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α-β phase transition of zirconium predicted by on-the-fly machine-learned force field
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The accurate prediction of solid-solid structural phase transitions at finite temperature is a challenging task,
since the dynamics is so slow that direct simulations of the phase transitions by first-principles (FP) methods
are typically not possible. Here, we study the α-β phase transition of Zr at ambient pressure by means of
on-the-fly machine-learned force fields. These are automatically generated during FP molecular dynamics (MD)
simulations without the need of human intervention, while retaining almost FP accuracy. Our MD simulations
successfully reproduce the first-order displacive nature of the phase transition, which is manifested by an abrupt
jump of the volume and a cooperative displacement of atoms at the phase transition temperature. The phase
transition is further identified by the simulated x-ray powder diffraction, and the predicted phase transition
temperature is in reasonable agreement with experiment. Furthermore, we show that using a singular value
decomposition and pseudo inversion of the design matrix generally improves the machine-learned force field
compared to the usual inversion of the squared matrix in the regularized Bayesian regression.
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I. INTRODUCTION

Because of widespread applications in nuclear, chemical,
and manufacturing process industries [1,2], zirconium has
stimulated extensive interest in fundamental research aim-
ing to clarify the underlying mechanisms responsible for the
phase transitions and phase diagram from both experiment
and theory [3–31]. Upon cooling the melt, Zr solidifies to
a body-centered cubic (bcc) structure (the β phase) and un-
dergoes a phase transformation to a hexagonal close-packed
(hcp) structure (the α phase) at a temperature lower than
1136 K at zero pressure [3] and at lower temperatures under
pressure [10]. With increasing pressure, the hcp phase trans-
forms into another hexagonal but not close-packed structure
(the ω phase) [5–11]. Under further increased pressure, the ω

phase transforms to the β phase [7,10]. The experimentally
estimated α-ω-β triple point is at 4.9 GPa and 953 K [10].

To understand the microscopic mechanism of the bcc-
hcp phase transition of Zr, Burgers [15] proposed that the
transition can be divided into two processes. As illustrated
in Fig. 1, the bcc phase first undergoes a long wavelength
shear in the [111̄] direction along the (112) plane (or equiv-
alently in the [11̄1] direction along the (1̄12) plane), which
squeezes the bcc octahedron to the hcp one, thereby chang-
ing the angle between the [111̄] and [11̄1] directions from
109.5◦ to 120◦ [15,16]. Then, the neighboring (011) planes
of the bcc phase experience a shuffle along opposite [011̄]
directions with a displacement of aβ

√
2/12 [15,16] [compare

Figs. 1(b) and 1(c)]. The shuffle originates from displace-
ments along the zone-boundary N-point phonon of the T1

branch in the [110] direction [15,16]. The transition belongs to
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the martensitic transformations, is of first order and displacive,
and adopts the definite orientational crystallographic relation
(011)β //(0001)α and [111̄]β //[1̄21̄0]α [15].

The Burgers mechanism was later confirmed by Willaime
and Massobrio [29] using classic molecular-dynamics (MD)
simulations based on a semi-empirical tight-binding in-
teratomic potential [32], giving valuable insight on the
temperature-induced hcp-bcc phase transition of Zr from
an atomistic point of view. However, their predicted phase
transition temperature deviated by nearly 800 K from the
experimental value, since their potential was fitted to the hcp
Zr phase only [29]. By including zero-temperature as well as
high-temperature properties of both hcp and bcc Zr phases
in the fitting procedure, Mendelev and Ackland [33] devel-
oped an embedded-atom interatomic potential that predicted a
reasonable hcp-bcc transition temperature. Some residual de-
pendency on the target properties used in the fitting, however,
remained. Furthermore, these physics-based semiempirical
potentials, in general, suffer from limited accuracy and are not
very flexible, because of their rather simple analytical form.
This cannot capture the properties of structures over a large
phase space.

Machine learning (ML) based regression techniques
[34–39] have recently emerged as a promising tool to con-
struct interatomic potentials. Their advantage is that they are
entirely data-driven and do not assume any specific func-
tional form. Most machine-learned force fields (MLFF) try
to learn the potential energy surface as well as its deriva-
tives by finding a map from the local atomic environments
onto local energies. Typically, energies, forces, and stress
tensors that are calculated by first-principles (FP) techniques
are fitted. Using the kernel ridge regression method, Zong
et al. generated an interatomic potential that successfully re-
produced the phase diagram of Zr [22] and uncovered the
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FIG. 1. (a) Schematic illustration of the structural relationship
between hcp (α) and bcc (β) Zr. The black straight lines and dashed
lines represent the hcp and bcc conventional unit cells, respectively.
Note that for simplicity, atoms are only shown for the hcp phase
in (a). The blue lines indicate the minimum common 4-atom or-
thorhombic (o) cell, whose lattice parameters (ao, bo, co) defined in
terms of hcp and bcc lattices are given as (aα

1 , aα
1 + 2aα

2 , cα) and (aβ ,
bβ − cβ , bβ + cβ ), respectively. (b) The (011) plane of the bcc phase.
(c) The (0001) plane of the hcp phase. Green and red balls represent
the Zr atoms in two layers. The crystallographic relation for the β-α
martensitic phase transition is indicated [15].

