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Exploring diamondlike lattice thermal conductivity crystals via feature-based transfer learning
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Ultrahigh lattice thermal conductivity materials hold great importance since they play a critical role in the
thermal management of electronic and optical devices. Models using machine learning can search for materials
with outstanding higher-order properties like thermal conductivity. However, the lack of sufficient data to train a
model is a serious hurdle. Herein we show that big data can complement small data for accurate predictions when
lower-order feature properties available in big data are selected properly and applied to transfer learning. The
connection between the crystal information and thermal conductivity is directly built with a neural network by
transferring descriptors acquired through a pretrained model for the feature property. Successful transfer learning
shows the ability of extrapolative prediction and reveals descriptors for lattice anharmonicity. The resulting
model is employed to screen over 60 000 compounds to identify novel crystals that can serve as alternatives to
diamond. Even though most materials in the top list are superhard materials, we reveal that superhard property
does not necessarily lead to high lattice thermal conductivity. Large hardness means high elastic constants and
group velocity of phonons in the linear dispersion regime, but the lattice thermal conductivity is determined also
by other important factors such as the phonon relaxation time. What is more, the average or maximum dipole
polarizability and the van der Waals radius are revealed to be the leading descriptors among those that can also
be qualitatively related to anharmonicity.
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I. INTRODUCTION

The power densities of microelectronic devices and their
components continually increase due to advances in the fab-
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rication and integration of advanced materials and structures.
Hence, the large thermal density must be quickly removed to
guarantee reliable performance. Material innovations in heat
spreaders and sinks and thermal interface materials are at the
core of the thermal-management challenge. A key element to
such innovations is materials with a high lattice thermal con-
ductivity (κL) either as bulk crystals or fillers for composites.
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Although metals are generally suitable thermal conductors,
insulators have the highest thermal conductivities. In many
thermal management applications involving heat spreaders
and sinks, electrical insulation is necessary to avoid electric
current leakage. Diamond, which has a thermal conductivity
of about 2000 Wm−1 K−1 at room temperature, is a represen-
tative bulk material [1]. It is widely used as heat spreaders
or sinks for laser diodes and power electronics in the form of
bulk or composites to prevent overheating. One drawback is
that it sustains thermal damage via oxidation or graphitization
at high temperature [2,3], significantly altering the thermal
properties of the heat spreader or sink.

Cubic and hexagonal boron nitrides have been investigated
as alternative materials [4]. Considering the surface affinities
with various other materials for composite syntheses and inte-
gration, other alternatives should be useful. Although physics
insights suggest that some materials exhibit a fairly high κL

such as SiC, BeO, BP, AlN, BeS, GaN, Si, AlP, and GaP,
materials with κL approaching or exceeding 1000 Wm−1 K−1

are rare.
Single-crystal compounds are obvious candidates as alter-

native high-κL materials to diamond [5]. However, only a few
materials have quantified thermal conductivity values due to
the difficulty of synthesizing single crystals that can be mea-
sured in a standardized fashion. Moreover, a material search is
extremely cumbersome. Herein we propose utilizing compu-
tational techniques to efficiently search for high-κL materials.
In recent decades, the development of lattice dynamics meth-
ods using interatomic force constants obtained from density
functional theories has enabled first-principles calculations of
the κL. Simultaneously, databases containing tens of thou-
sands of crystal compounds have been constructed. Examples
include MATERIALS PROJECT [6], AFLOW [7], ICSD [8], and
ATOMWORK [9]. However, performing first-principles calcu-
lations for all the crystals in the databases is extremely time
consuming and unrealistic.

