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We study the occurrence of symmetry-enforced topological band crossings in tetragonal crystals with strong
spin-orbit coupling and time-reversal symmetry. By computing the momentum dependence of the symmetry
eigenvalues and the global band topology in the entire Brillouin zone, we determine all symmetry-enforced
band crossings in tetragonal space groups. In particular, we classify all Dirac and Weyl degeneracies on points,
lines, and planes, and find a rich variety of topological degeneracies. This includes, among others, double Weyl
points, fourfold double Weyl points, fourfold quadruple Weyl points, Weyl and Dirac nodal lines, as well as
topological nodal planes. For the space groups with symmetry-enforced Weyl points, we determine the minimal
number of Weyl points for a given band pair and, remarkably, find that materials in space groups 119 and 120
can have band pairs with only two Weyl points in the entire Brillouin zone. This simplifies the contribution of the
Weyl points to the topological responses, which would be useful for device applications. Using the classification
of symmetry-enforced band crossings, we perform an extensive database search for candidate materials with
tetragonal space groups. Notably, we find that Ba5In4Bi5 and NaSn5 exhibit twofold and fourfold Weyl nodal
lines, respectively, which cross the Fermi energy. Hf3Sb and Cs2Tl3 have band pairs with few number of Weyl
points near the Fermi energy. Furthermore, we show that Ba3Sn2 has Weyl points with an accordion dispersion
and topological nodal planes, while AuBr and Tl4PbSe3 possess Dirac points with hourglass dispersions. For
each of these candidate materials we present the ab initio band structures and discuss possible experimental
signatures of the nontrivial band topology.
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I. INTRODUCTION

Topological semimetals exhibit protected band crossings
near the Fermi energy, which carry nonzero topological
charges [1–8]. The existence of such band crossings has
been recognized early on in the development of solid-state
physics [9], but their importance was appreciated only re-
cently. Indeed, over the last few years it was shown that
topological band crossings lead to a number of interesting
phenomena, such as, unusual magnetotransport [10], intrin-
sic anomalous Hall effects [11], large thermopower [12],
exotic surface states [13–19], and various responses related
to quantum anomalies [20–23]. Due to these unusual prop-
erties, topological semimetals hold great potential for novel
device applications [24]. For example, the helical nature of the
electronic states can be utilized for low-dissipation transport
[7]. Using the spin-momentum locking of the surface states,
low-consumption spintronic devices [25,26] and magnetic
memory devices [27] can be constructed. It may also be possi-
ble to build topological field effect transistors, by controlling
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the phase transitions of topological semimetals [28]. The
high photosensitivity of topological semimetals may provide
a possibility for building ultrafast broadband photodetectors
[29–31]. Besides, many topological semimetals exhibit large
thermoelectric responses, which makes them promising for
high-efficiency energy converters and thermal detectors [32].

Despite these extensive research activities, there is still a
lack of suitable materials for device applications. In this paper,
we use the principle of symmetry-enforced band crossings to
look for new topological materials. That is, we investigate
under which circumstances nonsymmorphic symmetries lead
to enforced band crossings on high-symmetry points, lines,
or planes [10,33–45]. We focus on space groups (SGs) in
the tetragonal crystal system, which exhibit fourfold (screw)
rotations about the z axis. Previously, we have applied this
strategy to classify symmetry-enforced band crossings in ma-
terials with hexagonal and trigonal SG symmetries [43,44]. A
future work will be concerned with orthorhombic SGs [45].

We summarize our results in Tables I and II, which classify
all possible symmetry-enforced band crossings in tetragonal
materials with strong spin-orbit coupling. We find a large
variety of different types of topological band degeneracies on
points, lines, and planes. These include Dirac and Weyl points,
Dirac nodal lines, twofold and fourfold Weyl nodal lines, as
well as topological nodal planes. Regarding the symmetry-
enforced Weyl points, we find four different variants, namely,
single Weyl points with a linear band crossing and Chern
number |C| = 1, double Weyl points with a quadratic band
crossing along two directions and |C| = 2, fourfold double
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Weyl points with a fourfold degeneracy and |C| = 2, and
fourfold quadruple Weyl points with a fourfold degeneracy
and |C| = 4 (Sec. IV). The degeneracies along nodal lines
also come in different varieties: Dirac nodal lines, fourfold
Weyl nodal lines, and twofold Weyl nodal lines, which can
form nodal chains or “armillary spheres” (Sec. VI). Addi-
tionally, there are “almost movable nodal lines,” which are

pinned to high-symmetry points but otherwise freely mov-
able (Sec. VI A).1 Finally, for the nodal planes, we find that
they occur on the Brillouin zone (BZ) boundaries and are

1We note that the existence of these almost movable nodal lines
cannot be derived solely form the compatibility relations of irreps.

TABLE I. Classification of band crossings in noncentrosymmetric tetragonal crystals with strong spin-orbit coupling. The first column lists
the tetragonal space groups (SG) that lack inversion symmetry by their number and symbol. The second and third columns list the positions
of Weyl points (see Sec. IV A) and Weyl nodal lines (see Sec. VI), which are movable on the indicated rotation axis or mirror plane. For
Weyl lines we group the high-symmetry points, e.g., “X, R,” or lines, e.g. “�-Z-R,” into sets with the same mirror eigenvalue pairing. The
sets of points for different eigenvalues are separated by semicolons. Note fourfold degeneracies fall into neither category, which is indicated
by italicized type, e.g., Z in �-Z-R. On a path between any two points with different eigenvalues nodal lines are found. If a point (instead
of a line) is given in the first eigenvalue set an almost nodal line passes through it (see Sec. VI A). For example, (P, �-Z; −)(2) denotes a
nodal line passing through P situated in the mirror plane containing P and �-Z. The number in brackets corresponds to the number of bands
connected by the given feature. The fourth column denotes points in reciprocal space with a fourfold degeneracy. The fifth column gives the
lowest possible number of point crossings which carry a nonzero chirality, thereby including fourfold degeneracies but excluding nodal planes.
Several numbers are given if the minimal number of Weyl points depends on the band index. The second to last column lists conditions on k
for which all bands are twofold degenerate (see the discussion of nodal planes in Sec. VIII). The last column contains a selection of noteworthy
features of the respective SG. Nodal points allowing for irreducible representations of different dimensions are marked by (*).

SG Movable Weyl points Movable Weyl lines Fourfold points No. Weyl Nodal planes Notable features

75 P4 8
76 P41 �-Z(8), M-A(8), X-R(4) 4,8 kz = π Double Weyl
77 P42 �-Z(4), M-A(4) 4,8 Double Weyl
78 P43 �-Z(8), M-A(8), X-R(4) 4,8 kz = π Double Weyl

79 I4 10 Weyl at P
80 I41 �-Z-M(4) 4,8 Double Weyl, Weyl at P(*)

81 P4̄ 4
82 I 4̄ 6
89 P422 8
90 P4212 �-X(4), Z-R(4) A, M 2,10 kx, ky = π Fourfold Weyl
91 P4122 �-Z(8), M-A(8), X-R(4) 4,8 kz = π Double Weyl

Top. nodal plane,
92 P41212 �-Z(8), �-X(4) M, R, A(*) 1,3,9 kx, ky, kz = π twofold/fourfold

(double/quadruple) Weyl

93 P4222 �-Z(4), M-A(4) 4,8 double Weyl

Top. nodal plane,
94 P42212 �-Z(4), �-X(4), Z-R(4) A, M 2,12 kx, ky = π double/fourfold Weyl

95 P4322 �-Z(8), M-A(8), X-R(4) 4,8 kz = π Double Weyl
96 P43212 �-Z(8), �-X(4) M, R, A(*) 1,3,9 kx, ky, kz = π See SG 92

97 I422 10 Weyl at P
98 I4122 �-Z-M(4) 4,8 Weyl at P(*)

99 P4mm

100 P4bm (�-Z; X, R)(4) M, A
101 P42cm Z, A, R
102 P42nm (�-Z-R; X)(4), (X-M-A; R)(4) Z, M Nodal chain metal
103 P4cc Z, R, A
104 P4nc (�-Z-R; X)(4), (X-M-A; R)(4) Z, M, A Nodal chain metal
105 P42mc Z, A
106 P42bc (�-Z; X, R)(4) Z, A, M, M-A(8) Movable fourfold point

107 I4mm (N, �-Z, M-Z1; −)(2)
108 I4cm (�-Z, M-Z1; N)(4) P Fourfold at P
109 I41md (�-Z; X)(4), (N, �-Z, M-Z1; −)(2) M P(*), nodal chain metal

(�-Z, P; X)(4), (�-Z, X; P)(4),
110 I41cd (X-M; P)(4),(�-Z, M-Z1; N)(4), M 8N bands,

(P, �-Z; −)(2), (P, X-M-Z1; −)(2) in-gap nodal lines
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TABLE I. (Continued.)

SG Movable Weyl points Movable Weyl lines Fourfold points No. Weyl Nodal planes Notable features

111 P4̄2m 4
112 P4̄2c Z, A 4
113 P4̄21m �-X(4), Z-R(4) MA 8 kx, ky = π Fourfold line
114 P4̄21c �-X(4) Z, MA 4 kx, ky = π Fourfold line
115 P4̄m2
116 P4̄c2 Z, A, R
117 P4̄b2 (�-Z; X, R)(4) A, M

(�-Z-R; X)(4)
118 P4̄n2 A-R(4), R-X(4) (X-M-A; R)(4) Z, M Nodal chain metal

119 I 4̄m2 (N, �-Z, M-Z1; −)(2) 2
120 I 4̄c2 X-P(4) (�-Z, M-Z1; N)(4) 2
121 I 4̄2m 4
122 I 4̄2d (�-Z; X)(4) M 4 Nodal chain metal

enforced by the combination of screw rotation with time-
reversal symmetry. The nontrivial topology of these nodal
planes follows from the Nielsen-Ninomiya fermion doubling
theorem [46,47] together with the global band topology (i.e.,
the topological charge of all band crossings of a given band
pair) (see Sec. VIII).

With these classification results in hand, we proceed to
identify materials that exhibit the aforementioned symmetry-
enforced band crossings. For that purpose, we perform
extensive database searches for materials with strong spin-
orbit coupling and the relevant space-group symmetries
(Sec. II B and Fig. 2). Our search yields seven candidate
materials, whose band structures are studied in detail using
density functional theory (DFT) calculations. In particular,
we find that Ba5In4Bi5 possesses Weyl nodal lines close
to the Fermi energy, which form nodal chains (Sec. VI B).
NaSn5 exhibits fourfold nodal lines crossing the Fermi energy
(Sec. VII). Ba3Sn2 has single and double Weyl points with ac-
cordion dispersions and topological nodal planes (Secs. IV C
and VIII A), while Hf3Sb and Cs2Tl3 exhibit a small number
of Weyl points close to the Fermi energy (Secs. III A 1 and
III A 2). The centrosymmetric compounds Tl4PbSe3 and AuBr
possess movable Dirac points forming hourglass dispersions
(Secs. V B and V C).

The remainder of this paper is organized as follows. In
Sec. II we introduce our naming conventions for the different
topological band degeneracies and explain our notation for
the symmetry operators and high-symmetry points (Sec. II A).
Moreover, we explain the details of our database search for
candidate materials (Sec. II B). We find candidate materials
for seven of the tetragonal SGs. Their band structures and
topological features are presented in those sections, where the
corresponding SGs are analyzed. In Sec. III we study band
degeneracies that are enforced by Kramers theorem. We show
that Kramers theorem leads to Weyl points at time-reversal
invariant momenta (TRIMs) (Sec. III A), as well as to point
and line degeneracies on other high-symmetry points and
lines, respectively (Sec. III B). Section IV is concerned with
hourglass and accordion dispersions (Sec. IV A), as well as
Weyl points that are symmetry enforced by screw rotations.
Depending on the tetragonal SG, these Weyl points are of the

following types: single Weyl points (Sec. IV B), double Weyl
points (Sec. IV C), fourfold double Weyl points (Sec. IV D),
and fourfold quadruple Weyl points (Sec. IV E). In Sec. V
we discuss movable fourfold points and Dirac points, whose
existence is enforced by screw rotations combined with glide
reflections or other multiple (non)symmorphic symmetries.
Sections VI and VII are devoted to the study of twofold
and fourfold Weyl nodal lines, respectively. In particular, we
investigate nodal lines forming chains of connected rings
(Sec. VI B) and armillary spheres (Sec. VI C). In Sec. VIII
we study nodal planes, i.e., band degeneracies on two-
dimensional planes at the BZ boundary, which are enforced
by screw rotations together with time-reversal symmetry. The
nontrivial topological charge of these nodal planes is inferred
from the global band topology of all band crossings in the
BZ. Finally, in Sec. IX we analyze band crossings protected
by off-centered symmetries, i.e., by the combination of screw
rotation (or glide mirror) with inversion. The conclusions
and outlook of our work are given in Sec. X. Additional
band structure calculations are presented in Appendix A. In
Appendix B we discuss tight-binding models and their topo-
logical surface states for some tetragonal SGs. In Appendix C
we derive effective Hamiltonians describing the low-energy
physics near different types of topological band crossings.

II. PRELIMINARIES

Before presenting the results of our classification, we start
in this section by introducing our conventions for the naming
of topological band degeneracies and by explaining the no-
tations for the symmetry operators (Sec. II A). We also give
a brief discussion on how the database search for candidate
materials was performed (Sec. II B).

There are in total 68 tetragonal space groups, of which
49 have primitive lattices (P tetragonal), and the remaining
19 have body-centered lattices (I tetragonal). All tetragonal
space groups possess a fourfold rotation symmetry around the
z axis. The BZs for the tetragonal space groups are shown
in Fig. 1. Tetragonal lattices contain two independent lattice
constants a and c, which correspond to the breadth and height
of the conventional unit cell along the x and z directions,
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TABLE II. Classification of enforced band crossings in centrosymmetric tetragonal crystals with strong spin-orbit coupling. The first
column lists the tetragonal space groups including inversion symmetry by their number and symbol. The second and third columns list the
positions of Dirac points and Dirac lines. Here, R-Z(4) refers to a movable Dirac point on the line connecting R and Z in an hourglass structure
comprising four spin-degenerate bands (see Secs. V B and V C). The fourth and fifth columns list lines and planes on which accidental
points and lines are possible, respectively. Here, the fourfold rotation axis �-Z and M-A are omitted because they always allow accidental
crossings except when they host a Dirac line (Sec. IX). The last column points to noteworthy features. Nodal points allowing for irreducible
representations of different dimensions are marked by (*) and are discussed in Sec. V E.

SG Dirac points Dirac lines Accidental points Accidental lines Notable features

83 P4/m
84 P42/m Z, A
85 P4/n X, A, M, R X-R
86 P42/n X, Z, M, R X-R

87 I4/m
88 I41/a X, M X-P

123 P4/mmm
124 P4/mcc A, Z, R Z-R, Z-A, R-A
125 P4/nbm M, A, X, R X-R, X-M, R-A
126 P4/nnc X, Z, A, R, M X-R, X-M, Z-R, Z-A
127 P4/mbm MX, AM, AR kx, ky = π

128 P4/mnc Z AM, MX Z-R, Z-A, R-A kx, ky = π

129 P4/nmm RX, AM kx, ky = π

130 P4/ncc Z, R-Z(4) RX, AM, AR Z-R, Z-A kx, ky = π Movable Dirac; eightfold A
131 P42/mmc Z, A Z-A
132 P42/mcm Z, R, A Z-R, R-A
133 P42/nbc X, Z, A, R, M, A-M(4) X-R, X-M, Z-A, R-A Movable Dirac
134 P42/nnm X, Z, M, R X-R, X-M, Z-R
135 P42/mbc Z MX, AM, AR Z-A kx, ky = π Eightfold A
136 P42/mnm Z MX, AM Z-R kx, ky = π

137 P42/nmc Z AM, RX Z-A kx, ky = π

138 P42/ncm Z, R-Z(4) AR, AM, RX Z-R kx, ky = π Movable Dirac

139 I4/mmm
140 I4/mcm N, P N-P
141 I4/amd X, M X-P, X-M
142 I41/acd X, M, N, P(*) X-P, X-M, N-P Dirac at P(*)

respectively. Depending on the cell metrics, the Brillouin zone
for body-centered tetragonal crystals is one of two distinct
polyhedra: an elongated dodecahedron (BCT1, for c < a) or
a truncated square bipyramid (BCT2, for c > a) [48].