nucleation mechanism for the shock-induced hcp-bcc phase
transformation in hcp-Zr [30]. Using the Gaussian approxi-
mation potential model [35,40], Qian and Yang [24] studied
the temperature-induced phonon renormalization of bcc Zr
and clarified the origin of its instability at low temperature.
However, for the hereto employed ML methods, construction
of suitable training structures is a fairly time-consuming trial
and error process based on intuition. The thus obtained train-
ing datasets are normally huge and might contain unnecessary
structures outside the phase space of interest. This can even
reduce the accuracy of the generated ML potential. Further-
more, the generated ML potential showed only fair agreement
with phonon frequencies and elastic constants calculated us-
ing density functional theory (DFT).

To reduce human intervention, on-the-fly machine learning
schemes [41–43] provide an elegant solution. These generate
the force fields automatically during FP MD simulations while
exploring potentially a large phase space. In particular, Jin-
nouchi et al. [43,44] suggested using the predicted Bayesian
error to judge whether FP calculations are required or not. In
this manner, usually more than 98% of the FP calculations
are bypassed during the training, significantly enhancing the
sampling of the configuration space and the efficiency of the
force field generation [43]. This method has been successfully
applied to the accurate and efficient prediction of entropy-
driven phase transitions of hybrid perovskites [43], melting
points [44], as well as chemical potentials of atoms and
molecules [45].

In this work, we attempt to revisit the hcp-bcc phase tran-
sition of Zr at ambient pressure by using the on-the-fly MLFF
method developed by Jinnouchi et al. [43,44]. Almost without
any human intervention, our generated MLFF successfully
reproduces the phonon dispersions of both the hcp and bcc
phases at 0 K as well as the first-order displacive nature of the

phase transition manifested by an abrupt jump of the volume
and cooperative movement of atoms at the phase transition
temperature. This confirms the Burgers mechanism [15]. The
phase transition is further confirmed by the simulated x-ray
powder diffraction. Moreover, we demonstrate that using a
singular value decomposition for the regression overall im-
proves the accuracy of the MLFF compared to the regularized
Bayesian regression.

II. METHOD

For a comprehensive description of the on-the-fly MLFF
generation implemented in the Vienna Ab initio Simulation
Package (VASP), we refer to Ref. [44]. A perspective article
on this method can be found in Ref. [46]. Here, we just sum-
marize the most important aspects of the underlying MLFF
techniques.

As in many MLFF methods [34–40,47–50], the potential
energy U of a structure with Na atoms is approximated as a
summation of local atomic potential energies Ui

U =
Na∑
i=1

Ui, (1)

where Ui is described as a functional of the two-body (ρ (2)
i )

and three-body (ρ (3)
i ) distribution functions,

Ui = F
[
ρ

(2)
i , ρ

(3)
i

]
. (2)

The two-body distribution function ρ
(2)
i is defined as the prob-

ability to find an atom j( j �= i) at a distance r from atom i
[44,51]

ρ
(2)
i (r) = 1

4π

∫
ρi(rr̂)d r̂, (3)

where ρi(r) (r = rr̂) is the three-dimensional atom distribu-
tion function around the atom i defined as

ρi(r) =
Na∑
j �=i

ρ̃i j (r),

ρ̃i j (r) = fcut (|r j − ri|)g(r − (r j − ri )). (4)

Here, ρ̃i j (r) is the likelihood to find atom j at position r
relative to atom i, fcut is a cutoff function that smoothly
eliminates the contribution from atoms outside a given cutoff
radius Rcut, and g is a smoothed δ function. The three-body
distribution function ρ

(3)
i is defined as the probability to find

an atom j( j �= i) at a distance r from atom i and another atom
k(k �= i, j) at a distance s from atom i spanning the angle
∠ki j = θ between them. It is defined as [51]

ρ
(3)
i (r, s, θ )=

∫∫
d r̂d ŝ δ(r̂ · ŝ−cosθ )

Na∑
j �=i

Na∑
k �=i, j

ρ̃ik (rr̂)ρ̃∗
i j (sŝ)

=
∫∫

d r̂d ŝ δ(r̂ · ŝ − cosθ )

×
[
ρi(rr̂)ρ∗

i (sŝ) −
Na∑
j �=i

ρ̃i j (rr̂)ρ̃∗
i j (sŝ)

]
.

(5)
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It should be noted that the definition of ρ
(3)
i in Eq. (5) is

free of two-body components and the importance of the two-
and three-body descriptors can thus be separately tuned. To
distinguish from the power spectrum [40], we denote these
descriptors as the separable descriptors. For more discussions
on the difference between the separable descriptors and the
power spectrum, we refer to Ref. [51].

