) + πσ h̄κ sinh (κtN)

en · Jω
SP, (5)

where μω
s and Jω

SP denote the complex amplitudes of the
harmonics having an angular frequency ω, which represent
the Fourier components of the spin accumulation μs(x, t )
and spin pumping density JSP(x = tF, t ), and the parameter
κ = λ−1

sd

√
1 + iωτsf depends on the spin diffusion length λsd

and spin-flip relaxation time τsf [65]. Equation (5) differs
from a similar relation derived in Ref. [63] by the account
of the spin backflow. In the case of GaAs, the spin backflow
cannot be neglected because it appears to be rather strong at
λsd = 2.32 μm [64] and τsf = 0.9 ns [3]. Since the elastically
driven spin pumping is almost monochromatic in our setting,
Eq. (5) is valid for the sought relation between μs(x, t ) and
JSP(x = tF, t ) as well, which enables us to calculate the overall
spin-current density Js(x, t ).

Owing to the inverse spin Hall effect (ISHE), the spin
current in the GaAs layer generates a charge current with the
density JISHE

c defined by the formula [17]

JISHE
c (x, t ) = αSH(2e/h̄)en × [en · Js(x, t )], (6)

where αSH = 0.007 is the spin Hall angle of GaAs [20]. Under
the considered open-circuit electrical boundary conditions,
the transverse charge current JISHE

c flowing along the interface
should create a charge accumulation at the lateral boundaries
of the GaAs film. Such an accumulation induces an electric
field E in GaAs, which causes a drift current with the density
Jdrift

c = σE. To calculate the spatial distribution of the elec-
tric potential ϕ in the Ni/GaAs bilayer and the total charge
current density Jc = JISHE

c + Jdrift
c , we numerically solve the

Laplace’s equation ∇2ϕ = 0 with the appropriate boundary
conditions. The latter follow from the absence of charge cur-
rent across the outer surfaces of the bilayer, and the absence of
JISHE

c inside Ni. Namely, en · (−σ∇ϕ + JISHE
c )|� = 0 inside

GaAs and en · ∇ϕ|� = 0 inside Ni, where en is the unit vector
normal to the bilayer surface �. It should be noted that the
potential ϕ should be regarded as a complex quantity since
the parameter κ affecting the spin-current density Js involved
in Eq. (6) has a substantial complex part at ωτsf � 1.

In the numerical calculations, we consider only the com-
ponent Js

xy of the elastically generated spin current Js, because
Js

xx does not create any charge flow, and the components Js
xy

and Js
xz have almost equal magnitudes and can be probed in-

dependently via transverse voltages V ISHE
z = ϕ(z = wN/2) −

ϕ(z = −wN/2) and V ISHE
y = ϕ(y = 0) − ϕ(y = −hN), re-

spectively (Fig. 1). Figure 9 shows the amplitude δV ISHE
z (x)

of the oscillating voltage V ISHE
z (x, t ) calculated at the
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FIG. 9. Amplitude δV ISHE
z (x) of the ac voltage between the lat-

eral sides of the Ni/GaAs bilayer excited by (a) longitudinal and
(b) transverse elastic waves with frequencies 9.9 and 10 GHz, respec-
tively. The thickness of the GaAs layer equals 5 μm, and its width
wN is indicated in the figure.

excitation frequency ν = νmax for the GaAs films with a thick-
ness tN = 5 μm.

It can be seen that δV ISHE
z varies nonmonotonically with

the distance x − tF from the Ni|GaAs interface, reaching its
maximum inside the semiconductor at x − tF = 100–200 nm.
The voltage amplitude δV ISHE

z (x) grows with the increasing
width wN of the GaAs film, and the voltage peak becomes
much higher at the excitation of magnetization dynamics by
the shear elastic wave (see Fig. 9). Importantly, the transverse
ac voltage V ISHE

z characterizing the spin pumping induced by
either type of elastic waves is high enough for the experimen-
tal measurement near the Ni|GaAs interface. We note that it
can be raised further by increasing the sample width [20] and

FIG. 10. Amplitude δVs and phase φs (inset) of the ac spin volt-
age between the lateral Fe probe and a normal-metal contact at the
GaAs free surface plotted as a function of the distance x − tF from
the Ni|GaAs interface. The Ni/GaAs bilayer is excited either by the
longitudinal wave with frequency 9.9 GHz or by the transverse wave
with frequency 10 GHz. The thickness of the GaAs layer equals
5 μm.