A. Conventions

The discussion of enforced band features necessitates the
frequent use of space-group (SG) symmetries. For the tetrag-
onal SGs the relevant symmetries are twofold and fourfold
rotations and mirror symmetries. We define the abbreviations
for symmetries as Nxyz(abc), where N = 2, 4 refers to an
N-fold rotation around the axis given by the vector (x, y, z)
followed by a (fractional) lattice translation (a, b, c). For mir-
ror symmetries the notation Mxyz(abc) declares (x, y, z) to be
the normal direction of the mirror plane and (a, b, c) again
the translation. All symbols implicitly contain also the action
on the electron spin. Combined with the spatial action the
symmetries can be exemplarily defined as

2001(a, b, c) : (x, y, z) → (−x + a,−y + b, z + c) ⊗ iσz,

(2.1)

4001(a, b, c) : (x, y, z) → (−y + a, x + b, z + c) ⊗ σ0 + iσz√
2

,

(2.2)

M001(a, b, c) : (x, y, z) → (x + a, y + b,−z + c) ⊗ iσz,

(2.3)

where σx, σy, σz refers to the Pauli matrices and σ0 is the 2 × 2
unit matrix. We denote pure translations by a vector (a, b, c)
with t (a, b, c).

Additionally, we will make frequent use of time-reversal
symmetry T = 1 ⊗ iσyK, which consists of a unitary part act-
ing on spin space and complex conjugation K, whose action
in momentum space is T k = −k.

It is sufficient to study points, line segments, and planes
of one eighth of the full BZ, because all space groups we
consider in this work contain time reversal T and the fourfold
rotation symmetry 4001. Therefore, the band structure and any
topological features are always related between different parts
of the BZ and one octant of the full BZ suffices. Without loss
of generality, we set the lattice constants a = c = 1.

A time-reversal invariant momentum (TRIM) is an impor-
tant point of interest for any space-group symmetry analysis.
It is defined as a point kTRIM of the BZ, which is left invari-
ant by the action of time reversal, i.e., T kTRIM = kTRIM + K,
where K is a reciprocal lattice vector. By describing the re-
ciprocal lattice with coordinates given in its primitive basis,
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FIG. 1. Brillouin zones of the tetragonal crystal system. TRIMs are labeled in dark blue. Lines of high symmetry, i.e., sections of rotation
axes, are highlighted for the fourfold rotation (red) along [001], and the twofold rotations along 〈100〉 (green), 〈110〉 (light blue), and [001]
(orange). (a) Primitive BZ. (b) Body-centered BZ for c < a, BCT1. (c) Body-centered BZ for c > a, BCT2.

it is evident that there are always eight TRIMs in the Bril-
louin zone. To be specific in the primitive basis the TRIMs
are (0,0,0), ( 1

2 , 0, 0), (0, 1
2 , 0), (0, 0, 1

2 ), ( 1
2 , 1

2 , 0), ( 1
2 , 0, 1

2 ),
( 1

2 , 1
2 , 0), ( 1

2 , 1
2 , 1

2 ) for any unit-cell type, i.e., primitive as
well as body-centered cells. Keeping this result in mind we
describe the Brillouin zone in Cartesian coordinates, which
makes the possible symmetries more obvious. Hereby, the
primitive and body-centered Brillouin zones must be dis-
tinguished (see Fig. 1). Adopting this description, the eight
TRIMs for the primitive cell are �(0, 0, 0), X(0, π, 0) (2),
Z(0, 0, π ), R(0, π, π ) (2), M(π, π, 0), A(π, π, π ), where
(2) denotes TRIMs that appear in two distinct copies re-
lated by symmetry. For the body-centered Brillouin zone
BCT1 the TRIMs are �(0, 0, 0), X(π, π, 0)(2), M(2π, 0, 0),
N(π, 0, π )(4) and for BCT2 M(2π, 0, 0) is replaced by
Z(0, 0, 2π ). Without loss of generality we use the labels of
BCT1 unless a material realization requires BCT2.

The point P = (π, π, π ) is not a TRIM of the body-
centered BZ. Yet, it is invariant under the combination of
time-reversal symmetry T with fourfold rotation 4001. As we
will discuss below in Sec. III B, there is a version of Kramers
theorem with this combined symmetry leading to nodal points
at P. Hereby a prerequisite of Kramers theorem can become
dependent on the eigenvalues at P for the twofold rotation.

To denote segments of high-symmetry lines we use two or
more points on the line connected by a hyphen. The shortest
connection between the points defines the line. The notation
with a hyphen is used, when any point on the high-symmetry
line may be the locus of a feature of interest and also when
the whole line exhibits a property, e.g., �-Z in SG 76 con-
tains movable Weyl points and forms accordion states. For
clarity we denote the fourfold rotation axis (0, 0, kz ) of the
body-centered cell as �-Z-M. If a feature appears for every
single point on a line, we use the same points but with an
overline, e.g., MA for SG 113 is a line of fourfold degenerate
points.

The focus of this work lies on enforced features of the
band structure. We distinguish symmetry-enforced properties,
which must occur based on symmetry arguments for any re-
alization of a space group with spin degrees of freedom, from
accidental features that may exist but depend on details of the

system. For example, consider for now �-X to be a twofold
screw rotation axis. There, all bands can be labeled by one
out of two symmetry eigenvalues. We will show that each
band must exchange its eigenvalue at least once forming an
enforced crossing on the line �-X (cf. Sec. IV A). Further-
more, any crossing of bands with different eigenvalues must
be gapless because any term introduced to gap the crossing
necessarily breaks the symmetry. It is possible that the bands
exchange several times leading to what we refer to as acciden-
tal band crossings. Nevertheless, they are symmetry protected
like the enforced crossings. Note, if both occur it is generally
not possible to label one of them as enforced. This notion of
accidental crossings includes nonguaranteed band crossings
that are protected by other means than symmetry eigenvalues,
e.g., Weyl points situated away from high-symmetry points
or lines, which are protected only by translation symmetry
and their inherent nonzero Chern number. In other words,
we regard enforced features to be stable under arbitrary
symmetry-preserving perturbations. They are unaffected by
the details of a respective realization.

When naming pointlike topological band crossings, we
call fourfold crossings Dirac points only in the presence of
inversion symmetry. We regard a point crossing as a species
of Weyl point if and only if it carries a nonzero chirality.
By default, such a Weyl point is twofold degenerate with a
chirality C = 1, double Weyl points are twofold degenerate
with a chirality of 2. We refer to fourfold double Weyl points,
when discussing two superimposed regular Weyl points with a
total chirality of C = 2, which is also called a doubled spin- 1

2
fermion in the literature [49]. We further discuss the fourfold
quadruple Weyl point, which consists of two superimposed
regular double Weyl points and carries a total charge of C = 4
(see Sec. IV E).

B. Systematic search for example materials

In the following sections, we will identify and discuss the
tetragonal SGs, whose nonsymmorphic symmetries enforce
various topological and trivial degeneracies on points, lines,
and planes. For each of those SGs, we then perform a database
search for material examples among the subset of ordered,
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FIG. 2. Distribution of ordered, tetragonal phases in the Materi-
als Project and ICSD (MP ∩ ICSD, N = 7039) by atomic number of
the heaviest element and the number of atoms in the primitive unit
cell. Seven example phases discussed in the text are highlighted. The
regions bounded by black dashed lines indicate two of the automated
screening criteria explained in the text. (*) Cs2Tl3 is a hypothetical
phase (see text).

inorganic, crystalline phases in the Materials Project database
[50,51] that correspond to entries in the Inorganic Crystal
Structure Database (ICSD) [52]. The distribution of these
∼7000 tetragonal phases by maximum atomic number and
number of atoms in the primitive cell is given in Fig. 2. To
identify materials with strong spin-orbit coupling, we screen
for phases containing elements Sn-La, Lu-Bi, or U (we ex-
clude most rare earths as f electrons are poorly described by
single-particle DFT, but compounds of La3+, Lu3+, or U6+
have empty or filled f shells). We apply further screens based
on the number of atoms in the unit cell (as larger cells have
more bands and typically more limited bandwidths), thermo-
dynamic stability (formation energy �50 meV atom−1 off the
convex hull), and band gap (�1 eV by a generalized gradient
approximation functional). These criteria yield between zero
and several dozen phases for each of the space groups of
greatest interest. Seven example materials, annotated in Fig. 2,
are discussed in detail in the corresponding sections. AuBr
and Cs2Tl3 were added manually to this group, as AuBr has
a band gap wider than the screening criterion, and Cs2Tl3 is a
hypothetical heavier analog of the known Cs2In3.

For the materials of interest we perform DFT band-
structure calculations with the VASP code [53,54], using the
projector augmented-wave (PAW) method [55,56] and the
PBE [57] exchange-correlation functional. The relaxed struc-
tures stored in the Materials Project are used directly for all
phases except hypothetical Cs2Tl3, whose structure is deter-
mined by relaxing Tl-substituted Cs2In3.

In the main text we will focus on the band dispersion
around the features of interest. The complete band structures
along the high-symmetry lines of the full BZ are presented in
Appendix A.

III. APPLICATIONS OF KRAMERS THEOREM

Kramers theorem states that an antiunitary operation T ,
e.g., time reversal, with T 2 = −1 leads to twofold degenerate
bands at each invariant momentum [58]. These Kramers-Weyl
points were discussed for chiral space groups [59]. We extend
the argument to groups containing mirror and rotoinversion
symmetries and find a minimal number of paired Weyl points
in SGs 119 and 120. It is favorable to obtain simple realiza-
tions of Weyl semimetals comprising few Weyl points with a
large separation to simplify further analysis. In such systems
the signatures of Weyl points are more prominent, e.g., in
transport properties and as a less complex arrangement of the
surface Fermi arcs [60–62].

Beyond this well-known application of Kramers theorem
at TRIMs, it also leads to other topological features and can
be adapted to convey insights into the tabulated irreducible
group representations [63,64]. Among these features there are
nodal planes as a result of twofold screw rotations, which we
discuss separately in Sec. VIII, as well as nodal lines on high-
symmetry axes following an analogous argument with glide
mirror symmetries and rotoinversions.

We first discuss Kramers-Weyl points at TRIMs and
then elaborate on how Kramers pairing occurs away from
TRIMs. For the second part the combination of time-reversal
with (non)symmorphic symmetries results in line and point
degeneracies.

A. Kramers-Weyl points

Weyl points are, in their basic form, twofold degenerate
crossings acting as sources and sinks of Berry curvature,
which is measured by their topological charge, the chirality C.
It corresponds to the Chern number calculated on an enclosing
two-dimensional manifold, e.g., a sphere. Since the Berry
curvature transforms as a pseudovector under reflections, one
derives that the chirality of any nodal feature on a mirror plane
must be equal to its negative and thereby vanish. By excluding
point groups with mirror and inversion symmetry it is possible
to conclude that any given TRIM carries twofold degenerate
nodal points with nonzero chirality dubbed as Kramers-Weyl
points [59].

Yet, it is insufficient to consider only chiral crystals, mean-
ing crystals with rotations and translations only, because a
mirror symmetry can coexist with a Weyl point as long as
the Weyl point is not situated on the mirror plane. In that
case, the mirror symmetry relates two Weyl points of opposite
chirality. The tetragonal SGs 111–114 and 119–122 contain
such enforced topological crossings. To aid the search of new
materials with few Weyl points, we have listed the multiplic-
ities of enforced Weyl points in the column “No. Weyl” in
Table I. Depending on the considered band index, different
multiplicities appear and are listed in ascending order. Note
that this column contains all charged nodal points, not just
(Kramers-)Weyl points, independently of the magnitude of
their charge. The SGs 99–110, 115–118 each contain a version
of M100, which has mirror planes intersecting all TRIMs, and
also do not contain Weyl points enforced by other means, thus
leaving the entry in column “No. Weyl” empty. Although each
space group without mirror symmetries contains in principle
a set of eight Kramers-Weyl points, nodal lines or planes may
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lead to extended instead of pointlike degeneracies. Consider
SG 81 with its fourfold rotoinversion, where the lines �-Z and
M-A exhibit only twofold representations, such that just X and
R remain as Kramers-Weyl points yielding a total multiplicity
of 4.

Finally, we find the minimal number of one Weyl point pair
in SG 119 by choosing a space group with a specific mirror
symmetry and a body-centered unit cell. Consider SG 82 as
starting point, a body-centered version of SG 81, which is
generated by a fourfold rotoinversion. Analogous to SG 81
the twofold degenerate line �-Z-M reduces the number of
TRIMs with Kramers-Weyl points, leaving six Weyl points
at X and N. The rotoinversion relates Weyl points of opposite
chirality, i.e., the nodal points (π, π, 0) and (π,−π, 0) both
labeled X, and likewise for the crossings at N. If the mirror
symmetry M100 is added to remove the Weyl points at N as
well, the resulting group is SG 119. For SG 119 the twofold
degeneracies at N are part of almost movable nodal lines (see
Sec. VI A) and carry no chirality. Hence, SG 119 yields two
enforced Weyl points at X related by an improper rotation and
a mirror symmetry, which achieves the minimal number of
one pair of Weyl points on a lattice [46,47]. For SG 120 a
single pair of Kramers-Weyl points follows from an identical
argument. Even though these two SGs have only two Weyl
points, this will generally not lead to Fermi arcs that are well
separated from bulk bands in the entire surface BZ. This is
because the TRIMs without Weyl points in SGs 119 and 120
are part of nodal lines, leading to Fermi surface pockets that
partially overlap with the Fermi arcs in the surface spectra (cf.
Fig. 14 and Appendix B 1).

The presence of only two Weyl points in SGs 119 and 120
per band pair is at odds with the common notion that four
Weyl points are the minimal number achievable in a system
with time-reversal symmetry [60–62]. The argument assumes
that time reversal relates distinct Weyl points with the same
chirality and concludes by the Nielsen-Ninomiya theorem that
two additional Weyl points of opposite chirality must exist
[46,47]. Although for a Weyl point at a TRIM the first assump-
tion is false, the minimal number of four seems unchallenged
since there are eight TRIMs. But, as we have noted above, due
the mirror symmetry M100 in the body-centered SGs 119 and
120 all but two nodal points have vanishing chirality. Note,
however, that it is possible to obtain a single Weyl point if
the nodal manifold of opposite chirality appears in the shape
of a topological nodal plane instead of a Weyl point (see
Sec. VIII).

To further study SG 119 we have created a minimal model,
confirming that the chiralities of Weyl points at X are in-
deed +1 and −1, and determined the surface states (see
Appendix B 1). Here we want to highlight one property of
the surface states for SG 119. We find that each surface ex-
hibits two Fermi arcs connecting the projections of the two X
points in the surface BZ. The arcs are related by time-reversal
symmetry and appear in disjoint bulk band gaps (see Fig. 14).

Nevertheless, it is unusual that two arcs appear if there is
only one pair of singly charged Weyl points. To understand the
relation of Weyl points and Fermi arcs, the standard approach
is to consider gapped planar subsystems on which one may
calculate the Chern number. It is a peculiarity of the body-
centered BZ [see Figs. 1(b) and 1(c)], that an oriented plane

normal to (1,1,0) that passes for example the point ( π
2 , π

2 , 0)
will also include the point (−π

2 ,−π
2 , 0). Hence, considering

the orientation of the normal vector at the two exemplary
points the plane does not capture the chirality of one of the
Kramers-Weyl points at X. The plane has Chern number zero.
If then a slab is made, i.e., the periodic boundary conditions
are lifted, such that this plane is truncated, the subsystem of
the plane appears as two parallel lines in the surface BZ. We
find indeed that the surface states pierce this line twice but in
opposing directions, which agrees with the vanishing Chern
number of the corresponding subsystem.