Another option is high throughput screening [10] based
on machine learning. High throughput screening can speed
up discovery of new materials. It has been applied in many
fields such as catalysis, battery technologies, thermoelectric
materials, chemical probes, polymers, and magnetic materi-
als. Motivated by realizing high-performance thermoelectric
materials, efforts to apply κL to crystals have centered on
screening ultralow κL crystals [11–13]. Carrete et al. [13]
screened 79 000 half-Heusler compounds and found that ma-
terials with large atomic radii elements have a lower κL.
Seko et al. [12] screened 54 779 crystals based on the Gaus-
sian process regression and reported 221 materials with a
low κL. Roekeghem et al. [11] extended the screening of
mechanically stable compounds at high temperatures using
finite-temperature phonon calculations.

One challenge when screening crystals with high and low
thermal conductivities is the large gap between the “big data”
required for credible machine learning and the “small data”
currently available. Although bridging this gap is a general
problem in materials informatics [14–16], it is especially in-
tense when searching for materials with a preferred thermal
conductivity because it involves both the harmonic phonon
properties, which are fairly easy to calculate, and anharmonic

properties, which are much more expensive to evaluate. As
shown in Fig. 1, “big data” are available for the harmonic
phonon property of the three-phonon scattering phase space
but not for the thermal conductivity (Fig. 1). Only “small
data” are available for the thermal conductivity due to the
heavy calculation required for the anharmonic phonon prop-
erty. To overcome the difficulty of limited data availability, we
employ a transfer learning strategy which is an increasingly
popular technique of machine learning [17]. Because openly
accessible big data are less available in material research, the
ability of transfer learning to learn on small data has attracted
much attention [18–20]. Yamada et al. [21] demonstrated the
potential power of transfer learning in various applications in
materials science, including organic and inorganic chemistry.
In this study, we show that a prediction model with fairly
high accuracy can be derived from the limited data set by
effectively reusing features learned on the harmonic phonon
property as features in the model of the anharmonic phonon
property.

In this work, we develop a feature-based transfer learning
method to overcome the gap. This method begins with a broad
search over the entire structure database of crystal compounds
for the feature harmonic property, which should be correlated
with thermal conductivity. Subsequently, a focused search
of the selected candidates is conducted for a high thermal
conductivity. Here, we choose the scattering phase space (P3)
of the three-phonon scattering process as the feature prop-
erty because this can be quickly extracted from the harmonic
calculation.

II. METHODS

A. Anharmonic lattice dynamics

The conventional method of calculating κL is formulated
on the basis of anharmonic lattice dynamics calculations
using the interatomic force constants obtained by first prin-
ciples, which are well described elsewhere [22]. The κL was
calculated by solving the Boltzmann transport equation (see
Supplemental Material, Note A [23])

−νqs∇̇T

(
∂nqs

∂T

)
+ ∂nqs

∂t
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scattering

= 0, (1)

where n is the phonon distribution function, qs is the phonon
mode, and ν is the group velocity. Although the single-mode
relaxation time approximation (see Supplemental Material,
Note B [23]) is often used to calculate κL, it significantly un-
derestimates κL for high-thermal-conductivity crystals. Thus,
Eq. (1) must be solved iteratively or directly (see Supplemen-
tal Material, Fig. S2 and Note C [23]).

As discussed above, a key feature in the current process is
P3, which quantifies the phonon scattering channels. The total
P3 is calculated as

P3 = 1

Nq

∑
qs

1

3m3
(2P(+)

3 (qs) + P(−)
3 (qs)), (2)

where m is the number of phonon branches and

P(±)
3 (qs) = 1

Nq

∑
q′s′,q′′s′′

δ(ωqs ± ωq′s′ − ωq′′s′′ )δq±q′,q′′+G. (3)
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FIG. 1. Schematics of feature-based transfer learning. The transfer learning bridges “big data” (harmonic three-phonon scattering phase
space of 320 crystals) and “small data” (thermal conductivity of 45 crystals) to search for ultrahigh lattice thermal conductivity crystals. All
neurons (circles) are activated by ReLU (rectified linear unit). Dropout (dashed circles and lines) range (0.1 or 0.2) in each hidden layer is
randomly chosen. Numbers at the bottom indicate the number of neurons or trees used in each layer of the neural network and random forest
model.

