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Composition-dependent transition in the magnetocrystalline anisotropy of tetragonal
Heusler alloys Rh2TSb (T = Fe, Co)
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This paper reports on first-principles calculations of the electronic and magnetic structure of tetragonal Heusler
compounds with the composition Rh2FexCo1−xSb (0 � x � 1). It is found that the magnetic moments increase
from 2 to 3.4 μB and the Curie temperature decreases from 500 to 464 K with increasing Fe content x.
The 3d transition metals make the main contribution to the magnetic moments, whereas Rh contributes only
approximately 0.2 μB per atom, independent of the composition. The paper focuses on the magnetocrystalline
anisotropy of the borderline compounds Rh2FeSb, Rh2Fe0.5Co0.5Sb, and Rh2CoSb. A transition from easy-axis
to easy-plane anisotropy is observed when the composition changes from Rh2CoSb to Rh2FeSb. The transition
occurs at an iron concentration of approximately 40%. The difference in the anisotropy is caused by differences
in the charge and spin distributions, mainly at Fe and Co. The results of the calculations are in good agreement
with recent experiments.
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I. INTRODUCTION

Permanent or hard magnets are made of bulk materials with
strong anisotropy, which may be based on magnetocrystalline
anisotropy, shape anisotropy, or both. In magnets with magne-
tocrystalline anisotropy, there should be only one easy crystal
axis of magnetization so the anisotropy is uniaxial. Such an
uniaxial magnetocrystalline anisotropy is found, for example,
in tetragonal or hexagonal systems. Heusler alloys are com-
pounds with formula T2T ′M, where T and T ′ are transition
metals, and M is a main group element. Some of these com-
pounds and alloys crystallize in tetragonal structure; however,
most of them have a cubic crystal structure. One advantage of
Heusler compounds is that most of them do not contain rare-
earth elements; rather, the magnetic properties are provided
by 3d transition metals. Many tetragonal Heusler alloys are
Mn based and several exhibit structural martensite–austenite
phase transitions. In particular, in the inverse structures with
space group I 4m2, the magnetic moments of the Mn atoms
exhibit antiparallel coupling. Thus, these alloys are generally
ferrimagnets with low saturation magnetisation. The Rh2T M
alloys (T ′ = V, Mn, Fe, Co; M = Sn, Sb) crystallize in a reg-
ular tetragonal structure with space group I 4/mmm and are
expected to exhibit uniaxial anisotropy when the 3d transition
metals have large moments.
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Experiments on the crystal structure and magnetic proper-
ties of Rh2-based Heusler compounds were reported by Dhar
et al. [1], who observed a tetragonal structure and a magnetic
moment of 1.4 μB in the primitive cell. A Curie temperature
of approximately 450 K was measured. Further, Faleev et al.
recently reported ab initio calculations for many tetragonal
Heusler compounds (including Rh2FeSb and Rh2CoSb) [2].
This work proposed that thin films of Rh2CoSb exhibit uni-
axial, perpendicular anisotropy with the easy direction along
the c ([001]) axis. Experiments and calculations both suggest
that Rh2CoSb might be a suitable hard magnetic material with
uniaxial anisotropy. However, the constituent elements, in
particular Rh, might be too expensive for applications where
bulk materials are needed, for example, permanent magnets
in electric engines. However, the cost of the materials is not
as important for thin film applications, for example, magnetic
recording media or magnetoelectronic memory devices.

We recently reported experiments on the magnetic prop-
erties of Rh2CoSb and suggested its use as material for
heat-assisted magnetic recording [3]. It was found that
Rh2CoSb has uniaxial anisotropy, where c is the easy axis.
The present paper describes theoretically the magnetic prop-
erties of Rh2CoSb, its sister compound Rh2FeSb, and alloys
with mixed Co1−xFex composition. Details of the accom-
panying experiments are described in Ref. [3] and in the
Supplemental Material [4].

II. DETAILS OF THE CALCULATIONS

The electronic and magnetic structures of Rh2T Sb (T =
Fe, Co) were calculated using WIEN2k [5–7] and SPRKKR

[8,9] in the local spin-density approximation. In particular,
the generalized gradient approximation of Perdew, Burke, and
Ernzerhof [10] was used to parametrize the exchange correla-
tion functional. A k mesh based on 126 × 126 × 126 points
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T inverse(a) (b) (c)

FIG. 1. Crystal structure of Rh2T Sb (T = Fe, Co). In the well-
ordered regular structure (a), the sites of the lattice with space group
I 4/mmm (139) are occupied as follows: 4d (0 1/2 1/4), Rh; 2b (0
0 1/2), T ; and 2a (0 0 0), Sb. In the disordered structure (b), the T
and Sb atoms are randomly distributed on the 2b and 2a sites. The
inverse tetragonal structure is shown in (c) for comparison.

of the full Brillouin zone was used for integration when the
total energies were calculated to determine the magnetocrys-
talline anisotropy (see also Appendix D). The calculations
are described in greater detail in Refs. [11,12]. The spin spi-
rals and magnons were calculated according to the schemes
described in Refs. [13,14], respectively. Calculations for the
disordered or off-stoichiometric compounds with mixed site
occupations were performed using SPRKKR and the coherent
potential approximation (CPA) [15] in the full potential mode.
The CPA allows the simulation of random site occupation by
different elements. Complications arising in the calculation
of the magnetic anisotropy energies are discussed in detail
by Khan et al. [16], who compared results obtained using
WIEN2k and SPRKKR.

The basic crystal structure of the tetragonal Heusler com-
pounds [prototype Rh2VSn; t I8; I 4/mmm (139) dba] [17]
is shown in Fig. 1(a). The atoms are located in the ferro-
magnetic structure on the 4d, 2b, and 2a Wyckoff positions
of the centered tetragonal cell. The magnetic order changes
the symmetry, and the resulting magnetic space group for
collinear ferromagnetic order with moments along the c axis
is I 4/mm′m′ (139.537), where ′ is the spin reversal operator
[18]. The symmetry is reduced to that of space group I m′m′m
(71.536) when the magnetization �M is along the a axis ([100])
or F m′m′m (69.524) for �M‖[110].