In practice, ρ
(2)
i and ρ

(3)
i are discretized in a suitable basis

and represented by a descriptor vector xi collecting all two-
and three-body coefficients [51]. Therefore, the functional F
in Eq. (2) becomes a function of xi [51]

Ui = F
[
ρ

(2)
i , ρ

(3)
i

] → F (xi ). (6)

For the functional form of F , a kernel based approach is
used [40]. Specifically, using the algorithm of data selection
and sparsification [44], NB atoms are chosen from a set of
reference structures generated by FP MD simulations and
the atomic distributions surrounding the selected atoms are
mapped onto the descriptors xiB . The function F is then ap-
proximated by the linear equation of coefficients wiB

F (xi ) =
NB∑

iB=1

wiB K
(
xi, xiB

)
, (7)

where the kernel function K (xi, xiB ) is a nonlinear function
that is supposed to quantify the degree of similarity between a
local configuration xi of interest and the reference configura-
tion xiB . Here, a polynomial function K (xi, xiB ) = (x̂i · x̂iB )ζ is
used [40,51]. This introduces nonlinear mixing of purely two-
and three-body descriptors, which was found to be important
for an accurate and efficient description of the potential energy
surfaces [51].

From Eq. (7), the total energy, forces, and stress tensors
of any structure can be obtained as linear equations of the
coefficients wiB . In a matrix-vector representation, it can be
expressed as

yα = φαw, (8)

where yα is a vector collecting the FP energy, forces, and
stress tensors for the given structure α of Nα

a atoms, in total,
mα = 1 + 3Nα

a + 6 components. φα is a mα × NB matrix. The
first line of the matrix φα is comprised of

∑Nα
a

i K (xα
i , xiB )/Nα

a ,
the subsequent 3Nα

a lines consist of the derivatives of the
kernel with respect to the atomic coordinates, and the final
six lines consist of the derivatives of the kernel with respect to
the unit cell coordinates [44]. w is a vector collecting all coef-
ficients {wiB |iB = 1, ..., NB}. The generalized linear equation
containing all reference structures is given by

y = �w. (9)

Here, y is a super vector collecting all FP energies, forces, and
stress tensors {yα|α = 1, ..., Nst} for all reference structures
and similarly, � is the design matrix comprised of matrices
φα for all reference structures [44]. Based on Bayesian linear
regression (BLR), the optimal coefficients w̄ are determined
as [44,52]

w̄ = (
�T� + σ 2

v /σ 2
wI

)−1
�Ty, (10)

where σ 2
v is the variance of the uncertainty caused by noise

in the training datasets, and σ 2
w is the variance of the prior

distribution [44]. The parameters σ 2
v and σ 2

w are obtained by
maximizing the evidence function [44].

Having obtained the optimal coefficients w̄, the energy,
forces, and stress tensors for any given structure α can be
predicted by yα = φαw̄, and the uncertainty in the prediction
is estimated as the variance of the posterior distribution [46]

σ2 = σ 2
v I + σ 2

v φα
(
�T� + σ 2

v /σ 2
wI

)−1
[φα]T. (11)

It is found that the square root of the second term in Eq. (11)
resembles the real error remarkably well [44] and thus pro-
vides a reliable measure of the uncertainty. This is the heart of
the on-the-fly MLFF algorithm. Armed with a reliable error
prediction, the machine can decide whether new structures
are out of the training dataset or not by using state-of-the-art
query strategies [44]. Only if the machine finds the need to
update the training dataset with the new structures, then FP
calculations are carried out. Otherwise, the predicted energy,
forces, and stress tensors by the yet available MLFF are used
to update the atomic positions and velocities. In this manner,
most of the FP calculations are bypassed during training runs
and simulations are in general accelerated by several orders
of magnitude while retaining almost FP accuracy [44,46]. A
final note is in place here: we generally distinguish between
training runs and the final application of the MLFF. In the
first case, the force field is continuously updated and the total
energy is not a constant of motion, whereas in the latter this is
the case.

Furthermore, we notice that in Eq. (10), disregarding reg-
ularization, essentially an inversion of a squared matrix �T�

is performed

w̄ = (�T�)−1�Ty. (12)

Similar procedures (inversion of a squared matrix) are adopted
by Csányi and coworkers [53], although a different regulariza-
tion is used. We find that the condition number of the squared
matrix �T� often approaches 1/ε, where ε is the machine
precision (for double precision arithmetic ε is roughly 10−16).
Squaring the matrix �, i.e., calculating �T� means that the
condition number of the matrix � is also squared. If the con-
dition number of the squared matrix exceeds 1/ε, information
is irrevocably lost from the original problem. The standard
means to avoid squaring the problem is to replace the solution
of the normal Eq. (12) by the QR decomposition � = QR
and to obtain w̄ by backwards substitution Rw̄ = QTy. It
is well known that QR algorithms significantly improve the
stability of the solution of a least square problem. A slightly
more expensive and equally controlled solution is to calculate
the pseudoinverse of � using a singular value decomposition
(SVD)

� = U�VT, (13)

�−1 = V�−1UT, (14)

w̄ = �−1y. (15)

This can be calculated by calling scaLAPACK routines [54].
The key question is whether this allows us to salvage the
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additional information from � that is lost by squaring the
problem and solving the regularized normal equation. Inspec-
tion of the eigenvalue spectrum of � for the present case
shows that the condition number of � is roughly 4 × 1010.
This confirms that some information is lost due to extinction
and finite precision in the matrix �T�, which would formally
have a condition number of ≈1021. As we show below, we
are indeed able to recover some additional information and
thus improve the accuracy by calculating the pseudoinverse of
the design matrix instead of solving the regularized normal
equation. In the present case the advantages are, however,
small. Since calculating the pseudoinverse takes little extra
time, we feel that this step should be performed regardless of
the admittedly small gains in accuracy. We do this only once,
after the on-the-fly training has finished. We note that the
condition number of the design matrix � is rarely reported in
literature for MLFFs. It would be interesting to know whether
other implementations observe similar issues. Specifically, we
expect that a combination of radial and angular descriptors
or use of the power spectrum generally leads to a fairly ill-
conditioned problem.