One concludes that considering a gapped and planar sub-
system is not sufficient to discern the nontrivial topology of
SG 119 and analogously of SG 120. Rather, it is the chiralities
of the Weyl points alone that indicate the presence of topolog-
ical surface states and the connectivity of the body-centered
BZ allows for two Fermi arcs even for singly charged Weyl
points.

1. Material example: Hf3Sb

As an example for SG 82 (I 4̄), which enforces only six
Kramers-Weyl points per pair of bands, we present the band
structure of Hf3Sb in Fig. 3(a). It crystallizes with c < a
[65,66], i.e., its BZ is of type BCT1. Kramers-Weyl points
appear at N and X for all bands, whereas the points � and
M are part of a nodal line. Accidental band crossings occur
for several bands along the twofold rotation axis X-P.

2. Material example: Cs2Tl3

Cs2Tl3 is a hypothetical, heavier analog to Cs2In3 in SG
119 (I 4̄m2) with c > a [67]. We find the formation energy of
Cs2Tl3 with respect to the elements is favorable, but the com-
pound is not among the reported binaries in the Cs-Tl system
[68–70]. The band structure shown in Fig. 3(b) shows the two
distinct Kramers-Weyl points at X. The nodal crossings at N
are also enforced by Kramers theorem, but they are part of
nodal lines within mirror planes and thus without chirality.
Similarly, the TRIMs � and Z do not exhibit a nodal point
because they are part of a nodal line.

B. Kramers theorem beyond TRIMs

In this section we discuss band degeneracies due to
(non)symmorphic, antiunitary symmetries. It is instructive to
consider for a start symmorphic symmetries combined with
the time-reversal operation T in the context of Kramers the-
orem. The best-known case is inversion symmetry P . The
combination PT enforces twofold degeneracies at all mo-
menta because (PT )2 = −1 and all k are invariant momenta.
Due to this ubiquitous twofold degeneracy in centrosymmetric
groups, we have split the results of this paper into the cases
without and with inversion symmetry (see Tables I and II).

The combination of time reversal with nonsymmorphic
symmetries can lead to nodal lines and planes, which occur
at invariant k points where the compound symmetry squares
to any number different from 1 (see Sec. VIII). In the fol-
lowing paragraphs we describe variations of this argument,
which lead to topological band crossings. First we discuss
symmorphic antiunitary compound symmetries, which unlike
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FIG. 3. Kramers-Weyl realization. Green circles mark the Weyl
points at TRIMs. (a) Band structure of Hf3Sb (SG 82). Each pair
of bands exhibits six independent Weyl points. (b) Band structure
of Cs2Tl3 (SG 119). Only two Weyl points per pair of bands are
enforced. Dashed blue circles highlight crossings at N which are part
of almost movable nodal lines in mirror planes and contribute no
chirality see (Sec. VI A).

PT do not square to the −1 but still yield nodal lines or points
and then continue to nonsymmorphic operations responsible
for Kramers pairing restricted to certain rotation eigenvalues.
Both arguments enforce Weyl points, which are not situated at
TRIMs but pinned to the point P.

1. Symmorphic antiunitary symmetries

Consider the noncentrosymmetric SGs 81, 82 and SG 119
from the previous section, which exhibit a twofold degenerate

nodal line along �-Z and �-Z-A, respectively. This degener-
acy can be understood with the symmorphic operation 4001T ,
where the rotoinversion 4001 acts on the fourfold rotation axes
like inversion by itself. There is an analogy to the case of PT
symmetry even though (4001T )2 	= −1. As 4001T leaves k
invariant, for the moment one may assume that 4001T creates
a linearly dependent state 4001T |ψk〉 = exp(iϕ)|ψk〉, when
acting on the eigenstate |ψk〉 of a Hamiltonian by producing
only a phase factor exp(iϕ). By substituting this equation in
the form |ψk〉 = exp(−iϕ)4001T |ψk〉 four times into itself,
a contradiction |ψk〉 = (4001T )4|ψk〉 = −|ψk〉 is found by

using T 2 = −1 with 4
4
001 = −1 for the last step. Hence, the

assumption is wrong and 4001T must relate the eigenstate |ψk〉
to a linearly independent state 4001T |ψk〉 of the same energy.

The same argument can be used as well at TRIMs for the
operation 4001T comprising the symmorphic proper rotation
4001. But, more intriguingly for body-centered space groups
the symmetry 4001T leaves another momentum invariant, the
point P. By the same argument as above, P will always be
degenerate. We highlight Weyl points at P in the last column
of Table I because they add to the number of Kramers-Weyl
points without being at a TRIM.

2. Eigenvalue-dependent Kramers theorem

Here we show a variant of Kramers theorem that only
applies to states with certain symmetry eigenvalues, which
we refer to as the eigenvalue-dependent Kramers theorem. To
illustrate this term, note that typically Kramers theorem pairs
bands differently depending on whether symmetry eigenval-
ues are complex or real. In that case, a band with a real
eigenvalue is paired to a band with the same eigenvalue,
whereas a complex eigenvalue is paired to its complex con-
jugate. But for the eigenvalue-dependent Kramers theorem
only some symmetry eigenvalues are paired, whereas for
others the theorem does not hold at all and no pairing is
obtained. It is a subtle and common feature of many band
structures that all bands at a given high-symmetry point of
reciprocal space have the same degeneracy. But, this is not
always true. The tetragonal SGs 80, 92, 96, 98, 109, and
142 have irreducible representations of different dimension
at high-symmetry points. This can be understood with the
eigenvalue-dependent Kramers theorem. To do so, we revisit
the above observation that (4001T )2 	= −1 for nonsymmor-
phic rotations as a starting point for the theorem.

The presence of irreducible representations of unequal di-
mensions at the same point can be explained by considering
a time-reversal-containing symmetry, which fulfills Kramers
theorem only for certain eigenvalues. To illustrate this, con-
sider the proof [58] of Kramers theorem for a state |ψ〉 and an
antiunitary operation T̃ fulfilling T̃ 2|ψ〉 = a|ψ〉 with a ∈ C:

〈ψ |T̃ ψ〉 = 〈T̃ 2ψ |T̃ ψ〉 = a∗〈ψ |T̃ ψ〉, (3.1)

where we used the property 〈ψ |φ〉 = 〈T̃ φ|T̃ ψ〉 of antiunitary
operators. T̃ |ψ〉 is an orthogonal state to |ψ〉 if a 	= 1. The
conventional time reversal yields a = −1 leaving no room for
a dependence on eigenvalues of ψ . If we consider the antiu-
nitary symmetry T̃ = T 4001(a, b, c) at an invariant k point,
then a = −α2001 depends on the rotation eigenvalues α2001 of
the twofold rotation symmetry resulting from (4001(a, b, c))2.
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For c = 1
4 or 3

4 the two eigenvalues differ at kz = π by a
factor of −1. Given that, we can conclude that one but not the
other eigenstate of 2001(a − b, b + a, 2c) will have a Kramers
partner. In other words, only a band with twofold rotation
eigenvalue +1 but not −1 has a Kramers partner.

The SGs 80, 92, 96, 98, 109, and 142 contain high-
symmetry points hosting irreducible representations of dif-
ferent dimensions due to eigenvalue-dependent pairing. We
highlight these features in Tables I and II with the asterisk
symbol (*) next to the label of the high-symmetry point, which
can be found either in the fourth or the last column.

This eigenvalue-dependent Kramers theorem makes a dif-
ference at points in the BZ with kz = π that are invariant under
T̃ , i.e., where one eigenvalue of the twofold screw rotation is
α2001 = −1. These are the points Z and A in the primitive unit
cell and P for the body-centered case. Note that at TRIMs
the degeneracy will not always be increased because time
reversal T and T̃ can relate the same symmetry eigenvalues.
For them to act differently on 2001 eigenvalues it is necessary
that the fourfold rotation contains a partial lattice translation
perpendicular to the rotation axis, as is the case in SGs 92 and
96 (see the point A in the example in Sec. IV C). Similarly,
additional symmetries can equalize the number of degenerate
bands. Compare the unequal dimension of representations at P
of SG 109 with the uniformly twofold bands at P for SG 110.
The latter is due to a line of Kramers degeneracies caused by
M010(0, 0, 1

2 )T [ cf. Fig. 11(b)] along the path N-P.
Beyond the tetragonal SGs this argument can be extended

to a few hexagonal and cubic cases, which is left for future
work.

IV. NONSYMMORPHIC WEYL POINTS

In this section we discuss how screw-rotation symmetries
in tetragonal SGs lead to protected Weyl points. That is,
we show how the momentum dependence of the symmetry
eigenvalues enforces band crossings along a line in the BZ.
Weyl points in tetragonal SGs come in four different varieties:
single Weyl points, double Weyl points, fourfold double Weyl
points, and fourfold quadruple Weyl points.

A. Hourglass and accordion states

A twofold screw rotation consists of a twofold rotation
followed by half a lattice translation along the rotation axis,
e.g., 2001(a, b, 1

2 ) for arbitrary lateral translation components
a and b. These symmetries square to a full lattice translation
and acquire a negative sign from the spin component, which
we denote as −t (0, 0, 1) for the example above. Translation
eigenvalues are given by a phase factor, defined through the
crystal momentum k. The eigenvalues of the screw rotation
are therefore restricted to the two square roots ±√−eikz in the
example above, where the rotation axis is in the z direction
and we will label them with their sign. Evaluated at the time-
reversal invariant momenta on the rotation axis, these are ±i
and ±1 for kz = 0 and π , respectively, corresponding to � (M)
and Z (A). Time-reversal symmetry ensures a Kramers partner
at the same energy with the complex-conjugate eigenvalue,
i.e., it creates pairs (+,−) at kz = 0 and two pairs (+,+)
and (−,−) at kz = π . The bands connecting these degenerate

FIG. 4. Connectivity diagrams with minimal band crossings for
the screw rotations found in tetragonal space groups. The case for a
fourfold screw rotation with n = 3 looks like n = 1 with redefined la-
bels. The colored symbols indicate the chiral charge of each crossing.
Blue and red dots mark chirality +1 and −1, respectively, gray dots
a chirality of |C| = 1 with undetermined sign, and green hexagons
indicate a double Weyl point with C = ±2.

points must necessarily cross at some point on the axis and
this band crossing is protected by the different symmetry
eigenvalues. On the axes left invariant by the rotation, the total
dispersion of the four bands involved creates an hourglass
shape [71] as shown in Fig. 4(a).

Combining a twofold screw rotation with time-reversal
symmetry results in an additional antiunitary symmetry squar-
ing to a full lattice translation. Invariant k points are restricted
to two planes perpendicular to the rotation axis êi, with kêi =
0 and π . On the latter plane, this symmetry squares to a lattice
translation with eigenvalue eikêi = −1 and enforces Kramers
degenerate states in the whole plane. Hence, the degeneracies
at Z (A) in the band connectivity diagrams are part of these
nodal planes and do not form Weyl points. For the topology
of such band degeneracies, see the section about topological
nodal planes (Sec. VIII).

In a similar manner, we can construct the band connectivity
for fourfold nonsymmorphic rotation symmetries 4001(a, b, n

4 )
as defined in Eq. (2.2). The two invariant axes in primitive
lattices are �-Z and M-A. Together with translations, they
generate SGs 76–78 with n = 1, 2, 3, respectively. Where
additional symmetries do not impose further degeneracies,
these arguments also hold for their supergroups, specifically
for SGs 91 and 95 on both invariant lines and for SGs 92
and 96 on �-Z. Applying such a symmetry four times results
in a full lattice translation and a minus sign from the spin
component −t (0, 0, n). The eigenvalues are therefore given
by the fourth roots of − exp(inkz ), which we label with the
integer p ∈ {0, 1, 2, 3}, defined through the parametrization

αp = exp
[
i
π

4
(2p + 1)

]
exp

(
i
n

4
kz

)
. (4.1)

054202-9



MORITZ M. HIRSCHMANN et al. PHYSICAL REVIEW MATERIALS 5, 054202 (2021)

(a) Double Weyl point (b) Fourfold double Weyl point (c) Fourfold quadruple Weyl point

FIG. 5. Dispersion of symmetry-enforced Weyl nodes with Chern number >1. The coordinates q in reciprocal space are given relative
to the respective nodal point. (a) Double Weyl nodes are twofold degenerate, with linear dispersion along the fourfold rotation axis q‖ and
quadratic dispersion perpendicular to it q⊥, CdW = ±2. (b) A fourfold double Weyl point is a fourfold degeneracy with linear dispersion in all
directions. Along high-symmetry lines a twofold degeneracy is enforced. The colors mark the two symmetry-related Weyl points. The Chern
number is the sum of these two Weyl points CfW = 2CWeyl = ±2. (c) The fourfold double Weyl is built from two symmetry-related double
Weyl points of equal chirality, the total Chern number is CfdW = 2CdW = ±4. Twofold-degenerate lines in (b) and (c) are part of nodal planes
(see Sec. VIII). The dispersion perpendicular to a fourfold Weyl line of Sec. VII is of the same type as in (b).

At the two TRIMs on any invariant axis, time-reversal sym-
metry T pairs bands with complex-conjugate eigenvalues. For
kz = 0, i.e., at � and M, we find α0

∗ = α3 and α1
∗ = α2, and

we label the degeneracy with (p, p′) = (0, 3) and (1,2), re-
spectively. For kz = π , i.e., at Z and A, we have to distinguish
the three different possible fractional translations.

With n = 1, we find α0
∗ = α2 = −i, leading to the pairing

(0,2). The two real eigenvalues α1 = −1 and α3 = 1 get a
Kramers partner with the same eigenvalue each, leading to
the pairing (3,3) and (1,1). Connecting these pairs creates a
minimum of three band crossings on the invariant axis. This
pattern is called an accordion state [43,72] and is shown in
Fig. 4(c). Each of these crossings is protected by different
rotation symmetry eigenvalues. For a screw rotation with
n = 3 the same pattern is found, but with interchanged labels
p → (p − 1) mod 4.

For n = 2 there are no real eigenvalues at either TRIM.
Whereas the pairing at � (M) remains unchanged, the pairing
at Z (A) is now (0,1) and (2,3). This allows a simpler band
connectivity made up of four bands only and one band cross-
ing along the path [see Fig. 4(b)].

The chirality C of these Weyl points can be inferred from
the ratio of eigenvalues involved in a crossing [40]. Twofold
screw rotations can create only single Weyl points of chirality
±1, whereas fourfold screw rotations lead to at least one
double Weyl point with chirality ±2. Further details of each
type of crossing will be discussed below.

B. Single Weyl points

These are conventional Weyl points with a linear dispersion
in each direction and a topological charge of C = ±1 [40].
For an hourglass dispersion from a twofold screw rotation, all
movable crossings and the ones at � are of this type. In the
accordion dispersion, single Weyl points are found whenever

the ratio of rotation eigenvalues in a band crossing is purely
complex. In that case, the chirality is completely determined
by symmetry eigenvalues

αp

αp′
= ±i ⇒ C = ∓1. (4.2)

Here, αp, as defined in Eq. (4.1), is the symmetry eigenvalue
of the upper band when moving to larger kz and αp′ the
eigenvalue of the lower band. This implies a sign change when
rearranging the order of bands. This condition is always met
for the band crossings at � and for two of the four movable
crossings in the accordion state. In both cases, the order in
energy might be exchanged, but the sum of all chiralities
vanishes.