The electronic structure and magnetic properties were cal-
culated using the optimized lattice parameters. As a starting
point, the lattice parameters of two alternative structures were
optimized using WIEN2k. In addition to the regular Heusler
structure described above, the inverse structure with space
group I 4m2 (119) dbca was assumed. In this structure, the
positions of the Co atom and one of the Rh atoms are inter-
changed. Spin-orbit interaction was considered owing to the
high Z values of Rh and Sb. Note that the spin-orbit interaction
is an intrinsic property in the fully relativistic SPRKKR cal-
culations, which solve the Dirac equation. The results of the
optimization are summarized in Table I. The regular structure
is found to have lower energy; it thus describes the ground
state. The energy difference compared to the inverse struc-
ture is approximately 310 meV. The formation enthalpy is

TABLE I. Structural properties of Rh2CoSb. Calculations are
performed for the regular (139) and inverse (119) Heusler structures.
The lattice parameters (a, c, c/a), formation enthalpy (�Hf ), and
spin magnetic moment ms of the primitive cell (total experimental
magnetic moment) are listed. Experimental values from Ref. [1]
are shown for comparison. Note that the magnetic moment in this
reference is not saturated.

Calculated Exp.

139 119 Here [3] [1]

a (Å) 4.0104 3.95 4.0394 4.04
c (Å) 7.3628 7.56 7.1053 7.08
c/a 1.836 1.91 1.759 1.75
�Hf (meV) −398 −84
ms (μB) 2.04 1.79 2.36 1.4
TC (K) 450 450

calculated as

�Hf = 1

4
[Etot − (2ERh + ECo + ESb)], (1)

that is, the difference between the total energy of the com-
pound in different structures and the sum of the energies of
the elements in their ground-state structure normalized by the
number of atoms. The formation enthalpy is clearly lower for
the regular tetragonal structure than for the inverse tetragonal
structure (see Table I). Note that the formation enthalpy for the
cubic L21 structure is also negative (≈ −60 meV), however,
it is certainly above that of the tetragonal variants of the struc-
ture. The calculated lattice parameters are in good agreement
with experimental values [1]; however, the calculated c value
and c/a ratio are approximately 4% larger. This finding might
be explained by either a temperature effect or some small
disorder in the experiment.

III. RESULTS AND DISCUSSION

A. Electronic and magnetic structure of Rh2CoSb

The calculated electronic structure of Rh2CoSb in the reg-
ular tetragonal Heusler structure is illustrated in Fig. 2 in
terms of the band structure and density of states [n(E )]. The
relativistic bands, spin-resolved total density of states, and its
atomic contributions are shown. The electronic structure is
calculated in the full relativistic mode by solving the Dirac
equation. The band structure from semirelativistic calcula-
tions is shown in the Appendixes.

Both rhodium and cobalt contribute to the magnetic
moment of the compound. The spin and orbital magnetic
moments are mCo

s = 1.656 μB and mCo
l = 0.139 μB for cobalt

and mRh
s = 0.206μB and mRh

l = 0.007 μB for rhodium, re-
spectively. The overall magnetic moment (spin plus orbital)
of the primitive cell is mtot = 2.188 μB. The orbital moment
of the Co atoms makes a remarkably large contribution.

The real-space charge and spin distributions are shown in
Fig. 3. The charge density [σ (r)] of the atoms has no strik-
ing shape. It appears to be nearly spherical but still reflects
the two- or fourfold symmetry. As expected, most of the
electrons are close to the ion cores. By contrast, the spin or
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FIG. 2. Electronic structure of Rh2CoSb (I). Shown is the fully
relativistic band structure together with the total and site (Rh and Co)
specific, spin-resolved densities of states.

magnetization density [σ (r)] has a much more pronounced
shape, depending on the plane. In particular, in the (110)
plane, it has a distinct butterfly shape. The spin density is
positive at both the Co and Rh atoms. It is clearly higher near
the Co atoms than near the Rh atoms, which ultimately gives
Co a higher magnetic moment. The magnetization density of
the Rh atoms is aligned along the magnetization direction and
points somewhat toward the nearest Co atoms.

Magnetic anisotropy

Further, the directional dependence of the magnetization
was investigated to explain the collinear magnetic order in
detail. In particular, the total energy was calculated for cases
where the magnetization points along different crystallo-
graphic directions. The obtained energy differences make it
possible to determine the magnetocrystalline anisotropy (see
also Appendix D).

In the magnetic anisotropy of Rh2CoSb, the easy axis is
along the c ([001]) axis. The simple second-order uniaxial
anisotropy constant is Ku = 1.37 MJ/m3 [see Eqs. (D1) and
(D2) in Appendix D1]. This results in an anisotropy field
of μ0Hu ≈ 2.4 T. A more detailed analysis reveals that the
simple second-order anisotropy constant Ku is not sufficient
to describe the magnetocrystalline anisotropy, as discussed in
Sec. III D.

Further, the dipolar magnetocrystalline anisotropy was cal-
culated as described in Appendix D3 and was found to be
�Edipaniso = 0.09 μeV. The positive value indicates an easy
dipolar direction along the [001] axis. The dipolar anisotropy
is rather small compared to the anisotropy calculated from
the total energy. Here, it was calculated for a sphere with a
radius of 30 nm. The results for other shapes will be different,
resulting in a distinct shape anisotropy. In particular, in thin
films, the dimension perpendicular to the film is much smaller
than the dimensions in the film plane. Therefore, the summa-
tion in Eq. (D16) becomes a truncated sphere that is strongly
anisotropic, and a pronounced thin film anisotropy appears.
This thin film anisotropy will also be affected by the magnetic
moments, which are different at interfaces and surfaces from
that at the center layers of the film.

FIG. 3. Electronic structure of Rh2CoSb (II). Fully relativistic
charge [ρ(r)] and spin [σ (r)] distributions for the (001) and (110)
planes are shown. The calculation is for m‖c, that is, the magneti-
zation points along [001] according to the easy axis behavior of the
magnetic anisotropy. (Note: Color bars are in atomic units.)

B. Results for Rh2FeSb

The calculations for Rh2FeSb were performed in the same
way as for Rh2CoSb. The regular structure with space group
No. 139 was found to be more stable than the inverse structure
with space group No. 119. Its calculated formation enthalpy
amounts to �Hf = −226 meV. In addition, as in the case of
Rh2CoSb, the calculated c lattice parameter, and thus c/a,
are considerably larger than the experimental values (see
Table II).