Finally, we stress that regularization in a manner strictly
compatible to Eq. (10) can be easily recovered by using the
Tikhonov regularization [55] if needed. However, contrary to
common belief, we find that due to the inclusion of equations
for the forces and sparsification of the local environments, our
system of equations is in general overdetermined and there-
fore regularization is not strictly required. To give an example,
in the present case, the final force field is trained using 935
structures of 48 atoms, each yielding one energy equation,
six equations for the stress tensor, and 48 × 3 equations for
the forces. Due to sparcification only 1013 fitting coefficients
need to be determined (see Sec. III B). This means that the
number of equations is about 140 times larger than the number
of unknowns. Finally, we note that we use the evidence ap-
proximation to determine σ 2

v and σ 2
w. We find that the quotient

(σ 2
v /σ 2

w)/λmax (λmax being the maximum eigenvalue of the
squared matrix �T�) approaches machine precision in the
present case. This also confirms that the system of equations
is overdetermined and that regularization is not required.

III. COMPUTATIONAL DETAILS

A. First-principles calculations

All FP calculations were performed using VASP [56,57].
The generalized gradient approximation of Perdew-Burke-
Ernzerhof (PBE) [58] was used for the exchange-correlation
functional. A plane wave cutoff of 500 eV and a -centered
k-point grid with a spacing of 0.16 Å−1 between k points were
employed, which ensure that the total energy is converged
to better than 1 meV/atom. The Gaussian smearing method
with a smearing width of 0.05 eV was used to handle frac-
tional occupancies of orbitals in the Zr metal. The electronic
optimization was performed until the total energy difference
between two iterations was less than 10−6 eV.

B. MLFF training

Our MLFFs were trained on-the-fly during MD simulations
using a Langevin thermostat [59] at ambient pressure with a

time step of 1.5 fs. The separable descriptors [51] were used.
The cutoff radius for the three-body descriptor and the width
of the Gaussian functions used for broadening the atomic
distributions of the three-body descriptor were set to 6 Å and
0.4 Å, respectively. The number of radial basis functions and
maximum three-body momentum quantum number of spher-
ical harmonics used to expand the atomic distribution for the
three-body descriptor were set to 15 and 4, respectively. The
parameters for the two-body descriptor were the same as those
for the three-body descriptor.

The training was performed on a 48-atom orthorhombic
cell using the following strategy. (i) We first trained the force
field by a heating run from 0 to 1600 K using 20 000 MD
steps starting from the DFT relaxed hcp structure. (ii) Then,
we continued training the bcc phase by a MD simulation with
an isothermal-isobaric (NPT) ensemble at T = 1600 K using
10 000 MD steps. (iii) Using the equilibrium bcc structure at
T = 1600 K obtained from the previous step, the force field
was further trained by a cooling run from 1600 to 0 K using
20 000 MD steps. (iv) Since the bcc Zr is strongly anharmonic
and dynamically stable only at high temperatures [23–27], to
include the ideal 0 K bcc structure in the training dataset, an
additional heating run from 0 to 300 K using 10 000 MD steps
was performed starting from the DFT relaxed bcc structure.
Indeed, we observed that the bcc phase is unstable at low tem-
perature and transformed into the more stable hcp structure
just after 300 MD steps. It should be stressed here that our
on-the-fly MLFF training is rather efficient. Eventually, only
935 FP calculations were performed out of 60 000 MD steps,
i.e., nearly 98.4% of the FP calculations were bypassed. From
these 935 reference structures, 1013 local configurations are
selected as the basis sets. In the last step, the SVD [Eq. (15)]
was used to redetermine the coefficients using the same de-
sign matrix as obtained from the BLR. In the following, we
denote the MLFFs obtained by using BLR and SVD for the
regression as MLFF-BLR and MLFF-SVD, respectively.

Furthermore, we note that for any regression method it is
possible to increase the weight of some equations, though this
reduces the “relevance” and in turn the accuracy of the other
equations. Presently our machine learning code first reweights
all equations such that the standard deviations in the energy
per atom, forces and stress tensors equal one. To give an
example, if the standard deviation in the energy per atom is
100 meV, all energy equations are scaled by 1/100 meV−1.
Likewise, if the standard deviation for the forces is 0.5 eV/Å,
all force equations are scaled by 2 (eV/Å)−1.