C. Double Weyl points

Double Weyl points are twofold band crossings, where
the dispersion to lowest order is linear along one axis and
quadratic in directions perpendicular to it [73], shown in
Fig. 5(a). The Chern number of a manifold enclosing such
a node has absolute value |C| = 2. They can be found among
the crossings enforced by fourfold screw rotations, where the
ratio of rotation eigenvalues of the crossing bands is αp

αp′
= −1.

With the parametrization of Eq. (4.1), this is the case for the
pairs (p, p′) = (0, 2) and (1,3). For all of these, the direction
of linear dispersion is along the screw axis and the sign of their
topological charge depends on details of the Hamiltonian and
is not determined from the order of eigenvalues alone.

Material example: Ba3Sn2

Here, we present an example material with Weyl nodal
points, whose existence is enforced by screw rotation symme-
tries. These Weyl points are part of an hourglass or accordion
dispersion, as discussed in the previous sections.
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FIG. 6. Band structures for SG 96. (a) Schematic band structure
based on the connectivity of irreducible representations. Thick lines
indicate twofold degenerate bands within nodal planes. (b) Band
structure of Ba3Sn2 calculated from first principles. The connectivity
for all bands is consistent with the above sketch. The accordion states
along �-Z can be seen most clearly in the uppermost eight bands
(blue), whereas the hourglass states are only resolved in some bands
lower in energy.

The binary compound Ba3Sn2, which crystallizes in SG
No. 96 (P43212) [74], is an example of a material with
accordion states along the �-Z line. This material is an
electron-precise (insulating) Zintl phase, with a narrow band
gap [Fig. 13(f)] and a metallic luster. The [Sn2]6− Zintl ion
is unlikely to tolerate heavy doping before decomposition,
but light heterovalent doping may be possible. The accordion
states are shown in Fig. 6 alongside a connectivity diagram
for this SG and contains single and double Weyl points as
indicated in the accordion states in Fig. 4(c).

Furthermore, this SG has twofold screw rotations with axes
along the 100 and 010 directions. As explained above, this
enforces an hourglass dispersion along �-X. In the uppermost
occupied bands, the movable crossings of the hourglass dis-
persion are to close to X to be resolved, but they are visible in
the bands below.

An additional feature is the fourfold degenerate band
crossing along A-M. This feature is protected by symmetry
eigenvalues, but not mandated by band connectivity. It can in
principle be removed by exchanging the bands at A such that
the fourfold degenerate representation falls between the two
twofold representations. In either case, the fourfold degener-
acy at half-filling has to carry a Chern number of C = ∓2 to
cancel the topological charges of the double Weyl point with
C = ±2 in the accordion state (see Sec. IV D about fourfold
Weyl nodes below). This SG and example material will also
serve as an example in the context of topological nodal planes
in Sec. VIII.

D. Fourfold double Weyl points

A fourfold double Weyl point is a fourfold, point-
like degeneracy with linear dispersion, that splits into four
nondegenerate bands in all directions excluding the twofold-
degenerate nodal planes, which are covered in more detail in
Sec. VIII. From a topological point of view these degeneracies
are two symmetry-related Weyl points of identical chirality on

top of each other, leading to a total Chern number of ±2. An
exemplary dispersion is shown in Fig. 5(b). Such a feature
is enforced by a combination of time reversal and a spatial
symmetry which enforces a different Kramers partner than
time-reversal symmetry alone.

These conditions are met in the tetragonal crystal system
by SGs 90 and 94 at M and A and in SGs 92 and 96 at M. First,
we are going to discuss the arguments leading to fourfold
double Weyl points, using SG 90 as an example. The TRIMs
M and A are on an axis left invariant by the fourfold rotation,
therefore, we can label the states with their eigenvalues,

4001

(
1

2
,

1

2
, 0

)
|p〉 = ei(2p+1)

π
4 |p〉, (4.3)

indexed by p = 0, 1, 2, 3. Time-reversal symmetry pairs
states with complex-conjugate eigenvalues, i.e., (0,3)
and (1,2).

Consider now the additional antiunitary symmetry from
combining a twofold screw rotation with time-reversal sym-
metry 2010( 1

2 , 1
2 , 0)T . Its invariant points are restricted to the

two planes ky = 0 and π where it squares to 1 and −1, respec-
tively. In the latter case Kramers pairs are enforced, i.e., every
state in the plane is twofold degenerate and we call it a nodal
plane.

To find the eigenvalue of the Kramers partner, the com-
mutation relation of the fourfold rotation and the antiunitary
symmetry is needed. After some algebra, we find

4001

(
1

2
,

1

2
, 0

)
2010

(
1

2
,

1

2
, 0

)
T

= 2010

(
1

2
,

1

2
, 0

)
T t (1, 0, 0)

(
−4001

(
1

2
,

1

2
, 0

))3

.

(4.4)

Therefore, the Kramers partner 2010( 1
2 , 1

2 , 0)T |p〉 has the
eigenvalue αp′ = (α3

p)∗ = exp[i(2(p + 2) + 1)π
4 ], i.e., p′ =

p + 2 and thus the pairing is (0,2) and (1,3). In combination
with the pairings (0,3) and (1,2) from time-reversal symme-
try, this establishes the fourfold degeneracy. In other space
groups, the translational part of these symmetries might dif-
fer, but Eq. (4.4) holds with a modified translation. For all
TRIMs, where the eigenvalue of the translation is −1, the
same pairing is found. Alternatively, the presented results
can be understood by considering the eigenvalues ±i of the
twofold rotation 2001. Time reversal T pairs opposite signs at
the TRIMs, whereas 2010( 1

2 , 1
2 , 0)T anticommutes with 2001

on the line M-A and therefore pairs identical eigenvalues.
The fourfold degeneracy splits into nondegenerate bands,

except for the kx = π and ky = π nodal planes. The spectrum
is linear to lowest order in q = k − KTRIM and is made from
two Weyl cones, that are related by a π

2 rotation [see Fig. 5(b)].
A minimal, linearized Hamiltonian for this band crossing has
four bands and can always be brought into block-diagonal
form, consisting of two Weyl Hamiltonians [49]. Furthermore,
2010( 1

2 , 1
2 , 0)T relates the coefficients of the Kramers-Weyl

points such that they have the same chirality. Therefore, the
total chirality of the fourfold Weyl point for two occupied
bands has to add up to ±2. Hence, they are also referred to
as double-spin- 1

2 Weyl points [49].
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SG 92 (and 96) has another fourfold crossing at the R
point, which is not left invariant by fourfold rotations. Again,
we use the eigenvalues of the twofold rotation 2001(0, 0, 1

2 ),
but this time they are ±1 because of the translational part.
Therefore, 2010( 1

2 , 1
2 , 1

4 )T pairs different eigenvalues on the
line X-R, whereas T pairs identical eigenvalues at R. From
lattice and low-energy models we find that the total chirality
is C = ±2 as for previously discussed fourfold Weyl points
(see Appendix C 1).

E. Fourfold quadruple Weyl points

In the previous chapter we have shown how a fourfold
double Weyl point can be made out of two symmetry-related
single Weyl points on top of each other. The k point A in SGs
92 and 96 also has a fourfold degeneracy, but in contrast to M,
it is made up from two double instead of single Weyl points.
Again, they have to have the same Chern number of absolute
value 2 and thus its total Chern number is |C| = 4 [75].

The irreducible representations at A are two and four di-
mensional. In principle, the eigenvalue-dependent Kramers
theorem applies as introduced in Sec. III B, i.e., the com-
bined operation 4001( 1

2 , 1
2 , 1

4 )T pairs only some of the rotation
eigenstates. But the regular Kramers theorem using T already
pairs the same 4001( 1

2 , 1
2 , 1

4 ) eigenvalues and it is always ap-
plicable. Thus, the following argument utilizes the Kramers
theorem based on time-reversal symmetry alone.

Time-reversal symmetry T pairs the bands as (0,2), (1,1),
and (3,3), when labeled with the parameter p corresponding
to the fourfold rotation eigenvalue as defined in Eq. (4.1).
Analogously to the previous chapter, the combined operation
2010( 1

2 , 1
2 , 1

4 )T pairs bands into nodal planes. Hereby, the
nonsymmorphic fourfold rotation in SGs 92 and 96 modi-
fies Eq. (4.4), where the translation on the right-hand side
is now t (1, 0,−1) with eigenvalue 1 at A. Together with
the kz-dependent eigenvalues the resulting pairing due to
2010( 1

2 , 1
2 , 1

4 )T is (0,2) and (1,3).
In conclusion, there is a twofold degeneracy (0,2) as well as

a fourfold degeneracy (1,1,3,3), where each state in the tuple
is orthogonal to the others by either different eigenvalues,
i.e., different p, or due to Kramers theorem. We interpret
the fourfold crossing as two copies of double Weyl points
with |C| = 2. This chirality is determined from the symme-
try eigenvalues (1,3) [40]. Their chiralities must be equal
because the double Weyl points are related by time-reversal
symmetry.

To see this in detail, we provide a low-energy Hamiltonian
of this crossing. Since most terms linear in q = k − (π, π, π )
vanish, terms up to quadratic order need to be considered.
Up to unitary transformations, such a 4 × 4 Hamiltonian is
restricted to a block-diagonal form with the two double Weyl
Hamiltonians H±

dW making up the blocks:

H±
dW =(±vxqxqy + λzqz )σx + vy

(
q2

x − q2
y

)
σy

+ (±vzqz + λxqxqy)σz. (4.5)

See Appendix C 2 for a detailed derivation. The Chern number
is equal in both blocks and the different signs only show in the
dispersion when all three components of q are nonzero. Only
then, the bands are nondegenerate. Otherwise, the eigenvalues

of both Weyl points are identical, which ensures the twofold
degenerate planes. Because of the splitting into nondegenerate
bands and the nonzero Chern number we do not use the name
Dirac point, which has been used in a prior report [75].

V. NONSYMMORPHIC DIRAC POINTS

Enforced Dirac points pinned to TRIMs are a common and
readily accessible result of space-group symmetries. For com-
pleteness, these crossings are listed in the second column of
Table II. Here we want to give another perspective by focusing
on movable enforced fourfold crossings in the presence of
inversion or mirror symmetries. SGs 106, 130, 133, and 138
host either movable fourfold crossings without chirality or,
in the presence of inversion symmetry, movable Dirac points.
The following study of their symmetry eigenvalues highlights
similarities and differences. Finally, we discuss the pinned
fourfold crossings enforced in SGs 108 and 142 at the point P.

A. SGs 106 and 133

The symmetry operations in SGs 106 and 133 enforce a
movable fourfold crossing on the line M-A, which is part of a
fourfold rotation axis. First we focus on SG 133, a centrosym-
metric group, for which the movable crossing is a Dirac point.
We explain its existence in terms of its symmetry eigenvalues
and their connectivity within the BZ.

SG 133 contains the fourfold rotation 4001( 1
2 , 0, 1

2 ) and a
glide mirror symmetry M010( 1

2 , 0, 0). Along M-A the bands
can be labeled by p ∈ {0, 1, 2, 3} referring to the eigenval-
ues of 4001( 1

2 , 0, 1
2 ), namely, exp[i(2p + 1)π

4 ] exp(i kz

2 ). An
explicit calculation shows that the fourfold rotation is related
by M010( 1

2 , 0, 0) to its cube

4001

(
1

2
, 0,

1

2

)
M010

(
1

2
, 0, 0

)

= −M010

(
1

2
, 0, 0

) (
4001

(
1

2
, 0,

1

2

))3

t (1, 0,−1),

(5.1)

where the factor of −1 stems from the spin sector. On the line
M-A (π, π, kz ) this relation pairs a band described by p to
the band with p′ = 3p + 1 mod 4. If we denote paired bands
with p and p′ as (p, p′), then the only two possibilities on the
M-A axis are (0,1)(2,3).

The second part of the argument considers the Kramers
theorem at the end points of the line M-A. Time reversal forms
band pairs (0,3)(1,2) at M, kz = 0, and (0,1)(2,3) at A, kz = π .
Finally, one obtains the degeneracy at A by the combined
operation T ′ = T M010( 1

2 , 0, 0), which fulfills T ′2 = −1 at
M and A. It pairs at kz = 0 the eigenvalues into the tuples
(0,2)(1,3) and at kz = π (0,0)(1,1)(2,2)(3,3).

We conclude that at M there is only one representation con-
taining all 4001( 1

2 , 0, 1
2 ) eigenstates once: (0,1,2,3), whereas at

A two representations are possible, for which either (0,0,1,1)
or (2,2,3,3) correspond to distinct sets of degenerate eigen-
states. The twofold degenerate bands on the M-A line with
rotation eigenstates (0,1) or (2,3) must interpolate between M
and A. They exchange an odd number of times and thus lead
to an enforced fourfold crossing as presented in Fig. 7(a).
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FIG. 7. Movable fourfold crossings. (a) SGs 106 and 133: the
symmetry eigenvalues α4001 on the M-A line are represented by the
line color. For SG 133 the M-A line hosts a Dirac point, whereas
for SG 106 the crossing corresponds to a fourfold point with zero
chirality. (b) SGs 130 and 138: the color corresponds to the symmetry
eigenvalues α2100 , whereas the line style (dashed) distinguishes the
values of pM010 . A Dirac point is enforced on the Z-R line.

So far we have not used the inversion symmetry at all.
Its presence together with time reversal specifies that the
bands away from M-A are twofold degenerate, thus the mov-
able crossing is a Dirac point. Consequentially, this argument
can be applied in the absence of inversion symmetry. Since
SG 106 contains nearly identical fourfold rotation and mir-
ror symmetries as SG 133, one may repeat the arguments
above and find again the band structure on M-A as shown
in Fig. 7(a). Yet, SG 106 is special because there is no PT
symmetry present and therefore the bands split into four
nondegenerate ones away from the movable crossing. The
movable crossing of SG 106 is a fourfold crossing on a mirror
plane and thus has a vanishing Chern number.

The minimal number of connected bands for SGs 106 and
133 is eight (or four when excluding spin). Thereby, only the
movable crossings on the M-A line are necessary to connect
two sets of four bands. One concludes that SGs 106 and 133
can lead to semimetals with movable fourfold crossings at a
filling of 4 + 8N electrons per unit cell. They can be thought
of as two superimposed Weyl semimetals with vanishing total
chirality. As such, they show two sets of surface states which
can hybridize with each other unlike the Fermi arcs for a Weyl
semimetal on its own. Thus, van Hove singularities appear for
the surface spectrum (see Appendix B 2).

B. SG 130

In SG 130 movable Dirac points appear and they require
the presence of inversion symmetry unlike the fourfold cross-
ings of SGs 106 and 133. They appear on the line Z-R, a
twofold rotation axis. A movable Dirac point cannot be un-
derstood by a single twofold symmetry alone. It would require
two different ways to pair eigenvalues at the TRIMs, i.e., end
points of the line and a third point along the line itself, which
is impossible with only two eigenvalues.

Therefore, we must consider two symmetries at once.
Indeed, SG 130 contains the off-centered screw rotation
2100( 1

2 , 0, 1
2 ) and the mirror symmetry M010(0, 1

2 , 1
2 ). On the

BZ path Z-R, e.g., (kx, 0, π ), these symmetries commute and
we label the bands and states by |p2100 , pM010〉, where the
eigenvalues α2100 = exp[i(2p2100 + 1)π

2 ] exp(i kx
2 ) and αM010 =

exp[i(2pM010 + 1)π
2 ] exp(i kz

2 ) are referred to by their respec-
tive value of p ∈ {0, 1}. As before, round brackets are used to
denote the pairing of irreducible representations denoted by
the different p.