Equation (3) indicates that P3 can be calculated solely from
harmonic interatomic force constants.

B. P3 and κL data collections

The candidates were approximately 60 000 inorganic crys-
tals in the MATERIALS PROJECT [6] database. Because this
study focused on κL, materials with a band gap smaller than
0.1 eV, molecular crystals such as O2, H2, H2O, H2O2, and
crystals with hydrogen atoms were excluded. We collected
the atom displacement from the phonon database [24] and
calculated force data of 320 crystals by first principles (see
Supplemental Material, Table S1 [23]). The ALAMODE pack-
age [25] was then used to fit the harmonic interatomic force
constants and calculate the P3 values. Aside from the P3 data,
we also collected thermal conductivity data for 45 materials
(see Supplemental Material, Table S2 [23]).

C. Transfer learning

For the given target property (κL), which has limited
training data, models on the proxy feature property (P3) are
pretrained using the sufficient data to capture the features
relevant to the commonality between κL and P3. Repurposing
the pretrained feature extractor on the target task can realize
an outstanding prediction ability even with the exceedingly
small amount of data. This study focuses on a specific type of
transfer learning using artificial neural networks (Fig. 1).

Transfer learning was performed via XENONPY, a self-
developed open-source Python package [26]. We used
XENONPY to calculate 290 compositional features for a given
chemical composition using information about the 58 per-

element features, such as the atomic weight, electronegativity,
van der Walls radius, and so on. We pretrained a fully con-
nected pyramid neural network using the 320 instances of
P3 and the 290-dimensional descriptor vectors. All neurons
were activated by ReLU (rectified linear unit), and a linear
model was placed on the output layer, which defines the
transformation from the 10 neurons in the last hidden layer
to the P3. We produced 1000 pretrained models on the P3 with
randomly generated network structure; the number of hidden
layers, which ranged between 4 and 6; the number of neurons
in each layer; and the dropout probability, which was either
0.1 or 0.2. Subsequently, the best model on the P3 was selected
based on the 10-fold cross validation looped within the 320
instances. Except for the output layer, the subnetwork of the
selected model was used as both a feature extractor and an
input descriptor in the prediction model of the κL. Finally, the
random forest (the number of trees = 200) model was selected
and trained using the 45 instances (see Supplemental Material,
Table S2 [23]) of the κL and the 10-dimensional descriptors
acquired through the pretraining process.

III. RESULTS AND DISCUSSION

A. Performance of transfer learning

The prediction model connecting the input materials and
P3 was initially trained based on the 320 collected instances
of P3 and 290 descriptors. The subnetwork of the pretrained
model was transferred to train the model connecting the crys-
tal structures and κL by replacing the linear output layer with
the random forest model using the 45 κL data. The training
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and validation results of the pretrained and transferred models
are shown in Figs. 2(a) and 2(b).

Using the models for the κL and P3 in the high-throughput
screening with ∼60 000 crystals in MATERIALS PROJECT[6],
we identified the top-14 crystals with the smallest P3 (see
Supplemental Material, Table S3 [23]) from the top-100 pre-
diction list whose κL were validated using the first-principles
based anharmonic lattice dynamics calculations (Fig. 3 and
Table I). The calculation details can be seen in the Supplemen-
tal Material, Table S7 and Note D [23]. The transferred model
successfully predicts the 14 crystals even though their κL lie
in the ultrahigh region of 1000–3000 Wm−1 K−1 [Fig. 2(c)].
It should be noted that the κL of the 45 training crystals reside
in the region smaller than 370 Wm−1 K−1, which is much
lower than the prediction [Fig. 2(d)]. This indicates that the
transferred model exhibits “extrapolative predictive power.” In
general, ordinary machine learning is “interpolative,” and its

prediction ability is applicable only in a neighboring region of
the given training instances.