The electronic structure of Rh2FeSb is illustrated in Fig. 4.
The fully relativistic band structure and the spin- and site-
resolved densities of states are shown. The calculated spin
and orbital magnetic moments are mFe

s = 2.978 μB and mFe
l =

0.080 μB for iron and mRh
s = 0.228μB and mRh

l = 0.006 μB

for rhodium, respectively. The overall magnetic moment (spin
plus orbital) of the primitive cell is mtot = 3.488 μB. The mag-
netic moment of the Fe atoms is strongly localized, which is
typical of Heusler compounds with high magnetic moments.
It clearly exceeds the value for elemental iron.

The real-space charge and spin distributions of Rh2FeSb
are shown in Fig. 5. As in the Co-containing compound, σ (r)
does not have a pronounced shape (compare Fig. 3). The
magnetization density [σ (r)] around the Fe atoms has a less
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TABLE II. Structural properties of Rh2FeSb. Calculations are
performed for the regular tetragonal Heusler structures. Lattice pa-
rameters (a, c, c/a) and spin magnetic moment ms of the primitive
cell are listed. Experimental values from Ref. [1] are shown for
comparison. Note that the experimental moments in Ref. [1] are not
saturated.

Experiment

Calculated This paper Ref. [1]

a (Å) 4.0418 4.0708 4.07
c (Å) 7.3995 6.9663 6.96
c/a 1.8308 1.7112 1.71
ms (μB) 3.4 3.8 2.8
TC (K) 510 510

distinct shape compared to Co in Rh2CoSb; it is also not
greatly affected by changes in the magnetization direction.
The main difference is the magnetization density around the
Rh atoms, which is rotated and appears to be aligned along
the magnetization direction.

Table III compares the calculated magnetic data of
Rh2CoSb and Rh2FeSb. Rh2FeSb clearly has a smaller orbital
magnetic moment than Rh2CoSb, whereas its spin magnetic
moment is higher because of the effect of the Fe atoms. The
induced magnetic moments of the Rh atoms are similar in both
compounds.

The calculated Curie temperatures are of the same order
of magnitude as the experimental values. In contrast to the
calculated results, however, the experimental value of the Fe
compound is higher than that of the Co compound. A possible
reason is differences in the variation of the lattice parameters
with temperature, which affect the exchange coupling param-
eters and thus TC and also the spin stiffness. Note that a much
lower Curie temperature is obtained for the Co compound
when it is off-stoichiometric (see Appendix B 2), whereas
the TC value of the off-stoichiometric Fe compound is slightly
higher.

FIG. 4. Electronic structure of Rh2FeSb (I). Fully relativistic
band structure is shown, along with the total- and site-specific spin-
resolved densities of states for Rh and Fe.

FIG. 5. Electronic structure of Rh2FeSb (II). Fully relativistic
charge [ρ(r)] and spin [σ (r)] distributions for different planes. Mag-
netization is perpendicular to c with m along [100] in accordance
with the easy plane behavior of the magnetic anisotropy. (Note: Color
bars are in atomic units.)

TABLE III. Calculated magnetic properties of Rh2FeSb,
Rh2Fe0.5Co0.5Sb, and Rh2CoSb. Spin ms and orbital ml magnetic
moments per atom (Rh, T = Co, Fe with m‖c in all cases) of the
primitive cell (total) are listed, as well as Curie temperature TC ,
spin stiffness D0, and anisotropy parameters. (Note that the dipolar
anisotropy is three orders of magnitude lower than the magnetocrys-
talline part.)

Fe Fe0.5Co0.5 Co

mRh
s (μB) 0.237 0.239 0.204

mRh
l (μB) 0.006 0.008 0.006

mFe
s (μB) 3.006 2.977 −

mFe
l (μB) 0.080 0.084 −

mCo
s (μB) − 1.747 1.674

mCo
l (μB) − 0.132 0.137

mtot
s (μB) 3.44 2.81 2.04

mtot
l (μB) 0.09 0.12 0.15

TC (K) 465 480 500
D0 (meV Å2) 590 700 870
Ku (MJ/m3) −1.21 −0.23 1.37
|μ0Ha| (T) 1.34 0.31 2.43
�Edipaniso (kJ/m3) 1.9 2.0
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FIG. 6. Magnetic properties of Rh2FexCo1−xSb. Total (mtot), spin
(ms), and orbital (ml ) magnetic moments as functions of Fe content
x are shown. The inset shows the Curie temperature (TC).

The anisotropy has the hard axis along the z ([001]) direc-
tion, and the easy plane is the the basal plane. By contrast, for
Rh2CoSb, the z direction is the easy axis. The simple uniaxial
anisotropy constant is Ku = −1.21 MJ/m3. Consequently, the
anisotropy field is |μ0Ha| = 1.34 T. The appearance of the
hard axis along z is opposite to Rh2CoSb where z is the easy
axis. The dipolar magnetocrystalline anisotropy of Rh2FeSb
is �Edipaniso = 0.09 μeV, indicating that the easy dipolar di-
rection is along the [001] axis, like that of the Co-containing
compound. This behavior is caused by the strong magnetic
moments of the 3d transition metals, in addition to the elon-
gation of the tetragonal crystal structure along the c axis.

C. Results for Rh2FexCo1−xSb

Owing to the differences in magnetic anisotropy between
the Fe- and Co-based compounds, it is interesting to investi-
gate a mixed system containing both Fe and Co. Therefore,
calculations were also performed for Rh2FexCo1−xSb using
SPRKKR and the CPA. The CPA enables the simulation of
random occupation of Fe and Co atoms at a single site (here
2b). In the calculations, lattice parameters were interpolated
from those of the pure compounds using Veegard’s law. For
Rh2Fe0.5Co0.5Sb, they are close to the experimental values
measured for a twinned single crystal (a = 4.0487 Å, c =
7.1011 Å). For this composition, a formation enthalpy of
�Hf = −414 meV was found. The obtained magnetic proper-
ties of Rh2Fe0.5Co0.5Sb are shown in Table III in comparison
with the pure compounds. The uniaxial anisotropy constant is
negative, like that of Rh2FeSb; however, its absolute value is
considerably lower (by a factor of 35) than that of Rh2CoSb.

The dependence of the magnetic properties on the compo-
sition is shown in Fig. 6. The total magnetic moment increases
with increasing Fe content, mainly because Fe has a higher
spin magnetic moment (≈3 μB) than Co (≈1.7 μB). The indi-
vidual magnetic moments of the atoms are nearly unaffected
by the composition. The calculated Curie temperature de-
creases with increasing Fe content.