After this scaling has been performed, we found that it is
expedient to increase the relative weight of the energy equa-
tions (ωE ) by a factor of 10 with respect to the equations for
the forces and stress tensors in the linear regression. This de-
creased the root-mean-squared errors (RMSE) in the energies
by almost 1.4 meV/atom for the training dataset, while the
errors in the forces and stress tensors did not increase signifi-
cantly (see Table I). One motivation for increasing ωE is that
for each structure with Na atoms, there is only one equation for
the energy, but 3Na and 6 equations for the forces and stress
tensors, respectively. Likewise, we found that increasing the
relative weight of the stress tensor equations (ωS) by a factor
of 5 improves the accuracy of the elastic constants, although
it slightly worsens phonon dispersion relations (see Sec. IV).
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TABLE I. The training and validation RMSE in energies
(meV/atom), forces (eV/Å) and stress tensors (kbar) calculated by
MLFF-BLR and MLFF-SVD for three ωE . Note that in this work
ωE = 10 is used unless otherwise explicitly stated.

Training errors Validation errors

BLR SVD BLR SVD

Energy 3.69 3.22 2.87 2.70
Force 0.08 0.07 0.10 0.09

ωE = 1 Stress 1.16 1.04 1.16 1.12
Energy 2.33 1.74 2.17 1.96
Force 0.08 0.07 0.10 0.09

ωE = 10 Stress 1.40 1.05 1.34 1.11
Energy 1.65 0.47 2.87 2.36
Force 0.09 0.08 0.11 0.10

ωE = 100 Stress 1.89 1.27 1.98 1.29

C. MLFF validation

The generated MLFFs have been validated on a test dataset
containing 40 hcp structures of 64 atoms at T = 500 K
and another 40 bcc structures of 64 atoms at T = 1400 K.
These structures were generated using MD simulations with
an NPT ensemble at T = 500 and 1400 K employing
the obtained MLFFs. Table I shows both the training and

validation errors in energies, forces, and stress tensors calcu-
lated by MLFF-BLR and MLFF-SVD. Clearly, results using
SVD are generally improved compared to the results using
BLR, both for the test and training dataset. Although the
improvement seems to be modest, we will see below that
physical observables are also better described using the SVD.
Concerning the relative weight of the energy equations, we
note that using SVD the error in the energy in the training
dataset decreases significantly, reaching sub meV precision
(0.47 meV/atom), if the energy equations are reweighted by
a factor of 100. Unfortunately, the errors in the test dataset
increase, if ωE is increased beyond a value of 10. This in-
dicates that by strongly weighting the energy equations, the
unregularized SVD tends to overfit the energies, and overall
the best results on the test dataset are obtained by reweighting
the energy equations by a factor of 10 and using SVD.

As an illustration, results on the energies, forces and diag-
onal components of stress tensors predicted by MLFF-SVD
and density functional theory (DFT) for the test dataset are
presented in Figs. 2(a)–2(c) respectively, showing very good
agreement. In addition, the MLFFs and DFT predicted energy
difference for each structure in the test datasets is shown
in Fig. 2(d). Compared to the hcp structures, the bcc ones
exhibit larger errors due to the stronger thermal fluctuations
at high temperature. We note that our generated MLFF-BLR
is already very accurate with training and validation errors of
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TABLE II. Lattice parameters of hcp and bcc Zr as well as their
energy difference at 0 K predicted by DFT and MLFFs using BLR
and SVD for the regression. Note that the experimental data for hcp
Zr [60] and bcc Zr [61] were measured at room temperature and low
temperature (<7 K), respectively.

DFT BLR SVD Expt.

hcp Zr
a = b (Å) 3.235 3.234 3.235 3.233 [60]
c (Å) 5.167 5.169 5.166 5.147 [60]
bcc Zr
a (Å) 3.574 3.574 3.573 3.551 [61]
E (bcc) − E (hcp) (eV/atom) 0.084 0.081 0.082 —

2.33 and 2.17 meV/atom in the energy, respectively. Due to
the improved condition number, MLFF-SVD further improves
upon MLFF-BLR by reducing the overall errors in energies,
forces and stress tensors (see Table I). These improvements
are particularly relevant for the application to the prediction of
defects energetics where supercells need to be used and errors
in the range of 1 meV/atom will cause errors of the order of
100 meV for defects. In addition, as compared to MLFF-BLR,
MLFF-SVD improves the phonon dispersions towards DFT
results due to its improved forces, as will be discussed later
on.

We notice that our force field is more accurate than the
one obtained by Zong et al. [22], which exhibited much larger
training mean absolute errors of 5.8 and 6.7 meV/atom in the
energy for hcp and bcc Zr, respectively. This might be related
to the fairly simplified ML model used in Ref. [22] as well as a
rather extensive training dataset containing multiphase struc-
tures. Surprisingly, the force field generated by Qian and Yang
[24] shows rather small validation RMSE of 0.2 meV/atom
for the hcp phase and 0.3 meV/atom for the bcc phase [24].
In our experience, a precision of sub meV/atom can only
be attained if fairly small displacements and low temperature
structures are used. Indeed, the training structures considered
in Ref. [24] correspond to small displacements of the ground
state hcp and bcc structure as well as finite temperature train-
ing data at 100, 300, and 1200 K, and validation was done for
configurations selected from MD simulations at 300 K.