Inversion with time-reversal symmetry PT pairs identical
eigenvalues for off-centered symmetries on certain planes or
lines [39]. On Z-R, identical 2100( 1

2 , 0, 1
2 ) eigenvalues are

paired, but different eigenvalues for M010(0, 1
2 , 1

2 ). Therefore,
the pairing there is (|0, 0〉, |0, 1〉) and (|1, 0〉, |1, 1〉). At the
TRIMs time reversal also pairs the symmetry eigenvalues.
Whereas the phase of α2100 depends on kx, αM010 is real at Z and
R, resulting in the pairing (|0, 0〉, |1, 0〉) and (|0, 1〉, |1, 1〉) at
kx = 0 and (|0, 0〉, |0, 0〉), (|0, 1〉, |0, 1〉), (|1, 0〉, |1, 0〉), and
(|1, 1〉, |1, 1〉) at kx = π . Finally, inversion P anticommutes
(commutes) with 2100( 1

2 , 0, 1
2 ) at Z (at R) and anticommutes

with M010(0, 1
2 , 1

2 ) at both Z and R. States related by inversion
have the same energy but are not necessarily orthogonal unless
at least one of their eigenvalues differs.

With this preparation we can infer all degenerate states
at the TRIMs Z and R. We start from |0, 0〉 and apply to
it T , P , or PT and determine which eigenvalue tuple the
consecutive results have. The resulting states after the applica-
tion of above symmetries are at Z (|0, 0〉, |1, 0〉, |1, 1〉, |0, 1〉),
whereas at R one obtains (|0, 0〉, |0, 0〉′, |0, 1〉, |0, 1〉′) and
(|1, 1〉, |1, 1〉′, |1, 0〉, |1, 0〉′). Here, states orthogonal by
Kramers theorem are primed for clarity. To interpolate be-
tween the fourfold degeneracies at Z and R a movable Dirac
point must appear [see Fig. 7(b)].

Since the mirror symmetry M001( 1
2 , 1

2 , 0) is not off cen-
tered, there can be no Dirac nodal line on kz = π . Therefore,
the identified crossing is not part of a fourfold nodal line,
which concludes our derivation of the movable Dirac points
on Z-R in SG 130.

The movable Dirac point of SG 130 has been considered
in [76] alongside the eightfold degeneracy at the A point
appearing in SG 130 as well as 135 [77]. These double Dirac
points at the A point are linear band crossings and lie at the
boundary between topological insulating phases, which can
be reached by breaking spatial symmetries, for example, with
strain [76]. Since the eightfold point is at the boundary, one
of the achievable phases must be topological but the details
depend on the values of the mass terms introduced by the
symmetry-breaking perturbations.
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FIG. 8. Movable Dirac points in AuBr and Tl4PbSe3. Bands
along the Z-R line for (a) AuBr (SG 138) and (b) Tl4PbSe3 (SG 130).
Green circles highlight the enforced Dirac points (see Sec. V B).

Material example: Tl4PbSe3

Tl4PbSe3 [78] is an air-stable narrow-gap semiconductor
which crystallizes in SG 130 (along with several other thal-
lium tetrel chalcogenides and thallium chalcohalides), and has
been studied recently for possible thermoelectric applications
[79]. Its band structure is shown in Fig. 8(b) with the movable
Dirac points close to the R point and the full band structure is
given in Fig. 13(e).

C. SG 138

SG 138 hosts movable Dirac points on the line Z-R, which
can be shown by identical arguments as in SG 130 (see
Sec. V B). As the Dirac points have been discussed above, we
focus here only on the distinction between both groups. Un-
like SG 130, SG 138 exhibits a nontrivial topology described
by a Z2 invariant, which is enforced by the connectivity of
bands. Whereas the nontrivial value of the invariant is fixed
for any band order, the robustness is found to be dependent on
details of the system.

Since materials in SG 138 are Dirac semimetals at half-
filling (gapless systems with Dirac points on the line Z-R),
the invariants for topological insulators do not apply. Never-
theless, we can consider two-dimensional gapped subsystems
for which the existence of surface states can be inferred from
changes in the time-reversal polarization πa, where we use the
results and notation of [80].

To determine the time-reversal polarization πa we can
employ the quantities δ�i = ∏N

m=1 ξ2m(�i ), where ξ2m(�i ) de-
notes the eigenvalue of inversion P for the band 2m at the
TRIM �i ∈ {�, X, Z, M, R, A}. We consider the number of

occupied bands N to be 4 + 8N for SG 138, i.e., the band
index of the movable Dirac points. From the quantities δ�i

one can obtain the polarization πa = δa1δa2 [80]. The TRIMs
labeled by a1 and a2 will fall on top of each other, once we ter-
minate the system in real space. To evaluate the time-reversal
polarization πa for SG 138 in a meaningful way, we consider
subsystems with a band gap, e.g., the plane containing the
TRIMs XMAR. Edge states of said planes appear on lines in
the full surface BZ. To be more specific, the plane XMAR
projects to the path X̄-M̄ in the two-dimensional surface BZ
for a (001) termination of the full three-dimensional system
and, thus, its edge states appear on this path.

In the following we give the inversion eigenvalues at the
TRIMs for SG 138, which can be determined to a large ex-
tent from the commutation relations between the symmetries.
Due to time-reversal symmetry T each inversion eigenvalue
always appears twice, connected as a Kramers pair. This is
already considered by taking only even band indices 2m for
ξ2m(�i ) in the expression for δ�i [80]. Furthermore, for SG 138
all TRIMs except � are fourfold degenerate. The nonsymmor-
phic mirror symmetries relate opposite inversion eigenvalues
at the points X, R, M, and Z. At A, an eigenstate can be
labeled by inversion and mirror eigenvalues simultaneously.
The application of T and the twofold screw rotation yields
that four bands with the same inversion eigenvalue are de-
generate at A. We can thus explicitly give the values of δ�i

for the TRIMs δX = δR = δM = δZ = ξ2(X)ξ4(X) = −1 and
δA = ξ2(A)ξ4(A) = +1, whereas δ� = ±1 is not determined
from symmetry alone. Note that δA = +1 is independent of
the band order, i.e., the value of ξ2(A) = ξ4(A) = ±1.

Below we discuss the surface states for a slab with (001)
termination, which we compare to the explicit calculation for
a generic model (see Appendix B 3). For the plane XMAR
there are two time-reversal polarizations π1 = δXδR = 1 and
π2 = δMδA = −1. This difference between π1 and π2 leads
to surface states on the line X̄-M̄, which is confirmed by
the surface spectrum [see Fig. 16(c)]. The number of surface
states depends on the details of the system, but by the above
argument SG 138 ensures that the surface states cross the gap
connecting valence and conduction bands an odd number of
times. Computing the product π1π2 = (−1)ν1 analogously to
the weak invariant [80] yields ν1 = 1.

To support this approach we compare SG 138 to SG 130.
Although the mirror operations of SGs 130 and 138 are identi-
cal and the enforced inversion eigenvalues are in principle the
same, no topological Dirac surface state appears for SG 130
on the line X̄-M̄. The difference between SGs 130 and 138 is
the band touching at the point A. Due to this eightfold crossing
in SG 130 the plane XMAR is gapless and the same number
of positive and negative inversion eigenvalues are present at
A. Also note that the movable Dirac points, which appear for
both space groups, are trivial because (PT )2 = −1 [81,82].
Both remarks support the interpretation that the time-reversal
polarizations πa capture the topology (see the further analysis
in Appendix B 3).

A robust topological phase does not lose its surface states
or topological invariant for any perturbation that preserves
the bulk band gap and the protecting symmetry. This dis-
tinguishes strong from weak topological insulators [80]. To
apply this classification to SG 138 we consider arbitrary small
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perturbations that break the symmetries except inversion.
Thus, the order of bands at the TRIMs does not change and
all δ�i will be preserved. Once the Dirac points on the lines
Z-R are slightly gapped, we can calculate the strong invariant
ν by (−1)ν = ∏

�i
δ�i = δ� . Hence, the band order at � by

itself determines the stability of the topological phase.
To summarize the results for SG 138, we find aside from

four movable Dirac points that the spatial symmetries enforce
a nontrivial weak topological invariant. We find that the over-
all robustness of the topological phase depends on the order
of bands at the point �.

Material example: AuBr

The primitive tetragonal polymorph of AuBr, crystallizing
in SG 138 [83], is an example of a material with Dirac points
along the Z-R line, as discussed in Sec. V. It consists of
layers of polymeric Au-Br zigzag chains, and can be grown
as yellow-brown crystals by vapor transport. In Fig. 8(a) we
show the first-principles band dispersions of AuBr along the
Z-R direction. All bands are twofold Kramers degenerate
due to time-reversal and inversion symmetry. Along Z-R we
observe groups of four connected bands that form an odd
number of Dirac crossings. AuBr is insulating with a band
gap of about 2 eV [see Fig. 13(d)]. This large gap makes it
difficult to experimentally measure the band structure using
photoemission or scanning tunneling probes.

D. SG 108

SG 108 contains a fourfold crossing that is not pinned to a
TRIM but to the point P [84]. Due to the presence of mirror
symmetries, it does not carry a chirality as topological charge.
Yet, since a fourfold crossing away from TRIMs is a unique
feature of some tetragonal space groups, we will discuss its
origin.

The fourfold crossing in SG 108 can be understood with
the eigenvalues exp[i(1 + 2p2001 )π

2 ] of 2001(0, 0, 0). At P
the Kramers theorem is applicable to the combined symme-
try T M010(0, 0, 1

2 ), which pairs identical p2001 values (0,0)
and (1,1). Furthermore, the point P is left invariant by
M11̄0(0, 0, 1

2 ), which relates different p2001 yielding the pair
(0,1). Therefore, four bands are degenerate at P. The fourfold
crossing splits into nondegenerate bands away from P except
along the lines P-X and P-N.

E. SG 142

SG 142 is the only tetragonal SG with a Dirac crossing
at the point P. A different argument as for SG 108, which
contains a fourfold crossing at P, must be used because its
corresponding twofold rotation 2001( 1

2 , 0, 1
2 ) is off centered,

time reversal with mirror or inversion symmetries pair already
identical eigenvalues.

SG 142 is similar to SG 110 (cf. Sec. VI C for more
details) because also in SG 142 three nonsymmorphic
operations 2001( 1

2 , 0, 1
2 ), M110( 3

4 , 1
4 , 1

4 ), and M11̄0( 3
4 , 3

4 , 3
4 )

commute on the line X-P. The product of the corresponding
eigenvalues must fulfill α2001αM110αM11̄0

= exp(i3kz/2),
leading to four possible eigenvalue configurations
|0, 0, 1〉, |0, 1, 0〉, |1, 0, 0〉, |1, 1, 1〉 along the X-P line,

where the parameters p defined analogously to before label
the states |p2001 , pM110 , pM11̄0

〉. Time reversal with inversion
PT pairs them in groups of two: (|0, 0, 1〉, |0, 1, 0〉) and
(|1, 0, 0〉, |1, 1, 1〉).

There are irreducible representations of dimensions 2 and 4
at the P point, due to an eigenvalue-dependent Kramers theo-
rem (see Sec. III B). The combination T 4001( 1

4 , 3
4 , 1

4 ) leads to
orthogonal new states at P, if applied to a state with p2001 = 1.
In this process the values of p2001 remain unchanged and the
twofold degeneracy (|1, 0, 0〉, |1, 1, 1〉) is doubled and results
in the Dirac point at P.

VI. TWOFOLD WEYL LINES

Nodal lines pinned to rotation axes or equivalently the
intersection of two mirror planes are a common feature. These
pinned degeneracies can be understood from the structure of
the little group and are tabulated [63,64]. The identification
of movable nodal lines, on the other hand, poses more in-
tricacies, which we discuss in the following sections. Here,
we begin by considering the concept of glide mirror sym-
metries in the presence of time reversal, before we move
to more complex nodal lines. In the simplest case, so-called
hourglass nodal lines are found, which were classified on the
grounds of compatibility relations [85]. Our approach uses the
explicit symmetry eigenvalues instead of representations and
facilitates the derivation of other movable nodal lines between
TRIMs (Sec. VI A).

In the absence of inversion, any glide mirror symmetry
naturally leads to twofold nodal lines. Applying a glide mirror
symmetry with translation t⊥ within the mirror plane twice
results in a lattice translation by 2t⊥. Consequently, the eigen-
values need to be the square roots of this lattice translation and
are k dependent,

αp(k) = exp
[
i(2p + 1)

π

2

]
exp(ik · t⊥), (6.1)

where t⊥ is the projection of the translational part to the mirror
plane and we use p ∈ {0, 1} as label. When traversing the BZ,
these eigenvalues exchange at least once.

In the presence of other symmetries, degeneracies between
states with different eigenvalues or, through Kramers theorem,
identical eigenvalues can be enforced. For example, at TRIMs
in the BZ where k · t⊥ = 0 mod 2π the values of p are paired
as (0,1), while for k · t⊥ = π mod 2π they are paired to be
(0, 0), (1, 1). On any path within the mirror plane connecting
two such points with different eigenvalue pairing, the standard
argument for hourglass dispersions can be invoked and thus
each such path must contain an odd number of band crossings.
These enforced crossings form movable Weyl nodal lines,
away from high-symmetry points.

We specify movable nodal lines in column 3 of Table I
by grouping points according to their eigenvalue pairing. The
left-hand side of a tuple always contains points with pairs of
alternating signs, whereas identical eigenvalues are paired at
all points on the right-hand side. The nodal line then has to
be in-between these sets and in the plane containing all points
of the tuple. For example, in SG 100 we denote with (�-Z;
X, R)(4) that at any point on the line �-Z the value of p is
paired as (0,1), whereas at X and R the pairs (0,0) and (1,1) are
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formed. Hence, four bands are connected on any path between
�-Z to X or R, each forming an hourglass structure. Such
a path exhibits a band connectivity as depicted in Fig. 4(a)
for the movable Weyl points on a high-symmetry line. Within
the tetragonal space groups, fourfold crossings do appear in
planes with movable nodal lines. It turns out that on a path
containing such a fourfold crossing, no additional crossing is
enforced. Applied to SG 102 with the nodal line denoted by
(�-Z-R; X)(4) this means that a path from Z to X does not
necessarily cross a nodal line. We note this by writing a cur-
sive Z instead of Z on the line of identical paired eigenvalues
�-Z-R. One can confirm from the irreducible representations
that there are no fourfold crossings with only one value of the
mirror eigenvalue in the tetragonal SGs [63].

In conclusion, we find that SGs 100, 102, 104, 106, 108,
109, 110, 117, 118, 120, and 122 enforce on at least one
mirror plane a movable twofold nodal line. Using the previous
discussion, it can be understood that intersecting mirror planes
may give rise to nodal chain metals [10]. We will briefly
discuss the relevance to tetragonal space groups and give a
material example. Then, we focus on SG 110, although it
does not contain a nodal chain extended in reciprocal space,
it exhibits intersecting nodal lines and a band connectivity
allowing in principle for a simple Fermi surface. But before
we move to these complex configurations of mirror planes,
we discuss a type of nodal lines which is easily missed despite
its conceptual simplicity. These nodal lines are also movable,
except that they are pinned to certain TRIMs.

A. Almost movable nodal lines

In this section we will discuss twofold almost movable
nodal lines, which are enforced features pinned at a high-
symmetry point but which may be moved freely everywhere
else in the mirror plane. Before discussing the affected
SG, we derive the existence of this type of nodal line in
body-centered SGs.

To begin, suppose there is a single (glide) mirror symmetry,
with eigenvalues ±i at a TRIM on the mirror plane. Time
reversal pairs the symmetry eigenvalues +i and −i yielding
twofold degenerate bands at this TRIM. Let q be the coor-
dinate of a point in the mirror plane relative to the TRIM.
Time-reversal symmetry relates q to −q, while exchanging
the mirror eigenvalues of opposite phase, + with −. If one
chooses a path leading from q to −q within the mirror plane
and without crossing the TRIM, we know that the mirror
eigenvalues must change. As the eigenvalues may only change
if bands cross, we can conclude from the generality of the path
that the twofold degeneracy at the TRIM is part of a nodal
line. We refer to these nodal lines as almost movable nodal
lines because they are unpinned everywhere except for a finite
set of points, i.e., the TRIMs which enforce them.