E EE

E E E

(a) (b) (c)

FIG. 7. Uniaxial magnetic anisotropy of Rh2T Sb compounds.
Energy distributions Eu′ (θ, φ) of T = Fe (a), Fe0.5Co0.5 (b), and Co
(c). (Please note the different energy scales.)

D. Magnetocrystalline anisotropy of Rh2FexCo1−xSb

Thus far, only the simplest case of uniaxial magnetocrys-
talline anisotropy has been considered. The equations for
extending the calculations to more detailed cases are given
in Appendix D. These equations were used to calculate
the fourth-order uniaxial and tetragonal anisotropy constants,
which were used to obtain the magnetocrystalline anisotropy
energy distributions.

The calculated uniaxial energy distributions Eu′ (θ, φ)
[see Eqs. (D4) and (D18) in the Appendix] of Rh2FeSb,
Rh2Fe0.5Co0.5Sb, and Rh2CoSb are plotted in Fig. 7 for com-
parison.

The different behavior of the anisotropy is clearly re-
vealed in Fig. 7. Rh2FeSb has an easy plane, and c is the
hard axis; Rh2Fe0.5Co0.5Sb has an easy plane as well, but a
hard cone, and in Rh2CoSb, the c direction is the easy axis.
Rh2Fe0.5Co0.5Sb has a much lower anisotropy than the pure
compounds, and the differences between the energies of the
ab plane and the c axis are very small. A hard cone appears
with its maximum at an angle of θ3,4 = ±35.7◦ [see Eq. (D9)
in Appendix D1].

The calculated anisotropy constants for uniaxial and tetrag-
onal symmetry are compared in Table IV. The simple Ku

from Eq. (D2) (see Appendix D) clearly cannot describe the
magnetic anisotropy correctly.

The dependence of the uniaxial anisotropy constants on the
composition is illustrated in Fig. 8. The uniaxial anisotropy
constant Ku decreases with increasing iron content and ex-
hibits a zero-crossing at x0 ≈ 0.4. At intermediate iron
contents, more complex behavior appears, as shown by the

TABLE IV. Comparison of the anisotropy constants of Rh2T Sb,
T = Fe, Fe0.5Co0.5, and Co.

Rh2FeSb Rh2Fe0.5Co0.5Sb Rh2CoSb

uniaxial
Ku (MJ/m3) −1.21 −0.23 1.37
K0 (MJ/m3) 1.31 0.39 0.0
K2 (MJ/m3) −2.19 0.50 3.62
K4 (MJ/m3) 0.98 −0.73 −2.25
tetragonal
K0,0 (MJ/m3) 1.31 0.39 0.0
K2,0 (MJ/m3) −2.19 0.50 3.62
K4,0 (MJ/m3) 0.93 −0.81 −2.40
K4,4 (MJ/m3) 0.05 0.08 0.15
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FIG. 8. Anisotropy constants of Rh2FexCo1−xSb compounds.
The inset shows the uniaxial anisotropy constant obtained using
Eq. (D3) in Appendix D1.

composition dependence of K2i and the results in Figs. 7 and
9.

The calculated tetragonal energy distributions Ea′ (θ, φ)
[see Eqs. (D12) and (D18) in the Appendixes] of Rh2FeSb,
Rh2Fe0.5Co0.5Sb, and Rh2CoSb are shown in Fig. 9. As in
the plot of the uniaxial anisotropy in Fig. 7, the differences in
the anisotropy are easily observed. In Rh2FeSb, the hard axis
is along the z ([001]) direction, and the anisotropy exhibits
weak variation in the basal plane, which is close to the easy
plane. Closer examination of the basal plane shows biaxial
behavior with easy axes along the [110] and [110] axes, but
the energy difference between these directions and the [100]
or [010] axes is very small. The anisotropy of Rh2CoSb is still
almost uniaxial, with the easy axis along the c ([001]) axis,
and varies weakly in the basal plane. Rh2Fe0.5Co0.5Sb has
much lower anisotropy than the pure compounds and exhibits
more complicated directional behavior.

E EE

E E E

(a) (b) (c)

FIG. 9. Tetragonal magnetic anisotropy of Rh2T Sb compounds.
Energy distributions Ea′ (θ, φ) of T = Fe (a), Fe0.5Co0.5 (b), and Co
(c). (Please note the different energy scales.)

FIG. 10. Directional dependence of the orbital moments of
Rh2T ′Sb, T ′ = Co, Fe. Note that the orbital moments are given
relative to the spin moments for better comparison.

The directional dependence of the orbital magnetic mo-
ments was analysed to clarify the role of the spin-orbit
interaction. The magnetic moments for m‖c are listed in Ta-
ble III. The ratio of the total orbital moment to the total
spin moment, ml/ms, was used owing to the large differences
between the magnetic moments for different compositions.
Figure 10 shows the ratio ml/ms as a function of the difference
in the energies in several magnetization directions [hkl]. For
both Rh2CoSb and Rh2FeSb, the ratio is largest for magneti-
zation along the c axis ([001]) and lowest in the basal plane.
This finding involves not only the ratio but also the orbital
momenta themselves, indicating that the orbital moment is not
always largest when the magnetization is along the easy axis
(or in the easy plane). Here it depends at least partially on the
angle between the magnetization and c axis, as shown by the
values for other directions.

To further examine the nature of the anisotropy, the charge
and spin density distributions were analyzed with respect to
the magnetization direction (compare also Figs. 3 and 5). As
mentioned above, the symmetry changes when the magneti-
zation is applied along different crystallographic directions.
The point group symmetry of the 2b sites occupied by Fe and
Co is D4h and D2d for Rh on 4d. Applying the magnetization
along one of the high-symmetry axes, i.e., the c ([001]) or a
([100]) axis, changes the symmetry of the 2b sites to C4h or
C2h, respectively. As a result, the irreducible representations
and basic functions depend on the magnetization direction.
For C4h, they are ag, bg, and eg with the l = 2 basic functions
dz2 , (dx2−y2 , dxy), and (dxz, dyz). For C2h, they are ag and bg

with (dz2 , dx2−y2 , dxy) and (dxz, dyz). Similar differences appear
for the 4d sites. The charge and spin density distributions for
different magnetization directions are compared in Fig. 11 for
the compounds containing only Fe or Co.