Indeed, a neural network directly trained using the 45
samples performs rather poorly for the 14 crystals as the
predicted κL never exceeded 600 Wm−1K−1 [Fig. 2(c) and
see Supplemental Material, Table S4 [23]]. The pretraining
process using the 320 instances on P3 would contribute to the
acquisition of the extrapolative ability. The pretrained neural
network on P3 is able to represent material structures that are
applicable to a broader input space than the one spanned by
much fewer instances of κL. This is because the 320 source P3

data contain instances that account for the structure-property
relationships relevant to the ultrahigh thermal conductivity.

B. Top high-thermal-conductivity crystals

We identified the top-14 materials by feature-based
transfer learning. They are comprised of boron arsenides

FIG. 2. Performance of transfer learning. Training and validation for (a) the pretrained P3 model (mean absolute error = 0.000 237 cm)
and (b) transferred κL model (mean absolute error = 30.8528 Wm−1 K−1). Hollow and solid dots denote the results of training and testing in
the cross validation for the best prediction model. (c) Comparison between ordinary machine learning and transfer learning. (d) κL distribution
of 45 training and 14 identified crystals.
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FIG. 3. Top-14 crystals with the lowest calculated P3. Crystal structures, phonon dispersions, and phonon relaxation times of the top-14
materials with the lowest calculated P3. Parentheses indicate the crystal structure.

(BAs), carbon (C), beryllium carbide (Be2C), boron nitride
(BN), heterodiamond (BC2N), carbon nitride (C3N4), and
ternary BeCN2. They all have thermal conductivities above
100 Wm−1 K−1. In fact, 10 exceed 500 Wm−1 K−1. The
top two crystals with the lowest calculated P3 are cubic
and wurtzite BAs, which have thermal conductivity over
1000 Wm−1 K−1.

Recently, many studies have investigated cubic BAs due to
their high predicted thermal conductivity (3170 Wm−1 K−1)

[27], which is comparable with diamond. However, these ini-
tial experiments measured the thermal conductivity of BAs
crystals around 186–350 Wm−1 K−1 [28,32,33]. This differ-
ence is attributed mainly to the difficulty in the fabrication
of single crystals of boron-related materials as well as the
complicated synthesis due to the high volatility and toxicity
of arsenide atoms. Although the four-phonon scattering pro-
cess is important for high-thermal-conductivity materials at
high temperatures [34], the theoretical thermal conductivity
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TABLE I. Top-14 materials with the lowest P3 values and their thermal conductivities calculated by the iterative Boltzmann transport
equation solution. xx, yy, and zz indicate the lattice directions.

Thermal conductivity (Wm−1 K−1)

P3 This work Calc. Ref. Expt. Ref.
Name Structure (10−4 cm) xx yy zz xx/yy (zz) xx/yy (zz)

Cubic BAs F -43m 0.6397 3411 3411 3411 3170 [27] 351 [28]
Wurtzite BAs P63mc 0.9064 2947 2947 1881 2380 (1210) [29]
Diamond Fd-3m 1.0005 3048 3048 3048 3450 [27] 3000 [1]
Lonsdaleite P63/mmc 1.0335 2533 2533 2122 1500 (1270) [30]
C (611426) P63/mmc 1.2437 2842 2842 2675
C (616440) P63/mmc 1.2569 2583 2583 4214
Be2C Fm-3m 1.2596 117 117 117
Cubic BN F -43m 1.3300 1876 1876 1876 1800 [29] 768 [31]
BC2N (30148) P2221 1.3670 895 910 804
Wurtzite BN P63mc 1.4394 1359 1359 1305 1230 (1040) [29]
Cubic C3N4 I-43d 1.4490 234 234 234
Pseudo C3N4 P-43m 1.4529 275 275 275
BC2N (629458) Pmm2 1.5127 1392 972 784
BeCN2 I-42d 1.5472 351 351 440

of BAs remains as high as 2000 Wm−1 K−1. In fact, recent
experiments realized cubic BAs with a thermal conductivity
as high as 1000 Wm−1K−1 [35–37].