Almost movable nodal lines are unlike pinned and movable
nodal lines. Although the above argument holds for all TRIMs
in mirror planes with eigenvalue pairing of opposite signs, i.e.,
p = 0 and 1 in Eq. (6.1), often there are further symmetries
present which pin the nodal line to a rotation axis. Pinned
nodal lines arrange for the exchange of eigenvalues in the
same way, but they are completely fixed to a straight line by
the anticommutation of symmetries or by Kramers theorem

FIG. 9. Almost movable nodal lines (green) and pinned nodal
lines (red) in mirror planes of SGs 107, 109, and 119. The connec-
tivity of almost movable nodal lines is not determined by symmetry
alone. (a) Nodal line connecting distinct N points. (b) Same as (a),
but intersecting the pinned nodal line.

applied to the combination of a glide mirror symmetry with
time reversal. Their appearance can therefore be understood
from the group structure of the involved symmetries alone
and they can be found in tabulated irreducible representations
of the corresponding little groups [63]. The other extreme is
movable nodal lines, which are only constrained in the sense
that they mediate an exchange of mirror eigenvalues within
the mirror plane, as we have discussed at the beginning of
Sec. VI. This differs from the almost movable nodal lines in
that the latter are not responsible for exchanging symmetry
eigenvalues between different TRIMs. Studying compatibility
relations along high-symmetry paths would not explain almost
movable nodal lines [63,85]. Thus, they are not just movable
nodal lines pinned at a finite number of points in the BZ, but
they exist because nodal lines have no end points.

A SG with almost movable lines needs to have a TRIM
in a mirror plane that is not part of a rotation axis, i.e., the
little group of the TRIM contains only the reflection. In the
tetragonal crystal system, this is only possible at N in body-
centered space groups with crystallographic point group 4mm
or 4̄2m. Of those, only SGs 107, 109, and 119 pair ±i at N.
For these SGs we illustrate the possible connectivity of almost
movable lines qualitatively in Fig. 9. Finally, there is a fourth
case in the tetragonal SGs of an almost movable line found
at P in SG 110. P is not invariant under time reversal alone,
but under the antiunitary symmetry M010(0, 0, 1

2 )T . It creates
a pair of eigenvalues with opposite signs (0,1) for p in the
definition of the 110-mirror eigenvalues [cf. Eq. (6.1)], and
creates an almost movable nodal line in the corresponding
invariant plane. A detailed discussion and derivation can be
found in Appendix C 3.

The almost movable lines are indicated in the same column
as the movable lines, i.e., the third column in Table I. We use
the same notation as for movable nodal lines, e.g., for SG 107
we write (N, �-Z, M-Z1; −)(2). This expression is understood
as before. Bands at the points and lines N, �-Z, and M-Z1

are twofold degenerate and comprise both mirror eigenvalues.
But here the second entry, where we would denote points in
the mirror plane of identical pairing remains empty “−”. Note
that �-Z and M-Z1 exhibit pinned nodal lines, whereas the
point N is crossed by an almost movable nodal line. The nodal
line passing through N may cross but cannot end at the pinned
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FIG. 10. Nodal chain metal Ba5In4Bi5 in SG 104. (a) Electron
bands close to the Fermi energy exhibiting nodal lines. Circles mark
points on the nodal chain and their color refers to the color code
in (b). On the line X-R the red and green sections of the nodal chain
cross. (b) Nodal chain formed by the bands in (a) represented as lines
in the Brillouin zone. Red: nodal lines in a mirror plane defined by
kx = 0 or ky = 0. Green: nodal lines in a mirror plane defined by
kx = π or ky = π .

lines like �-Z (cf. Appendix B 1 with SG 119 as an example).
SG 110 is special in that its almost movable nodal lines do not
pass a TRIM but rather the point P, and they do not exist for
all bands (see Sec. VI C).

B. Nodal chain metals

Nodal chain materials are characterized by enforced, mov-
able nodal lines that touch on the intersections of their mirror
planes [10]. Several tetragonal SGs, i.e., 102, 104, 109, 118,
and 122, fall into this category. Nodal chain metals appear,
when there are two intersecting mirror planes, whose eigen-
values are each paired differently for the two high-symmetry
points on the intersecting line. A detailed discussion can be
found in [10]. Note that systems with nodal chains always
have other Fermi surfaces aside from the nodal chain.

Material example: Ba5In4Bi5

Ba5In4Bi5, which crystallizes in SG 104, is an electron-
deficient polar intermetallic formed by the reduction of In
and Bi with Ba [86]. Its DFT band structure is presented
in Figs. 10 and 13(c). The nodal chain of Ba5In4Bi5 is in
close proximity to the Fermi energy presenting an experimen-
tally accessible platform for the study of nodal chains [see

FIG. 11. Band crossings in SG 110 including the nodal armil-
lary sphere. (a) Band connectivity, sets of symmetry eigenvalues,
and enforced crossings on the line (π, π, v) and on the planes
(u, u, v) and (π + u, π − u, v), which includes �-Z and X-M, re-
spectively. Eigenvalues for the plane (π + u, π − u, v) are given in
square brackets. Turquoise triangles: nodal armillary sphere. Yellow
squares: movable nodal lines forming an hourglass structure on a
single mirror plane. Red circles: pinned nodal lines, which can be
overlapped by purple circles indicating additional almost movable
nodal lines. (b) Qualitative arrangement of enforced nodal lines in
the 3D Brillouin zone with the same color code as the crossings in
(a). Additional copies due to fourfold rotation are omitted.

Fig. 10(a)]. We show the shape of the nodal chain within
reciprocal space for the bands close to the Fermi energy in
Fig. 10(b).

C. Intersecting nodal lines of SG 110

We now want to discuss the special case of the body-
centered SG 110 (I41cd) [10]. It combines all types of nodal
lines we have encountered so far, movable, almost movable,
and pinned nodal lines. We focus on the (almost) movable
nodal lines, which intersect without forming a nodal chain.
The qualitative results are summarized in Fig. 11.

The movable nodal lines on mirror planes appear between
high-symmetry points and pinned nodal lines. To enforce the
pinned nodal lines, the twofold rotation 2001( 1

2 , 1
2 , 1

2 ) may
relate eigenvalues of mirror symmetries, e.g., M010(0, 0, 1

2 ).
As defined in Eq. (6.1), pM010 labels the eigenvalue of
M010(0, 0, 1

2 ), i.e., exp[i(2pM010 + 1)π
2 ] exp(i kz

2 ). Both sym-
metries commute on X-P and anticommute on �-Z-M. Thus,
only �-Z-M is twofold degenerate and pM010 values are paired
(0,1).
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Another twofold degenerate line with (0,1) pairing results
from Kramers theorem applied to the combined operation
T M110(0, 1

2 , 3
4 ) on the line X-M, which can be parametrized

by k = (π + u, π − u, 0) with u ∈ [−π, π ]. Kramers the-
orem applies because the condition (T M110(0, 1

2 , 3
4 ))2 =

exp(−iu) 	= 1 holds almost everywhere (see Sec. III B 2). The
third pinned nodal line is enforced by M010(0, 0, 1

2 )T on N-P,
where (M010(0, 0, 1

2 )T )2 = −1. All pinned nodal lines are
shown as red lines in Fig. 11.

We can readily assess the plane �NM because it is bounded
by the twofold degenerate rotation axis �-Z-M. Therefore,
M010(0, 0, 1

2 ) and time-reversal symmetry lead to an hourglass
structure between any point on �-Z-M with (0,1) pairing
and the TRIM N which exhibits the eigenvalue pairs (0,0)
and (1,1). The resulting movable nodal lines in the �NM
plane connect four bands and are denoted in Table I as
(�-Z, M-Z1; N)(4).

A more intricate argument is needed to understand the
enforced band structure on the remaining two distinct planes
because they share the rotation axis X-P with nontriv-
ial pairing. On the line X-P three symmetries commute:
M11̄0( 1

2 , 0, 1
4 ), M110(0, 1

2 , 3
4 ), and 2001( 1

2 , 1
2 , 1

2 ). Their eigen-
values on the line X-P, (π, π, kz ) are

αM11̄0

X-P= exp
[
i
(
2pM11̄0

+ 2
)
π/2

]
exp(ikz/4), (6.2)

αM110

X-P= exp
[
i
(
2pM110 + 1

)
π/2

]
exp(i3kz/4), (6.3)

α2001 = exp
[
i
(
2p2001 + 1

)
π/2

]
exp(ikz/2). (6.4)

Each band shall be labeled as |pM11̄0
, pM110 , p2001〉, where each

p ∈ {0, 1}.
Before we can relate the states on X-P we have to de-

termine the possible combinations (pM11̄0
, pM110 , p2001 ). The

states are restricted because the product of all symmetries
is a translation M11̄0( 1

2 , 0, 1
4 ) M110(0, 1

2 , 3
4 ) 2001( 1

2 , 1
2 , 1

2 ) =
t ( 1

2 ,− 1
2 , 3

2 ). As the bands are generally nondegenerate along
X-P, the product of eigenvalues must fulfill αM11̄0

αM110α2001 =
exp(i 3kz

2 ) [37]. One concludes that pM11̄0
+ pM110 + p2001

mod 2 = 0 and thereby the only possible bands on X-P are
|0, 0, 0〉, |1, 1, 0〉, |1, 0, 1〉, and |0, 1, 1〉.

On the line X-P no further symmetries apply, but time-
reversal symmetry T at X and T M010(0, 0, 1

2 ) at P each
invoke Kramers theorem. At X time reversal yields two differ-
ent twofold bands (|0, 0, 0〉, |0, 1, 1〉) and (|1, 1, 0〉, |1, 0, 1〉).
Notice that the pairing of M110(0, 1

2 , 3
4 ) eigenvalues at X,

i.e., (0,1) is consistent with the action of T M110(0, 1
2 , 3

4 ) on
the line X-M discussed before. For P we have to consider
how the three eigenvalues in Eqs. (6.2)–(6.4) are related by
T M010(0, 0, 1

2 ). When acting on a generic state on the right,
one obtains the following relations:

M110
(
0, 1

2 , 3
4

)
T M010

(
0, 0, 1

2

)
= exp

[
iπ

(−2pM11̄0
− 1

)
/2

]
exp(i3kz/4) T M010

(
0, 0, 1

2

)
,

(6.5)

2001
(

1
2 , 1

2 , 1
2

)
T M010

(
0, 0, 1

2

)
= exp

[
iπ

(−2p2001 − 3
)
/2

]
exp(ikz/2) T M010

(
0, 0, 1

2

)
.

(6.6)

Thus, at P the band doublets (|0, 0, 0〉, |1, 1, 0〉),
(|1, 0, 1〉, |1, 0, 1〉), and (|0, 1, 1〉, |0, 1, 1〉) are independent
and degenerate. If the representations are ordered in energy
such that the minimal number of crossings appear, then nodal
lines on different mirror planes cross on the X-P axis, as
shown by the turquoise lines in the visualization of SG 110 in
Fig. 11(b). Unlike for nodal chain metals, the nodal lines do
not need to extend over the full height of the Brillouin zone.
To our knowledge, a similar arrangement of bands has only
been discussed in systems without spin-orbit coupling. For
the cubic SG 221, three intersecting planes with joined nodal
lines were considered [87,88], whereas in the orthorhombic
SG 61 two intersecting nodal lines were referred to as a
nodal armillary sphere [89]. These nodal lines gap out once
spin-orbit coupling is relevant, unlike the feature of SG 110
presented here. There are no enforced crossings at the same
energy as the connected nodal lines around P. If no accidental
crossings or band pockets occur and the filling is 8n + 4
(n ∈ N0) electrons per unit cell, materials in SG 110 with
a weak dispersing nodal line are not just metals with nodal
points, but genuine enforced semimetals.

At different band number we find additional nodal lines
appearing in the same mirror plane around different high-
symmetry points. We denote this by labeling the nodal lines
as (�-Z, P; X)(4) and (�-Z, X; P)(4) in Table I and show them
as orange lines in Fig. 11(b). Therefore, the combination of
different connectivities raises the number of connected bands
to 8N.

Furthermore, SG 110 exhibits almost movable nodal lines
as introduced in Sec. VI A. They can be inferred from the
pairing of symmetry eigenvalues at the point P we already
derived. Out of the possible representations only the paired
states (|0, 0, 0〉, |1, 1, 0〉) contain different mirror eigenvalues.
Hence, only twofold degeneracies of this type are part of
almost movable nodal lines. A possible arrangement of these
nodal lines is displayed by purple lines in Fig. 11(b), where
the relevant crossings at P are highlighted in Fig. 11(a) by a
purple dot. These almost movable nodal lines may intersect
the pinned nodal lines shown in red, whereas they are at a
different band index, i.e., different energy, than the turquoise
colored nodal armillary sphere and thus do not cross them in
the simplest case. See Appendix C 3 for a detailed analysis of
bands in the vicinity of the point P.

VII. FOURFOLD WEYL NODAL LINES

Fourfold degenerate Weyl nodal lines are symmetry-
enforced degeneracies which split into nondegenerate bands
when moving away from the nodal line in almost all direc-
tions. This distinguishes them from Dirac lines, which are also
fourfold degenerate, but split into twofold degenerate states in
all perpendicular directions. Fourfold degenerate nodal lines
are enforced in band structures of SGs 113 and 114. The
generators of these two SGs are translations, a fourfold ro-
toinversion 4001 ≡ 4001(0, 0, 0)P and a twofold screw rotation
2010( 1

2 , 1
2 , c) around an axis perpendicular to it, where the

factor c = 0, 1
2 distinguishes between SG 113 and SG 114 and

is not relevant in the following discussion.
The fourfold degenerate line follows from the two antiu-

nitary symmetries created by combining the generators with
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time-reversal symmetry, 4001T and 2010( 1
2 , 1

2 , c)T . As men-
tioned before, 2010( 1

2 , 1
2 , c)T leaves points in the two planes

ky = 0 and π invariant and squares to −1 on the latter plane,
therefore enforcing twofold degenerate nodal planes. 4001T
squares to −2001 and leaves the lines �-Z and M-A invariant.
It further fulfills the conditions of Kramers theorem (3.1) on
these lines since the eigenvalues of 2001 are ±i.

On the M-A axis, pairing conditions of both symmetries
are present, resulting in a pinned fourfold degenerate line. To
track the pairing from each of these two antiunitary symme-
tries, we label the states with the sign of their 2001 eigenvalues
±i. Since 2001 and 4001T naturally commute, the eigenvalues
are related only via complex conjugation, i.e., the pairing is
(+,−). 2010( 1

2 , 1
2 , c)T , on the other hand, anticommutes with

2001, adding another sign change to the conjugated eigenvalue.
Hence, it pairs (+,+) and (−,−). In combination, we find
the fourfold degeneracy of the nodal line with the pairing
(+,+,−,−). This feature has recently been reported as a
Dirac line [90], however, apart from the planes ky = π and
kx = π , the bands are nondegenerate. The dispersion per-
pendicular to the nodal line is linear and remains twofold
degenerate in the nodal planes kx = π and ky = π . For con-
stant kz, this is the same structure seen in the fourfold Weyl
point shown in Fig. 5(b).

The topological protection of this feature can best be un-
derstood from the linearized Hamiltonian around the nodal
line (see Appendix C 4). It can be transformed into block-
diagonal form via a k-independent, unitary matrix. Each of
the blocks describe one independent Weyl line, each protected
by a π Berry phase.

Material example: NaSn5

NaSn5 crystallizes in SG 113 [91] and shows the four-
fold Weyl line along M-A and the twofold degeneracy at the
BZ boundary, which can be seen as fourfold and twofold
degeneracies along high-symmetry lines in Fig. 13(g). It is
metallic and the fourfold nodal line crosses the Fermi energy.
A closeup of bands calculated from first principles in the plane
parametrized by k = (π + δ, π + δ, kz ) is shown in Fig. 12. It
shows the dispersion of the nodal line along kz as well as the
separation into individual bands for nonvanishing δ, with a
linear dispersion only for very small values. The same features
have been reported in band-structure calculations for Pd4S,
which crystallizes in SG 114 [90].