could be even higher in a semiconductor with a larger αSH

such as Si [66].
Another method to evaluate the spin pumping into a normal

metal or semiconductor experimentally is known as a non-
local spin detection scheme [67,68]. This scheme measures
a voltage Vs between a ferromagnetic probe and a nonmag-
netic electrode brought into contact with the semiconductor.
Since the voltage Vs is directly proportional to the product
μs · Mprobe, where Mprobe is the probe magnetization, it is
possible to detect all three components of the vector μs by
using differently magnetized ferromagnetic contacts. As a
representative example, we consider an iron probe magne-
tized along the x axis, which is placed on the lateral side
of the GaAs layer (Fig. 1), and a normal-metal electrode
deposited on the free surface x = tF + tN of the 5-μm-thick
GaAs film. In this case, the spin voltage Vs(x, t ) is defined by
the relation Vs(x, t ) = ηIE pFeμ

s
x(x, t )/(2e), where ηIE is the

spin transmission efficiency of the GaAs|Fe interface, pFe is
the spin polarization of Fe at the Fermi level, and the spin
accumulation μs

x beneath the probe with nanoscale dimen-
sions is assumed uniform. Figure 10 shows the amplitude
δVs(x) and phase φs(x) of the ac spin voltage calculated using
the parameters ηIE ≈ 0.5 and pFe ≈ 0.42 characteristic of the
Schottky tunnel barrier between the Fe probe and n+-GaAs
[68]. Importantly, the voltage amplitude δVs appears to be
rather large near the Ni|GaAs interface, exceeding 650 nV
under the excitation by the transverse elastic wave and 80 nV
in the bilayer excited by the longitudinal wave (see Fig. 10).
Although δVs(x) gradually decreases with the increasing dis-
tance x − tF from the Ni|GaAs interface, it remains to be
measurable experimentally even at distances over 0.5 μm.
The phase φs(x) of the spin voltage varies linearly inside the
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GaAs layer and changes strongly already at x − tF ∼ 0.5 μm
(Fig. 10). This result demonstrates that the phase difference
between the spin accumulation inside GaAs and the spin
pumping at the Ni|GaAs interface may be large owing to the
condition ωτsf � 1.

The input electric power W necessary for the functioning of
the proposed spin injector can be estimated from the generated
acoustic power using the relation W = 1

K2
1
2 Aρcω2u2

max, where
K2 is the electromechanical transduction efficiency of the
piezoelectric transducer [36], c is the velocity of the generated
longitudinal or transverse acoustic wave, and A denotes the
dynamically strained area of the ferromagnetic film having the
mass density ρ. Expressing umax via the maximal strain εmax

in the acoustic wave, we obtain W = α 1
K2

1
2 Aρc3ε2

max. For the
device with A < 25 μm2 and K2 = 6%–12% [36,69], which
is driven by a transverse (α = 4) or longitudinal (α = 1) wave
with εmax = 10−4, the calculation yields W < 2–4 mW. These
values are much smaller than the lowest power consumption
W ≈ 25 mW of the spin injector driven by the microwave
magnetic field [20].

VI. CONCLUSIONS

In this paper, we theoretically studied the coupled elastic
and spin dynamics induced in Ni/GaAs bilayers by longitu-
dinal and transverse acoustic waves generated by the attached
piezoelectric transducer (Fig. 1). Using advanced micromag-
netoelastic simulations, we first modeled the elastically driven
magnetization dynamics in thick Ni films at wave frequencies
around the resonance frequency νres of the coherent magne-
tization precession in an unstrained Ni film. The simulations
showed that this dynamics has the form of a forced spin wave
having the frequency and wavelength of a monochromatic
driving wave. Remarkably, the transverse elastic wave creates
a much stronger spin wave than the longitudinal one at the
considered external magnetic field (Fig. 2). The backaction of
a traveling spin wave on the elastic dynamics manifests itself
in the generation of weak secondary elastic waves created
by magnetization precession (see Fig. 3). These waves are
characterized by oscillating strains εi j (x, t ) different from the
strain εxx(x, t ) or εxz(x, t ) in the primary driving wave, and
they were not reported in previous work on the modeling
of magnetization dynamics induced by longitudinal elastic
waves in Ni [44]. The magnetoelastic feedback also influences
the driving elastic wave, leading to a gradual reduction of its
amplitude during the propagation in Ni, which adds to the
“acoustic” decay caused by the wave attenuation of electronic
origin [51]. At the considered wave frequencies ν ≈ 10 GHz,
the decay resulting from the energy transfer to the magnetic
subsystem is stronger than the acoustic decay for the trans-
verse waves but small for longitudinal ones. Importantly, both
types of elastic waves are expected to carry spin signals over
significant distances of several micrometers in Ni.