Cubic BAs should be a reasonable demonstration of the
effectiveness of the current screening. In this paper, we focus
on the thermal conductivity at room temperature. Because
the three-phonon scattering rate is much higher than the
four-phonon scattering rate, employing three-phonon P3 is
reasonable to find high-thermal-conductivity materials.

Another interesting feature of the top list is that it contains
allotropes of known high-thermal-conductivity cubic mate-
rials (diamond, BN, and BAs). These include lonsdaleite,
hexagonal diamonds, wurtzite BN, and wurtzite BAs, which
have not been studied previously in terms of thermal conduc-
tivity. These materials are potential alternatives to their cubic
counterparts. Although both cubic BN and wurtzite BN can be
formed by compressing hexagonal BN, wurtzite BN is formed
at much lower temperatures (around 2000 K) than cubic ones
(3000–4000 K) [38]. Recently, a single-phase wurtzite BN
bulk crystal was synthesized directly from a hexagonal BN
bulk crystal under 10 GPa and 850 ◦C [39]. If the wurtzite
structure has similar merits in other species, then BAs may be
the first to benefit.

The list of top-100 materials with the smallest P3 also con-
tains some typical high-thermal-conductivity materials like
SiC (mp-ID: 8062), GaN (mp-ID: 830), and AlN (mp-ID:
1700) (see Supplemental Material, Table S3 [23]). Addition-
ally, the top-100 list includes different crystal structures of
GaN (mp-ID: 804) and AlN (mp-ID: 1330), which may dis-
play high thermal conductivities. Layered structure materials
such as hexagonal BN and graphite have high thermal conduc-
tivities in the in-plane direction, but their out-of-plane thermal
conductivity is very low due to the weak atomistic interaction.
Hexagonal BN (mp-ID: 984) is in the top-100 prediction
list as well as other BNs with layered structures. Examples
include mp-ID: 7991, 685145, 13150, 604884, 629015, and
569655. Moreover, the list has some graphite structures (mp-
ID: 568806, 632329, 990448, 568286 and 569304). In this

work, we evaluate the thermal conductivity with the scattering
phase space, which is a scalar parameter that tends to suggest
crystals with a high thermal conductivity in all three-lattice
directions. The experimental conditions are the main reason
why two-dimensional (2D) materials such as hexagonal BN
and graphite do not appear in our top-14 list.

C. Hardness versus thermal conductivity

An interesting feature of the screening results is that most
of the top-14 list are superhard materials, including diamond,
carbon nitride, born nitride, and heterodiamond. The Vickers
hardness of diamond is around 115 GPa [40], which is the
highest among reported superhard crystals, including cubic
BN (62 GPa) [41], cubic BC2N (76 GPa) [40], C3N4 (37–
90 GPa) [42], and BeCN2 (37 GPa) [43]. Be2C has a Knoop
hardness of 2410 kg mm−2, whereas diamond has a Knoop
hardness of 7000 kg mm−2 [44].

The shear modulus is roughly proportional to the hardness.
In the past two decades, it has been used as a guide for
theoretical predictions of hard materials. Figure 4(a) plots the
calculated shear modulus versus the average κL. Materials
with a superhard property do not necessarily result in a high
κL. The shear modulus of cubic and wurtzite BAs is only
around 123 GPa which is the lowest among the top-14 materi-
als, but their thermal conductivities exceed 2500 Wm−1 K−1.
Another example is superhard cubic silicon nitride (Si3N4).
Although its reported Vickers hardness is around 35 GPa
[45], the calculated thermal conductivity is only around 81
Wm−1 K−1 [46], which is much lower than that of BeCN2

with the same order of hardness.
Figures 4(b)–4(d) show the average group velocity, heat