IV. RESULTS

We start by showing the lattice parameters of hcp and bcc
Zr at 0 K as well as their energy difference predicted by DFT
and MLFFs. As seen in Table II, almost perfect agreement is
observed between DFT and MLFFs for both BLR and SVD.
The slightly larger lattice parameters predicted by theory as
compared to experiment originate from the tendency of PBE
to overestimate lattice constants. For the energy difference
between bcc and hcp Zr, both MLFF-BLR and MLFF-SVD
slightly underestimate the DFT value with MLFF-SVD being
more accurate (see also Table I).

Figure 3 presents the phonon dispersions of hcp and
bcc Zr at 0 K calculated by DFT and MLFFs. Consistent
with previous FP calculations [21–24], at 0 K hcp Zr is
dynamically stable, whereas bcc Zr is dynamically unstable
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FIG. 3. Phonon dispersion relation of (a) hcp and (b) bcc Zr at
0 K predicted by DFT (grey dotted lines) and MLFFs (full lines)
using BLR (black) and SVD (red for ωS = 1 and blue for ωS = 5)
for the regression. 180-atom and 343-atom supercells have been used
for hcp and bcc phases, respectively.

due to the double-well shape of the potential energy surface
[24]. As compared to DFT, MLFF-BLR describes the acoustic
phonons of hcp Zr very well. Although a slightly larger devi-
ation exists for the optical phonons, it seems that difficulties
in accurately describing optical phonons are quite general for
machine learned interatomic potentials [22,24]. For instance,
our results are comparable with those predicted by Qian and
Yang [24], but are better than those predicted by Zong et al.
[22]. The latter show a very large discrepancy of nearly 2
THz for the optical phonons at the Brillouin-zone center [22].
The possible reasons have been discussed in Sec. III C. Here,
we want to emphasize that in contrast to Ref. [24] where
the force field was purposely trained to model phonons by
using perturbed supercells with strains and displacements,
in the present work, the necessary information on the force
constants were automatically captured during the on-the-fly
MLFF training, and our MLFF predicted phonon dispersions
came out to be in good agreement with the DFT results. In ad-
dition, we observe that the average optical phonon frequencies
predicted by our MLFFs are quite accurate, which implies that
free energy differences are likely to be described accurately.
For the bcc phase, the MLFF-BLR is able to capture the
soft zone-boundary N-point phonon of the T1 branch which
is involved in the β-α phase transition [15,16] and the soft
phonon mode in the H-P direction that is responsible for
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FIG. 4. Energies of hcp and bcc Zr at 0 K as a function of volume
predicted by DFT and MLFFs. Curves are fitted by using the Vinet
universal equation of state [62].

the β-ω phase transition [6,16,25], but struggles to obtain
accurate results along P-. However, these soft phonon modes
are extremely difficult to obtain accurately even by DFT, with
the DFT results being strongly dependent on the system size.
This means that training on a 48-atom cell is likely to be
inadequate to describe all phonon instabilities in bcc Zr. As
compared to MLFF-BLR, MLFF-SVD overall improves the
phonon dispersions towards the DFT results for both hcp and
bcc Zr, in particular for the optical phonon modes for both
phases and the soft phonon modes along P- for bcc Zr. This
is not unexpected, since MLFF-SVD reduces errors in forces
as compared to MLFF-BLR (see Table I).

Another important quantity for the prediction of phase
transition are the elastic properties, which are typically hard
to accurately predict [22,24,63]. Although our MLFFs were
trained during a heating/cooling MD simulation at a con-
stant zero pressure only (the focus of the present study is on
the temperature-induced hcp-bcc phase transition at ambient
pressure), it turns out that the fluctuations of the volumes
in the MD simulation allow us to sample slightly strained
structures and therefore our MLFFs are capable to describe
elastic properties quite well. Indeed, Fig. 4 shows the vol-
ume dependence of the energies of hcp and bcc Zr at 0 K
predicted by DFT and MLFFs. One observes that the DFT
calculated energy vs volume curve is well reproduced by our
MLFFs. Obvious deviations are discernible only for small
volumes away from the equilibrium volume. This is expected,
because no external pressure is applied during training. The
better agreement between DFT and MLFFs for the larger
volumes apparently benefits from the thermal expansion dur-
ing heating. As compared to the results in Ref. [22], our
MLFFs predicted energy vs volume curves are, again, in bet-
ter agreement with the DFT data. Table III summarizes the
predicted elastic coefficients and bulk moduli. One can see
that our MLFFs work well for the elastic properties of hcp
Zr, showing reasonably good agreement with DFT. However,
the description of the elastic properties for bcc Zr by our

TABLE III. Ion-relaxed elastic coefficients Ci j and bulk moduli
(in GPa) of hcp and bcc Zr at 0 K predicted by DFT and MLFFs.
For the MLFFs using SVD, results using two relative weights of
the stress tensor equations (ωS = 1 and 5) are shown. Values in
the parentheses represent the ion-clamped elastic coefficients. The
experimental data of hcp Zr [4] and bcc Zr [27] shown in this table
were measured at 4 and 1189 K, respectively.