We also modeled the magnetoelastic dynamics of Ni/GaAs
bilayers at excitation frequencies ν ∼ νres, focusing on the
Ni thicknesses comparable to the wavelength of the injected
acoustic wave. The simulations allowed for the reflec-
tions of the elastic waves from the boundaries of the Ni
layer and demonstrated the excitation of a nonhomogeneous
magnetization dynamics in it. Importantly, a steady-state

magnetization precession with frequency equal to the exci-
tation frequency and constant amplitude was revealed at the
Ni|GaAs interface after a short transition period of about
1 ns (Fig. 4). The simulations performed for Ni layers of
different thicknesses showed that the amplitude of station-
ary precession has a maximum at Ni thickness amounting to
three quarters of the driving elastic wave wavelength. This
finding, which differs from the results of simulations carried
out for Fe81Ga19/Au and CoFe2O4/Pt bilayers [31,33], was
explained by an analytical model giving simple criteria for
the optimal geometry of an elastic bilayer that maximizes the
strain amplitude at the interface.

Numerical results obtained for the steady-state magnetiza-
tion precession at the Ni|GaAs interface were used to evaluate
the spin-current densities pumped into GaAs by the dynam-
ically strained Ni film (Fig. 8). The spin accumulation in the
semiconductor was then calculated by solving numerically the
spin diffusion equation with the account of the spin pumping
into GaAs and the spin backflow into Ni. Since the spin
current creates a charge current owing to the ISHE, the spin
generation in GaAs can be detected via electrical measure-
ments. Therefore, we also determined the distribution of the
electric potential in the Ni/GaAs bilayer with open-circuit
electrical boundary conditions by numerically solving the
Laplace’s equation. This enabled us to evaluate the transverse
voltage appearing between the lateral sides of the dynamically
strained Ni/GaAs bilayer. It was shown that the amplitude of
this ac voltage is large enough for experimental detection near
the Ni|GaAs interface (Fig. 9). Furthermore, spin accumula-
tion manifests itself in the voltage between a ferromagnetic
probe and a nonmagnetic electrode brought into contact with
the semiconductor (Fig. 1). Performing calculations of this ac
spin voltage, we found that it retains a measurable amplitude
even at distances over 0.5 μm from the Ni|GaAs interface
(Fig. 10).

Thus, our theoretical study of the Ni/GaAs heterostructure
demonstrated that the spin injector employing elastic waves
is promising for spin generation in semiconductors. Since
the proposed device can be driven electrically via the strain-
mediated magnetoelectric effect, it has a much lower power
consumption than the spin injector excited by a microwave
magnetic field [20].
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APPENDIX

In this Appendix we provide a list of expressions and
symbols used in our calculations. We numerically solve
the Landau-Lifshitz-Gilbert (LLG) equation in the following
form:

dm
dt

= − γ

1 + α2
G

[m × Heff + αGm × (m × Heff )], (A1)

where γ is the electron’s gyromagnetic ratio, αG is the Gilbert
damping parameter, m = M/Ms is the reduced magnetization
(called just “magnetization” throughout the paper), and Heff

is the effective magnetic field in which the magnetization
precesses. Together with the LLG equation we solve the
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elastodynamic equation in the following form:

ρ
∂2ui

∂t2
= c11

∂2ui

∂i2
+ c44

[
∂2ui

∂ j2
+ ∂2ui

∂k2

]

+ B1
∂ (m2

i )

∂i
+ B2

[
∂ (mimj )

∂ j
+ ∂ (mimk )

∂k

]
, (A2)

where ρ is the mass density of the material, c11 and c44

are the elastic stiffnesses, B1 and B2 are the magnetoe-

lastic constants, ui are the components of the mechanical
displacement vector, and i, j, and k take the values x, y, z
(no summation over repeated indices is implied). We also
use the following definition of the elastic strains in terms of
displacement:

εi j = 1

2

[
∂ui

∂ j
+ ∂u j

∂i

]
. (A3)
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