capacity, and phonon relaxation time of the top-14 materials,
respectively. Cubic and wurtzite BAs have group velocities
lower than other hard materials, but they have the highest
relaxation times. Consequently, they have a high κL com-
parable with diamond. Although superhardness means large
elastic constants and group velocities of phonons in the
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FIG. 4. Hardness versus thermal conductivity and comparison of parameters related with thermal conductivity. (a) Thermal conductivity
versus shear modulus for the top-14 materials. (b)–(d) Average group velocity, heat capacity, and relaxation time of the top-14 materials.

linear dispersion regime, κL is also determined by other
factors such as the phonon relaxation time (i.e., P3 and
anharmonic scattering amplitude). In addition, the proper-
ties of phonons with nonlinear dispersions largely influence
the κL. This highlights the necessity and importance of
developing rapid screening models to explore high-κL crystals
from databases.

Superhard materials consisting of B, C, and N atoms like
BN, BC2N, and C3N4 are advantageous over diamond in
terms of stability and oxidation because the covalent bond
energies between B-N (−117.19 eV) and C-N (−141.74 eV)
are stronger than that of C-C (−103.64 eV) [47]. Mixing
diamond with BN as a starting material may create new BCN
alloy compounds under high pressure and temperature, which
are more stable thermally and chemically than diamond and
harder than BN.

Among ternary BCN compounds, heterodiamond in the
form of BC2N has gained some attention. Heterodiamond has
various structural forms ranging from layered graphitelike and
diamond structures. However, the top-14 list includes two cu-
bic BC2N (mp-ID: 30148 and 629458) structures with thermal
conductivities around 784–1392 Wm−1 K−1. Polycrystalline
cubic BC2N materials have been synthesized from hexagonal
BN at 20 GPa and 2200–2250 K [48] and from graphitelike
BC2N above 18 GPa and 2100–2200 K [40,41]. The measured
hardness of synthesized cubic BC2N is higher than that of a
cubic BN single crystal but lower than diamond [40,41]. The
current finding that cubic BC2N has a high potential to be

an ultrahigh thermal conductor is a motivation to improve the
synthesis techniques of heterodiamond.

C3N4 is another interesting superhard material with a re-
ported hardness around 37–90 GPa [42]. Here we found two
cubic structures of C3N4 in the top-14 list. One is pseudo
C3N4 (mp-ID: 571653) and the other is cubic C3N4 (mp-ID:
2852) (Fig. 3). The former has a defect zinc-blende structure
with a hole in the central region of the unit cell. The latter has
as many as 14 atoms in the primitive unit cell (see Supple-
mental Material, Fig. S3 [23]), which gives rise to complex
phonon modes with many branches. Despite their apparent
defective and complex structures, their thermal conductivities
exceed 200 Wm−1 K−1. Efforts have been made to synthesize
different phases of carbon nitrides [49]. Martin-Gil et al. [49]
synthesized a pseudo C3N4 by a chemical precursor route
under 800 ◦C and claims the process is scalable.

Lonsdaleite, which is also a wurtzite structure, has been
studied previously as its hardness is comparable or even
harder than diamond [50]. Its thermal conductivity (2122–
2533 Wm−1 K−1) is also comparable with diamond. Recently,
polycrystalline lonsdaleite has been successfully synthesized
in a diamond anvil cell at 100 GPa and 400 ◦C [51] us-
ing graphitic layers, which provide a low-energy barrier for
progressive transformation from graphite to lonsdaleite. The
synthesis temperatures are well below those previously re-
ported for lonsdaleite [50].