As mentioned above, the details of the charge density are
not easily observed directly from the graph when the magne-
tization direction is changed because the graph mainly shows
the positions of the atoms where the charge is always highest.
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FIG. 11. Electronic structure of Rh2FeSb and Rh2CoSb. Fully relativistic charge [ρ(r)] and spin [σ (r)] density distributions in a (100)-type
plane for magnetization parallel and perpendicular to the c axis are shown. ρ001(r) is the charge density for m‖[001] and �ρ = ρ001 − ρ100 is
the difference between the charge densities for m‖[001] and m‖[100]. (Note: Color bars are in atomic units.)

However, they can be observed if one investigates the differ-
ence in the charge distribution, which is plotted as �ρ(r). It
was calculated for both compounds as the difference between
the charge densities obtained, assuming that the magnetization
is parallel (m‖[001]) or perpendicular (m‖[100]) to the c axis.
In both compounds, the magnetization has the same effect on
�ρ(r) near the Rh atoms. That is, the charge distribution is
rotated with the direction of the magnetization. In the same
way, the Rh-based spin densities are affected by the mag-
netization direction. They change from [001] aligned when
m‖[001] to [100] aligned when m‖[100], regardless of which
3d transition metal is used. The situation is different near the
3d transition metals Fe and Co, where �ρ(r) and σ (r) are
affected very differently by the magnetization direction. The
reason is the different occupation of 3d valence electrons of Fe
(nFe

d = 6.6) and Co (nCo
d = 7.8), which are responsible for the

different spin moments. The overall differences in the charge
and spin densities at different magnetization directions result
in different total energies.

Finally, the gain or loss of energy with changes in the
magnetization direction results in the magnetocrystalline
anisotropy. The electronic structure of the two compounds,
Rh2FeSb and Rh2CoSb, differs depending on the magne-
tization direction, which is reflected in the change in the
anisotropy from the easy plane to the easy axis when Fe is
replaced with Co.

IV. CONCLUSIONS

The electronic and magnetic structure of tetragonal Heusler
compounds with the composition Rh2FexCo1−xSb were in-
vestigated by ab initio calculations. The calculations revealed
that the magnetic moment increases and the Curie temperature
decreases with increasing Fe content x. The Rh atoms have
only small, composition-independent magnetic moments. The
magnetic properties are determined by those of the Fe and
Co atoms and thus depend strongly on the composition. The
total energies for various magnetization directions were cal-
culated to determine the magnetic anisotropy. The analysis
is described in detail in the extended Appendixes. For bulk
materials, the magnetocrystalline anisotropy is found to be
much stronger (by three orders of magnitude) than the dipo-
lar anisotropy. Special attention was given to the borderline
compounds, Rh2FeSb and Rh2CoSb. The most striking result
was that a composition-dependent transition from easy-axis
to easy-plane anisotropy occurs at an iron concentration of
approximately 40%.
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FIG. 12. Planar spin spirals in Rh2CoSb. The spiral energies are
given with respect to q = 0, that is, �E (q) = E (q) − E (0). The
behavior of the magnetic moment m(q) is shown for Rh and Co.

APPENDIX A: DYNAMIC, MAGNETIC PROPERTIES

Information about the dynamic, magnetic properties is
important. Spin spirals, exchange coupling coefficients, and
magnons are related to each other and become manifest in
the Curie temperature, for example. They were investigated
for the pure compounds. Here, the magnons do not show any
instabilities. The absence of soft modes or complex (imagi-
nary) energies confirms that the assumed magnetic structures
are stable. This is similar to the fact that phonon instabilities
in calculations would point to instability of the assumed geo-
metrical structure.

1. Spiral spin order in Rh2CoSb

The energy of the spin spirals was calculated to search for
non-collinear magnetic order. The spin spirals were calculated
for different directions and different cones. In planar spi-
rals, the spins are perpendicular to the propagation direction.
Figure 12 compares the energies of planar spirals along the
high-symmetry directions.

The spirals along [100] or [110] propagate in the fourfold
plane, whereas the spiral in the [001] direction propagates
along the c axis. In all cases, the lowest energy is observed
at q = 0. The magnetic moment of the Co atoms varies by
approximately 17% at maximum. The magnetic moment of
the Rh atoms decreases with increasing q and vanishes at the
border, independent of the propagation direction of the spiral.

The spin direction was assumed to be perpendicular to the
q vector in the above calculations for planar spirals. Thus,
the angle between �q and the local magnetic moment �mi was
set to � = π/2. Next, the spirals were assumed to be conical
with 0 < � < π/2 to allow for a more detailed analysis. The
calculations were performed for q along [001]. Figure 13 dis-
plays the results for conical spirals with various cone angles.
The highest energies appear for the planar spiral. The energy
at the border of the Brillouin zone (q = π/c) exhibits a sine
dependence. Thus, it vanishes in the antiferromagnetic state.
The behavior of the local magnetic moments suggests more

FIG. 13. Conical spirals in Rh2CoSb. Spiral energies for differ-
ent cone angles and the wave vector along the c axis (q‖[001]) are
shown. The angular dependence at q = π/c is also shown.

localised behavior at the Co atoms and induced behavior at
the Rh atoms.

The calculated spiral energies indicate that this type of
magnetic order is rather improbable. The spiral energies in-
crease monotonously with the wave vector and cone angle,
rather independent on the �q direction. The monotonic behavior
suggests that a canted magnetic order is also very unlikely
[19].

2. Exchange coupling and magnons in Rh2CoSb

The exchange coupling energies were calculated using the
scheme of Liechtenstein et al. [20,21] to estimate the Curie
temperature, spin stiffness, and presence of magnons [14].
The exchange coupling parameters are plotted in Figure 14(a).
The most dominant parameters for Co–Co and Co–Rh in-
teractions are shown; all the others are comparatively small.
The largest interaction appears for Co atoms in the center
and nearest to the Co in the neighboring plane. From the
calculated exchange coupling energies, the Curie temperature
was found to be TC = 498 K, which is close to the experi-
mental value (450 K) [1]. The calculated spin-wave stiffness
constant is Di j = 866 meV Å2, and the interpolation scheme
of Padja et al. [22] yields an extrapolated spin wave stiffness
of D0 = 864 meV Å2.