VIII. NONSYMMORPHIC NODAL PLANES

Band degeneracies may not only appear as points and lines
but are known to occur also as two-dimensional manifolds [9],
among them nodal planes [59,92–95]. As we have seen above,
the combination of a twofold screw rotation with time-reversal
symmetry is one mechanism to enforce nodal planes via a
generalized Kramers theorem. For example, a nodal plane is
enforced in SG 76, where the combined antiunitary symmetry
2001(0, 0, 1

2 )T leaves points in the kz = 0 and π plane in-
variant and squares to a full lattice translation t (0, 0, 1). In
the kz = π plane, the translation eigenvalue is −1 and the
condition for Kramers theorem is fulfilled [cf. Eq. (3.1)]. All

FIG. 12. Dispersion around the fourfold nodal line in NaSn5 in
the plane defined by k = (π + δ, π + δ, kz ) in the vicinity of the
line M-A. The dashed line highlights the fourfold degeneracy on
the high-symmetry axis. The colored solid lines show the dispersion
perpendicular to the nodal line at constant kz, where the nodal line
crosses the Fermi level.

such nodal planes are listed in Table I in the column “nodal
planes.”

Recently, nodal planes have been discussed in the context
of topology [93,94,96], as they can also act as sources and
sinks for Berry curvature. Within the tetragonal space groups
there are three cases, SGs 92, 94, and 96, of enforced nodal
planes, which additionally must have a topological charge,
i.e., they act as source or sink of Berry flux [96] to balance
the topological charges of symmetry-enforced Weyl points in
the interior of the BZ.

A. Space groups 92 and 96

The SGs 92 and 96 form an enantiomorphic pair, i.e., they
are mirrored versions of each other. They are generated from
translations of the primitive lattice and the screw rotations
4001( 1

2 , 1
2 , c

4 ) and 2010( 1
2 , 1

2 , c
4 ), c = 1 and 3, respectively. The

fourfold screw rotation squares to a twofold screw rotation,
which means these two space groups have twofold screw ro-
tations along 100, 010, and 001. With time-reversal symmetry
present, all planes on the surface of the BZ are therefore
Kramers degenerate, and the nodal planes form a closed box.
Formally, there is a twofold degeneracy for every k with at
least one component ki = π , i ∈ {x, y, z}. To calculate the
topological charge of this box, it can be enclosed by the
surface of a slightly smaller box within because bands are
nondegenerate in the interior of the BZ. This smaller box is
simultaneously enclosing all band degeneracies in the inte-
rior when inverting the surface normal. Thus, the topological
charge of the nodal planes equals the negative sum of all
topological charges in the interior, which close the same gap
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as the nodal surface in question. Consequently, we have to
consider the band connectivity across the whole BZ. Bands
in these band structures appear always as multiples of eight
with a certain minimum number of crossings (see Fig. 6).
As shown above, the nonsymmorphic rotations enforce accor-
dion and hourglass states, i.e., Weyl points at � and movable
topological crossings along the high-symmetry lines �-X and
�-Z (cf. Sec. IV). Although various symmetry-enforced band
crossings appear in SGs 92 and 96, all topological charges
in the interior can not add up to zero for any odd number of
bands above (or equivalently below) the gap. In this case, there
is always an enforced Weyl point at � with a charge of ±1,
whereas the movable band crossings on the rotation axis close
the gap in-between even sets of bands [see Figs. 4(a) and 4(c)].
Additional accidental band crossings might exist on the rota-
tion axes, but they will have a multiplicity of two if they are
on the line �-Z or four on the other two high-symmetry axes
�-X and �-M. Since Weyl points with higher multiplicity are
always symmetry related by rotations in these SGs, symmetry-
related copies will always have the same charge. Thus, the
total charge in the interior of the BZ remains odd and the nodal
plane carries an odd nonzero topological charge, which cannot
be removed without breaking symmetries [96]. Despite this
nonzero Chern number, any surface termination will overlap
the nodal plane with its corresponding Weyl points such that,
in this case, no Fermi arcs are associated with the topological
nodal plane.

Material example: Ba3Sn2

As discussed in Sec. IV C, Ba3Sn2 crystallizes in SG 96 (or
its enantiomorphic pair, SG 92). The highest occupied bands
are clearly spin split, due to strong spin-orbit coupling [see
Fig. 13(f)]. Figure 6 compares ab initio calculations with the
sketch made from connectivity of irreducible representations.
The enforced nodal plane can be seen as twofold degeneracy
on all paths on the BZ surface for any band index. Due to
the multiplicity of accidental crossings the enforced Kramers-
Weyl point at � is necessarily compensated by the topological
charge of the nodal plane.

B. Space group 94

Space group 94 is special since only two surfaces are nodal
planes and their charge is even and nonvanishing, i.e., at
least ±2. In contrast to the above, the fourfold screw rota-
tion 4001( 1

2 , 1
2 , 1

2 ) in SG 94 squares to a symmorphic twofold
rotation. Thus, the plane kz = π is not a nodal plane and
the nodal manifold is restricted to the kx = π and ky = π

planes. There is a conceptual difference to SGs discussed in
[96] because SG 94 hosts Weyl points at the two TRIMs �

and Z. However, they cannot balance their charges without
additional crossings, the connectivity of bands requires that
the Weyl point at Z has the same charge as the one at �, as in
Fig. 4(b) [40]. Accidental crossings along �-Z may occur in
time-reversal related pairs but they cannot compensate the chi-
rality, because the total phase picked up with band exchanges
is restricted by the periodicity of the BZ [97]. As a result, the
smallest possible change from these additional crossings on
the rotation axis �-Z is ±4. Away from the rotation axis and
the nodal planes, any Weyl point appears at least four times

with equal chirality, such that the nodal charge of the surface
needs to be C = 2 + 4z, z ∈ Z. On a (001) surface in SG 94,
two Fermi arcs must connect the projected Weyl points from
� and Z to the sides of the surface BZ.

IX. ACCIDENTAL BAND
CROSSINGS/OFF-CENTERED SYMMETRIES

Notwithstanding crossings protected by topological
charges, symmetry-allowed perturbations to a given
Hamiltonian may generally gap any crossing between bands
unless they can be labeled by different symmetry eigenvalues.
A specific realization of topological semimetallic phases may
also contain accidental band crossings, and we briefly discuss
such cases here. The dimensions of irreducible representations
are comprehensively addressed in the literature [63,64].
Therefore, we restrict this discussion to a selection of these
results and short remarks for the tetragonal space groups.

In space groups without inversion (Table I), eigenvalues are
unpaired by default and crossings may appear at any k with
a symmetry beside translations in its little group. Exceptions
can be the result of the nodal planes and certain rotation
axes in mirror planes. Conversely, for inversion P and time
reversal T the combination PT pairs eigenvalues, such that
twofold symmetries may not lead to accidental band cross-
ings anymore. The only exceptions to this are off-centered
symmetries [39].

Off-centered rotation (mirror) symmetries are character-
ized by translations perpendicular to the rotation axis (mirror
plane). In real space they can be understood as having a
different center than inversion, i.e., their sets of invariant
points do not overlap. When the off-centered symmetry is a
screw or glide operation it will enforce an odd number of
point or line crossings, respectively. Hereby, the defining off-
centered translation parts of the symmetries lead to a pairing
of identical eigenvalues. Whereas nodal lines enforced by
off-centered mirror symmetries are generally movable on the
mirror plane, in the tetragonal space groups they are pinned
to high-symmetry lines. They explain the existence of “Dirac
lines” listed in Table II. Note that point crossings due to
off-centered symmetries are always pinned by time-reversal
symmetry to TRIMs. They are included with other Dirac
points in the column “Dirac points.”

Finally, we list all possible sets of k points with accidental
crossings in the columns “accidental points” and “accidental
lines,” which follow from the off-centered symmetries. With
knowledge of accidental nodal points and lines, it is evident
whether a crossing along a high-symmetry path is solely a
Dirac point or part of a nodal line.

X. CONCLUSIONS

In conclusion, we classified all possible symmetry-
enforced band crossings in tetragonal materials with strong
spin-orbit coupling. We considered both movable and pinned
band degeneracies. We uncovered a rich variety of topologi-
cal band crossings, which arise due to the intricate interplay
of symmetry and topology (Tables I and II). This includes
different types of pinned and movable Weyl points, specifi-
cally, single and double Weyl points and fourfold double and
quadruple Weyl points (Sec. IV and Fig. 5).
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Usually, these Weyl points come in multiple copies that
are related by symmetry (i.e., they have large multiplicity).
However, for SGs 119 and 120 with body-centered unit cells
we found that there can exist Weyl points at TRIMs that have
only one symmetry-related partner (i.e., multiplicity two).
This may be important for applications since materials with
fewer Weyl points could exhibit simpler and more pronounced
topological responses. For example, if time-reversal symme-
try is broken, the anomalous Hall conductivity is expected to
be enhanced since it scales with the distance between the Weyl
points, which in SGs 119 and 120 is more than half a recipro-
cal lattice vector. Moreover, the anomalous Hall conductivity
tensor has more nonzero entries than in other SGs with more
Weyl points since contributions from different Weyl pairs do
not cancel. That being said, in SGs 119 and 120 the Fermi
surface pockets at the TRIMs without Weyl points can also
play a part in the topological responses, which may partially
cancel the contributions from the Weyl points. This depends
on the detailed band dispersions and must be studied for each
given material in SGs 119 and 120 separately.

We also classified all possible symmetry-enforced Dirac
points, which can be movable or pinned, in inversion-
symmetric tetragonal systems (Sec. V). Interestingly, SGs
130, 133, and 138 have movable Dirac points with an
hourglass dispersion (Fig. 7). SG 138 also has a symmetry-
enforced weak Z2 invariant leading to Dirac surface states.
Similar features are expected in orthorhombic systems [45].

Nodal lines also exist in different varieties. We catalogued
all possible symmetry-enforced Dirac nodal lines, and twofold
and fourfold Weyl nodal lines (Secs. VI and VII). In SGs 102,
104, 109, 118, and 122 the Weyl nodal lines form chains off
connected rings, i.e., nodal chains (Fig. 10), while in SG 110
they form an armillary sphere (Fig. 11). Interestingly, in SG
110 the global band topology allows, in principle, for a band
structure with only the armillary sphere at the Fermi energy.
The low-energy physics of a material with this property would
be dominated by the nontrivial topology of the armillary
sphere, which could prove useful for applications.

Finally, we investigated nodal planes whose existence is
enforced by the combination of screw rotations with time
reversal (Sec. VIII). Remarkably, in SGs 92, 94, and 96 the
symmetries enforce a nontrivial topological charge of the
nodal planes. This charge is compensated by a single Weyl
point at � for SGs 92 and 96. SG 94 is particularly interesting
since it has a nodal plane duo (as opposed to a nodal plane trio
in SGs 92 and 96) with arc surface states connecting two Weyl
points with equal chirality at � and Z to the nodal planes.

We emphasize that all of the aforementioned band degen-
eracies are purely symmetry enforced. That is, they occur
in all bands of all materials crystallizing in the given SG,
regardless of the chemical composition and other material
details. These symmetry-enforced band degeneracies cannot
be annihilated by any symmetry-preserving perturbation. This
is in contrast to accidental band degeneracies which can be
pair annihilated and which are only perturbatively stable.

Using our classification Tables I and II it is now possible
to specifically design (meta)materials with the desired band
topologies. It is also possible to search for existing com-
pounds with these topological band crossings using materials
databases, such as the ICSD. We performed such a search and

found seven candidate materials (Fig. 2). Particularly inter-
esting are the compounds where the band degeneracies cross
the Fermi level, which is the case for the twofold and four-
fold Weyl nodal lines in Ba5In4Bi5 and NaSn5, respectively.
We hope that our findings will stimulate experimentalists to
synthesize and characterize these materials and to design new
(meta)materials based on our classifications.

Directions for future research include the classification of
band crossings in the magnetic subgroups of the tetragonal
SGs, as well as the study of band crossings in tetragonal sys-
tems without spin-orbit coupling. Without spin-orbit coupling
the number and types of topological band crossings is much
smaller. But, some nonsymmorphic symmetries, possibly in
combination with time-reversal symmetry, can still lead to
extra degeneracies. For example, the nodal planes, which are
protected by the product of time reversal and a screw rota-
tion, are still present in the case of no spin-orbit coupling
[97,98].
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APPENDIX A: ADDITIONAL
BAND-STRUCTURE CALCULATIONS

In Fig. 13 we present the band-structure calculations along
standard high-symmetry paths [48] for the example mate-
rials selected according to the selection criteria mentioned
in Sec. II B and studied in the main text. Four of these are
metallic with the topological features close to the Fermi level.
Of the gapped examples, AuBr and Ba3Sn2 have a large gap
and serve only to illustrate the features of their corresponding
space groups.

APPENDIX B: GENERIC MODELS AND QUALITATIVE
DESCRIPTION OF SURFACE STATES

The arguments of the main text yield the enforced features
for any material realization. Yet, in real materials the features
can not always be resolved and a tight-binding model exhibit-
ing sufficiently large spin-orbit coupling is more suitable to
point out the enforced behavior.

We derive generic models by placing s orbitals with a
spin degree of freedom on a Wyckoff position with lowest
multiplicity, considering hopping from one site to the oth-
ers up to a sufficiently large cutoff distance, and obtain all
symmetry-related terms. Thereby symmetry-forbidden terms
vanish and all exchange terms including spin are treated on
the same footing. Finally, random values for the remaining
hopping amplitudes are used to evaluate the model. Numeric
calculations of Chern numbers and chiralities are performed
by the Wilson loop method [99].

In the following sections we denote the high-symmetry
points of the surface BZ by one of the respective bulk
positions, which are projected onto it. A bar is added to
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FIG. 13. DFT band structures of the examples presented in the main text. Detail figures of the relevant sections are shown in the
corresponding chapters.

differentiate the labels, e.g., � becomes �̄ for any surface
termination. Figures 14, 15, and 16 represent the surface states
of a slab with 30 or more layers at a cut at constant energy
through the spectrum. At each k point the color is determined

by the expectation value 〈Pr〉ψ of the projection operator Pr

on the surface, where ψ is the eigenstate that gives the largest
value of 〈Pr〉ψ . The surface is defined to be 10% of the full
slab thickness.
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FIG. 14. Surface states from SG 119 for two generic models. The
slab is (11̄0) terminated with a chemical potential chosen in the vicin-
ity of the Kramers-Weyl points. Red disks mark the projections of the
only Weyl points of the respective model. In (a) and (b) [(c) and (d)]
the model contains up to second- (third-)-nearest-neighbor hopping.
(a), (c) Show the top and (b), (d) the bottom surfaces.

1. Minimal number of Kramers points: SG 119

SG 119 (and 120) exhibits the minimal number of two
Weyl points in the absence of accidental crossings. To confirm
this assessment, we devise generic models as described above
with second- and third-nearest-neighbor hopping without ac-
cidental features. We then confirm the chirality at the point
X to be C = ±1 and determine the surface states for the
(11̄0) termination (see Fig. 14). Indeed, Fermi arcs connect
the projections of the Weyl points and attach to the bulk bands
close to the expected positions �̄ and X̄.

When calculating the Chern number on any plane spanned
by [001] and a linear combination of [100] and [010] one does
not enclose one of the Kramers-Weyl points and thus obtains
zero. This is due to the connectivity of the body-centered BZ
(here BCT1). We find that lines parallel to �̄-Z̄ cross both
Fermi arcs (or the bulk bands close the surface gap) (see

FIG. 15. Surface states of SGs 106 (a) and 133 (b). The energy
cut is in the respective vicinity to the fourfold crossings. Both slabs
are (100) terminated and calculated for models with up to fourth-
nearest-neighbor hopping. Red disks mark the projections of the
two movable fourfold crossings for each model. Vanishing Chern
numbers allow the hybridization of surface states.