BLR SVD SVD
DFT (ωS = 1) (ωS = 1) (ωS = 5) Expt.

hcp Zr
C11 143.4 133.9 132.0 140.7 155.4

(155.3) (150.3) (142.9) (149.6) –
C12 64.9 78.0 61.8 63.2 67.2

(52.9) (61.5) (50.8) (54.3) –
C13 65.4 68.6 56.7 62.8 64.6
C33 169.3 169.4 158.9 158.0 172.5
C44 24.4 26.7 24.5 24.0 36.3
B 93.31 95.55 89.0 91.8 97.5
bcc Zr
C11 73.3 109.0 72.3 76.7 104
C12 95.3 117.8 105.4 108.1 93
C44 28.8 39.5 36.5 32.7 38
B 88.80 111.67 97.1 97.3 —

MLFFs is not so satisfactory. The largest discrepancy is found
for C44. This is because at 0 K, the bcc phase is unstable
both dynamically [see Fig. 3(b)] and mechanically [the Born
elastic stability criterion (C11 − C12 > 0) [64] is disobeyed],
and therefore, only few reference structures corresponding to
the unstable ideal bcc phase are collected during our on-the-
fly training. Concerning the comparison between MLFF-BLR
and MLFF-SVD, we found that both MLFFs are comparably
good in predicting the elastic properties of hcp Zr, whereas
the MLFF-SVD dramatically improves over the MLFF-BLR
for bcc Zr. In addition, by increasing ωS by a factor of 5, the
overall elastic properties are further improved, but this slightly
worsens the phonon dispersion relations (see Fig. 3). This is
expected, because increasing ωS yields more accurate stress
tensors, while slightly increasing the errors in energies and
forces.

Finally, we turn to the hcp-bcc phase transition. To avoid
large volume fluctuations appearing in small supercells, a
reasonably large orthorhombic supercell with 180 Zr atoms
is used to simulate the phase transition. Figure 5 shows the
evolution of the volume with respect to the temperature dur-
ing the heating and cooling MD simulations predicted by
MLFF-BLR and MLFF-SVD. For each MD simulation, 2
million MD steps (corresponding to a heating/cooling rate
0.33 K/ps) were used. First, one can observe that both MLFFs
successfully reproduce the hcp-bcc phase transition, a typical
first-order phase transition manifested by an abrupt jump in
the volume at Tc. Second, the predicted phase transition be-
tween hcp and bcc phases is reversible via heating or cooling,
but a fairly large hysteresis is observed, i.e., heating and
cooling runs yield different Tc. This is not unexpected for
a first-order phase transition and similar to experimentally
observed super-heating and supercooling. Third, if we average
over the upper and lower transition temperatures, both MLFFs
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FIG. 5. Evolution of the volumes of 180-atom orthorhombic su-
percells with respect to temperature during the heating (black) and
cooling (red) MD simulations using (a) MLFF-BLR and (b) MLFF-
SVD. The dashed lines represent the experimentally measured
hcp-bcc phase transition temperature TExpt. = 1136 K [3].

predict a Tc that is in reasonable agreement with the experi-
mental value. However, as compared to the phonon dispersion
relations, no improvement for the prediction of Tc by SVD is
obvious. We will explain this observation below.

We note that a quantitative comparison of Tc between
experiment and theory as obtained from direct heating and
cooling should be done cautiously. For small systems, the
transition temperatures might well be wrong by 100 K due
to errors introduced by finite size effects or hysteresis. To
mitigate this problem, we performed each heating or cooling
run ten times to obtain a reasonable statistics for estimating
Tc, and we obtained a mean value of 1040 K with a standard
deviation of 30 K for MLFF-SVD. Upon heating the low-
est temperature at which the transition to the bcc structure
occurred was 1107 K, while upon cooling the highest tem-
perature at which the transition to the hcp structure occurred
was 982 K. The mean (1045 K) is in excellent agreement with
the above value. To refine the transition temperature further,
we lowered the heating and cooling rate by a factor of 4
(0.08 K/ps) and performed four more cooling runs yielding
transition temperatures of 1019–1047 K, as well as four more
heating runs yielding transition temperatures of 1046–1093 K.
These values clearly confirm that the transition temperature
for a system size of 180 atoms is about 1045 K with an esti-
mated error bar well below 10 K. Such a small error bar would
be very hard to achieve using, for instance, thermodynamic
integration and free energy methods.

Finally, we have explored how accurate the force fields,
MLFF-BLR and MLFF-SVD, are compared to the reference
PBE calculation. The previous assessments on the ideal hcp
and bcc structures are not necessarily very accurate, since

TABLE IV. Estimated free energy difference FFP − FMLFF

(meV/atom) between FP and MLFF calculations at T = 1040 K
using an ensemble of 40 structures picked from heating and cooling
MD runs using MLFF-SVD. Because of the hysteresis, the heating
run yields hcp- like structures, whereas the cooling run yields bcc-
like structures.