The magnon dispersion was calculated by Fourier transfor-
mation of the real-space exchange coupling parameters. The
result is presented in Fig. 14(b) and the magnon density of
states is shown in Fig. 14(c). Two calculations were made; in
one calculation, only the Co–Co interaction was considered,
and in the other, the moments of the Rh atoms, which result
in additional Co–Rh and Rh–Rh coupling, were included.
The latter calculation yields flat dispersion curves and a high
density of states. A comparison of the two calculations reveals
that the magnons are dominated by the Co–Co interaction.
Note that the Curie temperature in only 10 K lower when the
Rh moments and the corresponding exchange parameters are
ignored.
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FIG. 14. Exchange coupling parameters of Rh2CoSb. (a) Ex-
change coupling parameters for Co–Co and Co–Rh interaction
as functions of distance. Lines are drawn for better comparison.
(b) Magnon dispersion and (c) density of states. Calculations were
performed with and without accounting for the magnetic moment of
the Rh atoms (that is, for both atoms and for Co only).

3. Spin spirals and magnons in Rh2FeSb

The dynamic magnetic properties of Rh2FeSb are shown
in Fig. 15. The spin spirals and magnons are similar to those
of Rh2CoSb; however, their energies extend to higher values.
The behavior of the spin spirals rules out the presence of
noncollinear magnetic structure [19].

APPENDIX B: DISORDER

1. Rh2CoSb with Co–Sb-type antisite disorder

Supplementary calculations were performed for disor-
dered Rh2CoSb and Rh2FeSb with SPRKKR using the CPA.
For example, the disordered compound may be written as
Rh2(Co1−x/2Sbx/2)(Cox/2Sb1−x/2), where x is the disorder
level. The result for x = 1, which denotes complete Co–Sb
disorder, is illustrated in Fig. 1(b). Alternatively, it can be
assumed that disorder between the Co and Rh atoms decreases
the magnetic moments, which is consistent with the results of
calculations of the inverted structure in space group No. 119,

FIG. 15. Dynamic magnetic properties of Rh2FeSb. Spiral en-
ergies with corresponding magnetic moments and the magnon
dispersion are shown, along with the magnon density of states g(E ).
Magnon calculations were performed with and without the magnetic
moment of the Rh atoms; in the latter case, all Fe–Rh interactions are
neglected.

but not with those when Co–Sb disorder is assumed, as shown
below.

The evolution of the magnetic moments of Rh2CoSb and
Rh2FeSb with increasing disorder is shown in Fig. 16. The
total magnetic moment in the fully disordered state is ap-
proximately 20% larger for Rh2CoSb and approximately 10%
larger for Rh2FeSb than those of the compounds in the com-
pletely ordered state. The orbital moments are nearly constant
in both compounds and are independent of the degree of dis-
order (x). The decrease in the total moments with decreasing
x is attributed to the decrease in the spin magnetic moments
of both compounds.

Figure 16 shows that the type of anisotropy (easy axis for
Rh2CoSb and easy plane for Rh2FeSb) is retained even in the
completely disordered state. However, the absolute value of
the second-order uniaxial anisotropy constant Ku decreases.
That is, the anisotropy becomes weaker with increasing dis-
order. The Ku values of both compounds are approximately
70% higher in the completely disordered state. No direct cor-
respondence is observed between the behavior of Ku and that
of the spin, orbital, or total magnetic moments. The effects
of disorder and composition on the magnetic anisotropy of
the Co–Fe system were investigated using first-principles CPA
calculations by Turek et al. [23], who also observed a decrease
in anisotropy with increasing disorder.
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FIG. 16. Disorder-induced changes in magnetic moments and
anisotropy of Rh2(T1−x/2Sbx/2)(Tx/2Sb1−x/2) T = Co, Fe. Total, spin,
and orbital magnetic moments are shown, along with the uniaxial
anisotropy constant Ku as a function of disorder level x.

2. Off-stoichiometric alloys

In many experiments, 2:1:1 stoichiometry was not fully
reached, but an excess of Fe or Co and a deficiency of
Sb was obtained. In particular, the magnetic properties of
Rh2T1+xSb1−x, with T = Fe, Co, were calculated for x =
0.12. As in the study of disorder, the calculations were per-
formed using the CPA. The 2a site is assumed to be occupied
by 12% with Fe (or Co) and by 88% with Sb, whereas the
occupations of the 4d and 2b sites are unchanged.

The calculated magnetic properties of the off-
stoichiometric alloys are listed in Table V. The magnetic
moments and spin stiffness D0 are enhanced in both alloys,
and the values are higher than those of the stoichiometric
compound. In particular, the excess Co and Fe atoms
on the 2a site contribute a large spin moment. The total
magnetic moment, ms + ml = 2.627 μB, of Rh2Co1.12Sb0.88

is very similar to the experimentally observed value of
2.6 μB. The Curie temperature of the off-stoichiometric
Co-containing compound is slightly lower, whereas that
of the Fe compound is slightly higher. These findings,
along with the spin stiffness results, suggest that the
exchange coupling parameters of the stoichiometric
compounds differ from those of the off-stoichiometric
alloys.

The type of anisotropy (easy plane or easy axis) is the
same in the off-stoichiometric alloys as in the stoichiometric
compounds. The uniaxial anisotropy constants differ, how-
ever. They are enhanced in the Fe alloy and reduced in the
Co alloy.

TABLE V. Calculated magnetic properties of off-stoichiometric
Rh2T1.12Sb0.88. Spin ms and orbital ml magnetic moments per atom
(Rh, Co, Fe) and those of the primitive cell (total) are listed, as well
as the Curie temperature TC and spin stiffness D0. m2b

s,l represents the
magnetic moments at the original position, and m2a

s,l represents the
moments of the excess Fe and Co atoms at the initial Sb position.

Rh2T1.12Sb0.88 T = Fe T = Co

mRh
s (μB) 0.308 0.244

mRh
l (μB) 0.012 0.009

m2b
s (μB) 2.988 1.691

m2b
l (μB) 0.092 0.140

m2a
s (μB) 3.564 2.521

m2a
l (μB) 0.072 0.155

mtot
s (μB) 4.010 2.453

mtot
l (μB) 0.124 0.174

TC (K) 490 480
D0 (meV Å2) 690 1100
Ku (MJ/m3) −1.667 0.826

APPENDIX C: SEMIRELATIVISTIC BAND STRUCTURES

The semirelativistic band structures of Rh2FeSb and
Rh2CoSb are compared in Fig. 17 to illustrate the spin char-
acteristics of the bands. The band structures are similar; the
main differences result from the larger band filling in the
Co-based compound, which has one more valence electron
than the Fe compound. Further, the larger spin splitting in the
Fe compound clearly results in a large spin magnetic moment.