Fig. 14). If one assigns a direction to the arcs, e.g., both can be
considered to start at �̄ and end at X̄, then they cross the line
parallel to �̄-Z̄ in opposite directions in accordance with the
vanishing Chern number on the corresponding bulk surface.
The structure of Fermi arcs thereby respects the twofold rota-
tion symmetry 211̄0 of the slab and the surfaces in Figs. 14(a)
and 14(b) are related by 2001.

The termination is chosen such that the two opposite chi-
ralities at X, which are related by the fourfold rotoinversion
4̄001, are projected onto two distinct points of the surface BZ,
which are labeled by �̄ and X̄. Simpler terminations like (100)
or (001) map both X points on top of each other and the Fermi
arc could not be observed.

Kramers theorem pairs opposite mirror eigenvalues at the
TRIM N. As we have described in Sec. VI A, the crossing of
mirror eigenvalues at N leads to almost movable nodal lines in
SG 119. Although we focus on surface states, their existence
is recognizable in bulk states shown in Fig. 14. For both
models the nodal lines have the qualitative shape illustrated in
Fig. 9(b). Whereas they appear as lines through N at constant
kz for the parameters chosen in Figs. 14(a) and 14(b), they
cross roughly at the midpoint of �-Z for the model used in
in Figs. 14(c) and 14(d). Especially in the second case the
bulk bands crossing N̄ evidently belong to the almost movable
nodal line. Its drumhead surface state is not visible at the
chemical potential chosen in Fig. 14.

Challenges for a material realization are highlighted by the
two different models shown in Fig. 14. The line �-Z-M hosts
twofold degenerate bulk bands, i.e., they close the bulk gap in
which the Fermi arcs appear. Thus, along the lines �̄-Z̄ and
X̄-P̄ bulk bands overlap the projection of both Weyl points at
X for the (11̄0) termination. Beyond sufficient band splitting,
it is advantageous if the twofold degeneracy at the � and M
points is at similar energy compared to the X point.

2. Movable fourfold points: SGs 106 and 133

For SGs 106 and 133 there is no chirality associated with
the fourfold crossing on the M-A line due to the mirror sym-
metries. Yet, these semimetals generally have surface states
because they consist of two superimposed Weyl semimet-
als. This can be understood by Weyl semimetal precursors
that are distinguished by the action of the rotation symmetry
4001(0, 0, 1

2 ). The screw rotation alone yields two unrelated
representations, which each contain one Weyl point along the
M-A line. Adding time reversal and the mirror symmetries
yields the fourfold crossings, which are Dirac points for SG
133. The mirror symmetry relates the opposite chiralities and
surface states.

With our generic models we confirm the presence surface
states in SGs 106 and 133 (see Fig. 15). As expected for
semimetals the surface states lie in the simplest case within a
bulk gap. Whereas in principle the surface states look similar
for SGs 106 and 133, we display them in two different vari-
ations. Figure 15(a) shows intersecting surface states, which
hybridize close to �̄ and split into three disjoint Fermi sur-
faces. In Fig. 15(b) the surface states do not intersect and only
meet close to the surface projection of the fourfold crossing
marked in red. At a chemical potential closer to the energy of
the fourfold crossing the surface states gap out as well.
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FIG. 16. Band structure for SGs 130 (a), (b) and SG 138 (c), (d). Two generic models with up to seventh-nearest-neighbor hopping are
truncated and the surface localization is color coded. In the left column (a), (c) the termination (001) is chosen. For the right column (b), (d) the
model is (100) terminated.

In conclusion, the surface arcs split into Fermi pockets
which attach either twice to a fourfold crossing or are dis-
connected from it. Depending on the details of the model,
intersections lead to regions of energetically flat surface
bands.

3. Movable Dirac points: SGs 130 and 138

SGs 130 and 138 exhibit four movable Dirac points in
the bulk on the line Z-R, whereas only SG 130 exhibits an
additional eightfold crossing at the point A. There are no
other enforced crossings at the considered filling of 4 + 8N,
which translates into a half-filling for the slab calculations
in Fig. 16. In the following we discuss the arrangement of
inversion eigenvalues in our models and their surface states
for (001) and (100) terminations.

As discussed in the main text, the product δ�i of every other
occupied inversion eigenvalue at a TRIM �i is determined by
the symmetries except for the center of the BZ, �. For our
specific models of SGs 130 and 138 we obtain δ� = +1, the
same value that is enforced by SG 138 at A, i.e., δA = +1. All
other TRIMs yield δX = δR = δM = δZ = −1. We group the
next arguments by the chosen termination, which determines
how the δ�i must be combined to obtain the relevant time-
reversal polarization [80].

If a bulk system with SG 130 or 138 is terminated in (001)
direction, the time-reversal polarizations are π�̄ = πM̄ = −1
(if applicable) and πX̄ = 1, which we label by the TRIMs
of the surface BZ. For SG 130 [see Fig. 16(a)], the model
exhibits a bulk band touching at the projection of the eightfold
crossing at M̄. With this caveat in mind, the differences in the
time-reversal polarization do not lead to characteristic surface
states on the line X̄-M̄. Also, no feature related to a change
in πa is expected along �̄-X̄ because the bulk Dirac point on
Z-R closes the band gap. On this path we find states asso-

ciated with the movable Dirac point emerging from the bulk
crossing. Due to the vanishing Chern number, these surface
states are not protected. Using a different parameter set, an
even number of gapped states were achieved at X̄ but the band
connectivity is not affected. For SG 138, a nontrivial enforced
surface state appears on X̄-M̄ shown in Fig. 16(c). The Dirac
surface state at X̄ exhibits the characteristic connections to
valence and conduction bands.

For the (100) termination we need to consider the time-
reversal polarizations π�̄ = πR̄ = −1 and πX̄ = πZ̄ = +1.
Note that in the presence of the movable Dirac points on Z-R,
πZ̄ cannot be rigorously used, whereas yet again πR̄ is not
defined for SG 130 due to its eightfold crossing at A. For SGs
130 and 138 the values of πa change along �̄-X̄ and we find
the surface Dirac point with the expected connectivity at �̄

[see Figs. 16(b) and 16(d)]. The same happens for SG 138
along X̄-R̄, with the key difference that here this feature is
enforced. Notably, whereas all bands are twofold degenerate
by the action of PT , the surface states on the line Z̄-R̄ are
Kramers degenerate due to M010(0, 1

2 , 1
2 )T . The latter is only

true in the limit of large slabs, where the states localized on
opposing surfaces cannot interact with each other.

In the discussion of surface states for SGs 106 and 133 as
well as SGs 130 and 138 one notices that the former tend to
resemble Fermi arcs more closely. We briefly try to rationalize
this observation. For the latter SGs the interpretation as two
different superimposed Weyl semimetals does not apply to the
same extent as to the former SGs. A possible explanation for
this is that on the line Z-R only one spinless representation
exists for SGs 130 and 138, whereas there are two on the four-
fold rotation axis M-A, where the fourfold crossing appears
for SGs 106 and 133. This and the absence of surface states
due to the Z2 invariant underlines the varying extent to which
Fermi arcs vanish in our generic models.
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APPENDIX C: EFFECTIVE
LOW-ENERGY HAMILTONIANS

In this Appendix we derive effective Hamiltonians, de-
scribing the low-energy physics near different types of band
crossings. Throughout this chapter, we use coordinates q =
k − K0 relative to the point K0 of the degeneracy. The Hamil-
tonian is then given up to the lowest order in q such that only
enforced degeneracies remain.

For all the spatial symmetries in the little group of K0, the
Hamiltonian has to fulfill the condition U †

i H (q)Ui = H (Riq),
where Ui is the representation of the spatial symmetry and
Ri the action of the symmetry in k space, i.e., the spatial
symmetry without translational parts modulo reciprocal lattice
vectors.

If antiunitary symmetries like time reversal are present,
their representation can be given in terms of a unitary part
UT̃ and complex conjugation K. The condition on the local
Hamiltonian is then U †

T̃ H∗(q)U = H (−RT̃ q).

1. Fourfold double Weyl point at R in SG 96

The little group of the TRIM R=(0, π, π ) is generated
from lattice translations and two of the three twofold screw
rotations 2001(0, 0, 1

2 ), 2010( 1
2 , 1

2 , 3
4 ), and 2100( 1

2 , 1
2 . 1

4 ). The
two-dimensional irreducible representation of these sym-
metries can be given by σz, σy, and iσx, respectively.
Time-reversal symmetry couples two copies of these repre-
sentations and takes the form UT K = iτyσzK in this basis.
Here we write σi, i = 0, x, y, z, for the Pauli matrices acting
within a representation and τi for the Pauli matrices acting in
the space of the two representations.

This restricts the linearized Hamiltonian to the form (in τ

space)

H (q) =
(

d · σ � · σ

�∗ · σ b · σ

)
, (C1)

with di = viqi, i = x, y, z, and bx = dx, by = −dy, bz = −dz.
Furthermore, �i = λiqi for i = y, z and 0 otherwise.

Using the unitary transformation U = 1√
2
(τzσ0 + τyσx ),

the Hamiltonian becomes block diagonal with two decou-
pled Weyl points mentioned in the main text and shown in
Fig. 5(b):

H±(q) = vxqxσx + (±vyqy + λzqz )σy + (±vzqz − λyqy)σz.

(C2)

The different signs have an influence on the dispersion only
when qz and qy are both nonzero in accordance with require-
ment of the nodal planes qz = 0 and qy = 0.

2. Low-energy Hamiltonian for fourfold quadruple Weyl point

The point A is a TRIM and its little group consists of all the
symmetries of the SG. Among the spinful irreducible repre-
sentations, i.e., the ones with eigenvalue −1 for 2π rotations,
four are one dimensional and one is two dimensional [63]. The
latter one is paired with itself by time-reversal symmetry and
thus makes up the fourfold degeneracy.

This representation is completely defined for the following
choice of matrices for the generators:

4+
001,

(
1

2
,

1

2
,

3

4

)
: U4 = τ0σz, (C3)

2010,

(
1

2
,

1

2
,

3

4

)
: U2 = τ0σy. (C4)

With this basis choice, the unitary part of the time-reversal
symmetry takes the form UT = iτyσz.

Including all terms up to second order in q and comparing
coefficients leads to the Hamiltonian

H (q) =
(

d(q) · σ �(q) · σ

�∗(q) · σ −d(q) · σ∗

)
, (C5)

with the Hamiltonian of a double Weyl on the diagonal,
dx = vxqxqy, dy = vy(q2

x − q2
y ), dz = vzqz, and the symmetry-

allowed spin-orbit coupling terms �x = −λxqxqy, �y = 0,
�z = λzqz. Note that −d · σ∗ effectively inverts the signs of
vx and vz, leaving the Chern number of the block invariant.

The block-diagonal form in Eq. (4.5) in the main text can
be achieved with the unitary transformation U = 1√

2
(τ0σ0 +

iτxσy). This matrix diagonalizes iτyσy, which commutes with
the initial Hamiltonian. Each block corresponds to a different
eigenvalue of this symmetry, which has been used to color
Fig. 5(c).

3. Low-energy Hamiltonian for P in SG 110

The little group of P in SG 110 is generated by transla-
tions, including t ( 1

2 , 1
2 , 1

2 ), the rotation 2001( 1
2 , 1

2 , 1
2 ), the glide

reflection M110(0, 1
2 , 3

4 ), and the combination of time reversal
and another reflection M010(0, 0, 1

2 )T .
From Eqs. (6.5) and (6.6) we know that different mirror

eigenvalues are paired when both rotation eigenvalues are
+1, i.e., p2001 = 0 in (6.4). The representations can therefore
readily be given as

U2001 = σ0, (C6)

UM110 = iei3π/4σz. (C7)

In this basis, M010(0, 0, 1
2 )T takes the form iσyK.

To fully recreate the gap in a low-energy model, it is nec-
essary to go to third order in q. The Hamiltonian is restricted
to the form

H (q) = a
(
q2

x − q2
y

)
qzσ+ + (c1qz + 2c2qxqy)σz + H.c., (C8)

with σ+ = σx + iσy, a ∈ C, and ci ∈ R.
To better show the behavior in the mirror planes, we

introduce rotated coordinates p− = 1√
2
(qx − qy) and p+ =

1√
2
(qx + qy), which span together with qz the mirror planes

M110 and M11̄0, respectively. With this, the Hamiltonian reads
as

H (q) = 2ap+ p−qzσ+ + [c1qz + c2(p2
+ − p2

−)]σz + H.c.

(C9)

This shows that within each mirror plane, only the prefactor of
σz is nonzero. Within this term, there is a qz for every p± such
that this term vanishes as well, leading to the almost movable
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FIG. 17. Touching nodal lines at P in SG 110. The orange lines
are pinned to the path P-N, the blue lines are almost movable nodal
lines each within a mirror plane. The latter result from the fact that
the bands at P are formed by mirror eigenvalues of different signs
(see Sec. VI A).

nodal line in each mirror plane as required by the exchange of
mirror eigenvalues at P, see Fig.17. Because of the restrictions
for odd and even contributions for qz and p±, respectively, this
still holds when including arbitrary higher-order terms. The
nodal lines in both planes are furthermore symmetry related
because of the constraint on the coefficient c2 of p+ and p−.

4. Linearized Hamiltonian for fourfold Weyl line

In this section we construct a linearized Hamiltonian for
the fourfold nodal line on the M-A line in SGs 113 and
114. We follow the procedure of [49], where a linearized
Hamiltonian for fourfold double Weyl points can be found.
Note that only the directions perpendicular to the nodal line
are expanded in relative coordinates qx and qy, as kz spans the
full range from −π to π along the nodal line.

The little group of a vector k = (π, π, kz ) is C2v , generated
by 2001 and M110( 1

2 , 1
2 , c) and has two-dimensional spinful

irreducible representations [63]. With time-reversal symme-
try present, an additional generator 4

+
001T is included, which

again relates two copies of the double group representation

of C2v and squares to −2001. The other antiunitary symmetry
mentioned in the main text, 2010( 1

2 , 1
2 , c)T , can be written as

product of the above generators.
A matrix representation can be given by

U2001 = τ0(−iσy), (C10)

UM110 = τ0(ieikzcσx ), (C11)

U4̄+
001T K = −iτy

σ0 − iσy√
2

K. (C12)

The linearized Hamiltonian close to the nodal line at q =
(π + qx, π + qy, kz ) is restricted by these symmetries to the
form

H (q) =
(

αq+σz + βq−σx λ(q+σz − q−σx )
λ(q+σz − q−σx ) βq+σz + αq−σx

)
+ ε01,

(C13)

with the perpendicular momentum components q± = qx ± qy

and the parameters α, β, λ, and ε0 all being kz dependent
without any restrictions.

This Hamiltonian can be block diagonalized via the unitary
qx- and qy-independent matrix T = cos φτ0σ0 + sin φiτyσ0,
where tan(2φ) = 2λ

α−β
. The block-diagonal Hamiltonian reads

as

H (q) =
(

α̃q+σz − β̃q−σx 0
0 β̃q+σz − α̃q−σx

)
+ ε01,

(C14)
with two decoupled Weyl lines with the modified velocities

α̃ = α + β

2
+ sgn(α − β )

√(
α − β

2

)
+ λ2,

β̃ = α + β

2
− sgn(α − β )

√(
α − β

2

)
+ λ2. (C15)

In the nodal planes we find |q+| = |q−|, leading to identical
eigenvalues as demanded by symmetry. Furthermore, a π

2 ro-
tation relates the eigenvalues of the upper block to the ones in
the lower one and vice versa. The nodal line in each subspace
is protected by a Berry phase of π . Including symmetry-
allowed terms of higher order in q adds an identical quadratic
contribution to both bands, seen in the collective bending of
bands in the dispersion of NaSn5.
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