Heating/ hcp Cooling/ bcc

BLR SVD BLR SVD

FFP − FMLFF −0.80 −0.56 −1.64 −0.83

bcc Zr at 0 K is dynamically unstable, and finite temperature
displacements are obviously not considered. To assess the
accuracy of the MLFF for predictions of the transition tem-
perature, we estimate the free energy difference FFP − FMLFF

between FP and MLFF calculations through thermodynamic
perturbation theory (TPT) in the second-order cumulant ex-
pansion [65,66]

FFP − FMLFF = − 1

kBT
ln

〈
exp

(
− UFP − UMLFF

kBT

)〉

≈ 〈�U 〉 − 1

2kBT
〈(�U − 〈�U 〉)2〉, (16)

where �U = UFP − UMLFF is the potential energy difference
between FP and MLFF calculations. Without loss of gener-
ality, 40 structures close to T = 1040 K from the heating
and cooling MD runs using MLFF-SVD were selected as
test ensemble. The former (heating) are clearly hcp-like,
whereas the later resemble bcc-like structures. The estimated
values of FFP − FMLFF are shown in Table IV. Obviously,
MLFF-SVD is more accurate than MLFF-BLR for the free
energies, in particular for the bcc Zr where a larger deviation
of 1.64 meV/atom from the FP free energy is observed in
the MLFF-BLR. This is expected, since MLFF-SVD predicts
more accurate potential energies as well as phonon dispersion
relations. For the free energy difference between the bcc and
hcp phases, which is relevant for estimating Tc, MLFF-SVD
and MLFF-BLR yield deviations of 0.27 and 0.84 meV/atom,
respectively, as compared to the one calculated by PBE. After
estimating the entropy difference between the two phases, we
estimate that this translates to an error of 9 K for MLFF-SVD
in predicting Tc. With the correction by TPT, our final estimate
for Tc by PBE is placed at 1049 K, in reasonable agreement
with the experimental value of 1136 K.

To further validate that the observed phase transition is
from hcp to bcc, x-ray powder diffraction (XRD) patterns are
simulated for snapshot structures picked from the MD trajec-
tories. The results are shown in Fig. 6. From the XRD patterns,
the hcp-bcc phase transition is unambiguously confirmed, in
accordance with Fig. 5. Furthermore, the displacive nature of
the phase transition can be visually observed from the changes
in the atomic structure, as shown in Fig. 7. The cooperative
movement of Zr atoms of alternating (011)β planes in the bcc
phase along the opposite [011̄]β directions results in the hcp
atomic stacking sequence, confirming the the Burgers mecha-
nism for the temperature-driven bcc-hcp phase transition [15].
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FIG. 6. Simulated XRD patterns of Zr at selected temperatures during (a) heating and (b) cooling MD simulations using MLFF-SVD. The
corresponding adopted structures are shown in Fig. 7. The XRD patterns of hcp and bcc Zr at 0 K are also shown for comparison.

Our good prediction for the hcp-bcc phase transition of Zr
undoubtedly demonstrates the strength and accuracy of on-
the-fly MLFF. In particular, almost no human interference was
required during the training, which in the present study just
involved heating and cooling of hcp and bcc Zr. In principle,
the training can be done in less than a week, with the human
effort of setting up the calculations being just few hours. As
a matter of fact, testing the MLFF was a significantly more
time-consuming endeavor in the present case. Our MLFF

training strategies and analysis presented in this work can also
be employed to study the temperature-dependent martensitic
phase transitions in other materials such as other group-IV
elements Ti and Hf and group-III elements Sc, Y, and La, with
very little effort. In addition, the obtained force fields trained
on hcp and bcc Zr at ambient pressure can be further trained
by applying external pressure and by including the hexagonal
ω phase in the training dataset so that the full temperature-
pressure phase diagram of Zr can be readily constructed.

FIG. 7. Structure evolution as a function of temperature during heating (upper row) and cooling (bottom row) MD simulations. These
snapshot structures were picked from the MD trajectory using MLFF-SVD. The hcp and bcc structures at 0 K are also illustrated for
comparison.
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V. CONCLUSIONS

To summarize, we have successfully applied the on-the-fly
MLFF method to determine a force field for bcc and hcp Zr
and study the hcp-bcc phase transition of Zr. This is a fairly
challenging problem that is hard to address using brute force
methods and FP MD simulations due to the limited length
and time scales accessible to DFT simulations. Certainly,
standard passive learning methods are possible and have been
successfully used in the past, but they do not offer the same
sort of convenience as the present approach. The first-order
displacive nature of the hcp-bcc phase transition— manifested
by an abrupt jump in the system volume and a change in the
atomic stacking sequences —has been unambiguously repro-
duced by our MD simulations and identified by the simulated
XRD patterns, confirming the Burgers mechanism for the
temperature-induced hcp-bcc phase transition. In addition, our
MLFF predicted phase transition temperature is found to be
in reasonable agreement with experiment. Finally, we have

shown that due to the improved condition number, SVD is
in general more accurate than the regularized BLR, which is
evidenced by the systematic decrease of the errors in ener-
gies, forces, and stress tensors for both the training and test
datasets. The improvement by SVD over BLR has also been
showcased by its improved prediction of the energy difference
between bcc and hcp Zr and of the phonon dispersions of both
hcp and bcc Zr. In summary, evidence shown in this paper
suggests that pseudoinversion of the design matrix using SVD
is a useful approach to overcome some of the limitations of
regularized regression methods.
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