FIG. 17. Semirelativistic band structures of Rh2FeSb and
Rh2CoSb. Red and blue indicate majority and minority states,
respectively.
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APPENDIX D: MAGNETOCRYSTALLINE ANISOTROPY

In this Appendix, the discussion of the magnetocrystalline
anisotropy is extended beyond simple uniaxial approxima-
tions. The magnetocrystalline energy of uniaxial systems can
be derived from the first-principles total energies for different
magnetization directions (quantisation axes).

Textbooks give different descriptions of the magnetic
anisotropy, in particular, different equations for the anisotropy
constants [24–29]. Therefore, care must be taken when com-
paring the results of this paper with those of other studies or
comparing other studies with each other.

1. Uniaxial magnetic anisotropy

It is often assumed that the magnetocrystalline anisotropy
in tetragonal or hexagonal systems is simply described by a
second-order dependence on the angle θ between the c axis
and the magnetization direction, that is,

Ku sin2(θ ), (D1)

where Ku is the uniaxial anisotropy constant. In that case,

Ku = E100 − E001 (D2)

is simply calculated from the difference between the ener-
gies for magnetization along the principal axes, c‖[001] and
a‖[100]. For Ku > 0, the easy axis is along the c axis, whereas
Ku < 0 describes an easy plane where c is the hard axis. For
a distinct magnetic anisotropy in the ab plane, it would be
more accurate to use the lowest energy of the two in-plane
directions along the principal axis and the diagonal, which are
the [100] and [110] directions, respectively:

Ku = min(E100, E110) − E001. (D3)

Equation (D1) has another serious drawback; namely, the
anisotropy is completely independent of the crystal lattice,
and the anisotropic energy distribution always has the same
shape regardless of the c/a parameter and whether the crystal
has tetragonal, hexagonal, or some other structure. That is,
Eq. (D1) is ultimately useful only for distinguishing between
easy and hard c axes.

Now we consider only tetragonal systems. By using the
series expansion

∑
K2ν,0 sin2ν (θ ) up to the fourth order in

sin(θ ), the uniaxial magnetocrystalline energy is expressed as

Euniaxial
crys = K0 + K2 sin2(θ ) + K4 sin4(θ ). (D4)

The equations for the sixth-order uniaxial anisotropy are
discussed by Jensen and Bennemann [30], for example. In the
following, the subscript crys is omitted, and the energies are
indexed only by direction or by uni. For the high-symmetry
directions [h, k, l] and the lowest indices (h, k, l = 0, 1), the
energies depend on the anisotropy coefficients as follows:

E001 = K0, (D5)

E100 = K0 + K2 + K4, or

E110 = K0 + K2 + K4, and

E101 = K0 + K2 sin2(θ101) + K4 sin4(θ101), or

E111 = K0 + K2 sin2(θ111) + K4 sin4(θ111).

Note that the energies for the [100] and [110] directions
are identical only when uniaxial anisotropy is assumed. The
energies for the [101] and [111] directions, however, have
different angles with respect to the c axis. From Eqs. ((D4)
and (D5)), K2 and K4 may be obtained, for example, from the
differences:

E100 − E001 = K2 + K4 and (D6)

E101 − E001 = K2 sin2(θ ) + K4 sin4(θ ).

For z = c/a, the angle θ is found using θ101 = θ011 =
arctan(1/z). From Eq. (D5) or (D6), the anisotropy constants
Ki are given by

K0 = E001, (D7)

K2 = (E101 − E001)(z2 + 2) + (E101 − E100)
1

z2
,

K4 = (E001 − E101)(z2 + 1) + (E100 − E101)
(z2 + 1)

z2
.

Alternatively, E111 and θ111 = arctan(
√

2/z) may be used,
but the resulting equations will have a different dependence on
c/a. The uniaxial magnetocrystalline anisotropy energy (Eu)
is the difference between the magnetocrystalline energy (here
Euni) and the isotropic contribution, which is the spherical part
K0:

Eu = Euni − K0. (D8)

According to this equation, the uniaxial magnetocrystalline
anisotropy energy may be positive or negative, depending on
the directions and values of K (see also Appendix D 4).

Equation (D4) has four extremal values at

θi = 0,
π

2
, and ± arcsin

(√
−K2

2K4

)
, (D9)

where the first derivative of the fourth-order Equation (D4)
vanishes, that is, for dEuniaxial/dθ = 0. The solutions θ3,4 are
real only if the anisotropy constants obey the relation 0 �
−K2
2K4

� 1, that is, K2K4 � 0, |K2| � 2|K4|. For K2 = −2K4,
one has θ3,4 = ±90◦. For a real θ3,4, one has an easy or a hard
cone. The resulting extremal energies are

E (0) = K0,

E (π/2) = K0 + K2 + K4, (D10)

E (θ3,4) = K0 − K2
2

4K4
.

The minima or maxima are obtained using the second
derivatives of the energy at the extremal angles:

d2E

dθ2

∣∣∣∣
0

= 2K2,

d2E

dθ2

∣∣∣∣
π/2

= −2(K2 + 2K4), (D11)

d2E

dθ2

∣∣∣∣
θ3,4

= −2K2(K2 + 2K4)

K4
.

The minima appear for positive second derivatives
(d2E/dθ2|θi

> 0) and define the easy direction(s) of magne-
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TABLE VI. Uniaxial anisotropy phase diagram. ab stands for
basal plane, c stands for c axis. Cones may have an opening angle
θ or π/4 with respect to the c axis.

K2 K4 Easy Hard

>0 −∞· · · − K2 ab cone (θ )
>0 −K2 ab, c cone (45◦)
>0 −K2 · · · − K2/2 c cone (θ )
>0 −K2/2 · · · ∞ c ab
= 0 = K2 = 0 undefined, spherical
<0 −K2 · · · ∞ cone (θ ) ab
<0 −K2 cone (45◦) ab, c
<0 −K2/2 · · · − K2 cone (θ ) c
<0 −∞· · · − K2/2 ab c

tization. Indeed, one has to search for the absolute minimum
and maximum to find the correct easy and hard axes, planes,
or cones. An easy cone appears for K2 < 0, K4 > −K2/2,
and the corresponding cone angle is given by θ3,4. A special
hard cone exists for K2 > 0, K4 = −K2, where both the c
axis and the ab plane have the same (lowest) energy. The
energy barrier at the hard cone must be overcome, however, to
change the magnetization direction from the easy axis to the
easy plane and vice versa. In the range −∞ < K4 < −K2/2,
the solutions are metastable when K2 > 0. The complete
fourth-order uniaxial anisotropy phase diagram is presented
in Table VI.

The magnetic anisotropy phase diagram for fourth-order
uniaxial anisotropy is displayed in Fig. 18. It is similar
to the graphical representations reported in Refs. [30,31].
The different phases are distinguished. For K4 = −K2 < 0,
there is a distinct metastable case with equal energies for
magnetization along the c axis and in the ab plane. At
this line, a transition occurs from easy-axis to easy-plane

FIG. 18. Magnetic anisotropy phase diagram. In the metastabil-
ity range, hard-cone-type anisotropy occurs. In the sketches of the
E (θ ) distributions, it is assumed that K0 = 0.

behavior. In the metastable region for K4 < −K2/2 < 0, easy-
axis behavior appears, whereas easy-plane behavior appears
for K4 < −K2 < 0 (see Table VI). In both cases, the sizes of
the anisotropy constants determine how easily one state can
switch to the other and the stability of the state with lower
energy. The energy barrier to cross the hard cone has a size of

− K2
2

4K4
, as mentioned above.

2. Tetragonal magnetic anisotropy

The uniaxial magnetic anisotropy does not reflect the sym-
metry of the crystal structure. The symmetry of the anisotropy
should generally be the same as the symmetry of the crystal
potential; thus, it is given by the fully symmetric irreducible
representation of the point group, that is, a, a1, ag, or similar.
Again, by using a series expansion up to the fourth order in
sin(θ ), the magnetocrystalline energy of a tetragonal system
is expressed as

E tetragonal
crys =

2∑
ν=0

K2ν,0 sin2ν (θ ) + K4,4 sin4(θ ) f (φ),

= Euniaxial
crys + K4,4 sin4(θ ) f (φ),

f (φ) = cos(4φ).

f (φ) has an azimuthal dependence on 4φ, which results in
the expected fourfold symmetry. Some works used f ′(φ) =
sin4(φ) + cos4(φ), which results in different equations and K
values. Higher-order approximations will include terms with
K6,0, K6,4, K8,0, K8,4, K8,8, and so on. Subtracting K0 from Eq.
(D12) yields

Ea(�r) = K2,0 sin2(θ ) + [K4,0 + K4,4 cos(4φ)] sin4(θ ).
(D12)

In the following, the subscript crys is omitted, and the
energies are indexed only by direction or by tet. For the high-
symmetry directions [h, k, l] and the lowest indices (h, k, l =
0, 1), Eq. (D12) gives

E001 = K0,0,

E100 = K0,0 + K2,0 + K4,0 + K4,4,

E110 = K0,0 + K2,0 + K4,0 − K4,4, and (D13)

E101 =
∑
ν=0,2

K2ν,0 sin2ν (θ101) + K4,4 sin4(θ101), or

E111 =
∑
ν=0,2

K2ν,0 sin2ν (θ111) − K4,4 sin4(θ111).

For z = c/a, the angle θ101 is found using θ101 = θ011 =
arctan(1/z). Alternatively, E111 with θ111 = arctan(

√
2/z)

may be used. From the first four energies of Eq. (D13), the
anisotropy constants Kl,m are found to be

K0,0 = E001,

K2,0 = (E101 − E001)(z2 + 2)

+(E101 − E100)
1

z2
, (D14)

K4,0 = (E001 − E101)(z2 + 1)
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+(E100 − E101)
1

z2

+1

2
(E100 + E110 − 2E101),

K4,4 = 1

2
(E100 − E110).

The magnetocrystalline anisotropy energy (Ea) is the dif-
ference between the magnetocrystalline energy (here E tet ) and
the isotropic contribution, which is the spherical part K0:

Ea = E tet − K0. (D15)

3. Dipolar magnetic anisotropy

In noncubic systems, the dipolar anisotropy does not van-
ish and also contributes to the magnetocrystalline anisotropy.
It is calculated from a direct lattice sum yielding the dipolar
energy,

Edip(�n) = μ0

8π

∑
i 	= j

[
�mi · �mj

r3
i j

− 3
(�ri j · �mi )(�ri j · �mj )

r5
i j

]
, (D16)

where �n = �M/M is the magnetization direction, and ri j repre-
sents the distance vectors between the magnetic moments mi

and mj . The individual magnetic moments, �mi and �mj , do not
necessarily have to be collinear in general.

In a simplified picture, only the 3d transition elements T
carry a significant magnetic moment in the Rh2T Sb com-
pounds investigated here. In all cases of a single magnetic ion
where all the magnetic moments in the structure are collinear

along �n, the equation simplifies to

Edip(�n) = μ0m2(�n)

8π

∑
i 	= j

1

r3
i j

[
1 − 3

r2
n,i j

r2
i j

]
,

= μ0m2(�n)

8π

∑
i 	= j

1 − 3 cos2(θi j )

r3
i j

, (D17)

where rn,i j = rn,i j (�n) is a projection of the position vector onto
the direction of the magnetic moment, and θi j is the angle
between them. In Eq. (D17), the sign of the energy is com-
pletely defined by the crystal structure when the summation
is over a spherical particle. Note that the size of the magnetic
moment, m(�n), depends on the magnetization direction when
the spin–orbit interaction is taken into account.

Finally, the dipolar anisotropy is given by the difference
between the energies for two different directions, �Edipaniso =
E (�n2) − E (�n1). Again, the two well-distinguished directions
are the �n1 = [001] and �n2 = [100] directions, which are along
the c axis and in the basal plane along a, respectively. Positive
values indicate an easy dipolar direction that is along the [001]
axis. It has a second-order angular dependence.

4. Plotting the magnetic anisotropy

According to Eqs. (D8) and (D15), the magnetocrystalline
anisotropy energy may be positive or negative, depending on
the direction of (θ, φ) and the K values. Consequently, it is
difficult to visualise the anisotropy energy by plotting the
three-dimensional distribution of Ea(�r) = Ea(θ, φ). There-
fore, the alternative anisotropy energy Ea′ with respect to the
lowest energy is generally plotted, where

Ea′ = Ea − min(Ea), (D18)

which is still positive even when Ea < 0. The easy directions
or planes are identified as those for which Ea′ = 0. Ea′ is used
to plot the magnetocrystalline anisotropy in the main text.
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