The other two hexagonal diamonds (mp-ID: 611426 and
616440) combine the structure features of diamond and
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FIG. 5. Descriptor-property heat map and maximal information coefficient (MIC) scores. Descriptor-property heat map of (a) the pretrained
model for P3 and (b) transferred model for κL . Top bar plots show the MIC scores for each descriptor. (c) Enlarged heat map for the descriptors
of polarizability and the van der Waals (VdW) radius. (d) Distribution of the MIC scores for the 290 descriptors with respect to P3 and κL .
Solid red dots denote 57 key descriptors with the MIC scores exhibiting significant differences between P3 and κL (see Supplemental Material,
Tables S5 and S6 [23]).

lonsdaleite (see Supplemental Material, Fig. S4 [23]). These
can be described as diamond-lonsdaleite superlattices. Their
thermal conductivities are comparable with diamond.

D. Knowledge gained from transfer learning

The comparison between the pretrained and transferred
models provides some important physical indications. Here,
the pretrained model only involves the harmonic phonon
properties, whereas the transferred model also requires an-
harmonic properties (i.e., the magnitude of the three-phonon
scattering obtained from cubic interatomic force constants).
The success of transfer learning means that the correlation
between P3 and κL can be learned from that between the basic
crystal structure information and P3, revealing an underlying

commonality of the descriptors corresponding to the harmonic
and anharmonic properties.

To understand the differences in how to recognize
structure-property relationships for the pretrained and trans-
ferred models, we created a descriptor-property heat map
(Fig. 5). For each model, the 290 descriptor vectors of the
∼60 000 candidates to be screened are displayed onto the
heat map. The candidate materials in the heat map are sorted
according to a descending order of the predicted values of P3

or κL. This visualization reveals the presence of key descrip-
tors relevant to the pattern recognition inherent in the trained
model. Irrelevant or relevant descriptors might exhibit random
or nonrandom patterns such as a linear trend along with the
ordered predicted properties from top to bottom.
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We investigated the underlying mechanisms responsible
for the successful transfer from P3 to κL. We aimed to interpret
key features that distinguish between the pretrained and post-
transferred models. To quantitatively assess the dependency
(relevance or association) between each descriptor and the
predicted P3 or κL, we introduced the maximal information
coefficient (MIC). MIC is a common measure of nonlinear
correlations in bivariate random variables [52].

The bar plots in Fig. 5 show the MIC scores of the 290 de-
scriptors with regard to P3 and κL. While most of the realized
MICs do not change significantly between P3 and κL, some
descriptors exhibit either a significant increase or decrease
in the MICs. By looking at the descriptors discriminating
the mechanisms regulating P3 and κL where the differences
of MICP and MICκ are ±0.09 (see Supplemental Material,
Tables S5 and S6 [23]), we can identify descriptors that are
relevant to the difference between P3 and κL.

The descriptors related with the average or maximum
dipole polarizability and van der Waals (vdW) radius over
all atoms in the crystal compounds are relevant to κL but
not to P3. The polarizability generally correlates with the
interactions between electrons and the nucleus. Atoms with a
larger number of electrons or atomic radius tend to have a high
polarizability. In crystal compounds with a large electronic
polarizability, the displacement or force perturbation can be
easily transferred and persists over a long range via the orbital
electron interaction with the nucleus. A typical example is
rocksalt IV-VI materials like PbTe crystal, where the reso-
nant bonding [53] and the corresponding large anharmonic
interatomic-force constants are manifested due to the long-
range polarization.

The maximum vdW radius that characterizes the non-
bonded interactions between atoms also affects the anhar-
monicity in crystals. The vdW radius is related with the
polarizability via the relation Vw = α/(4πε0), where α is the
polarizability, ε0 is the relative permittivity, and Vw is the vdW
volume, which is given by the vdW radius. Since the descrip-
tors correlated with κL but not with P3 should govern the linear
output layer between the subnetwork pretrained by P3 and
the final κL, it makes sense that polarizability and the vdW
radius related to anharmonicity are the descriptors. However,
it is meaningful to quantitatively identify that the average or
maximum dipole polarizability and the vdW radius are the
leading descriptors among those that can also be qualitatively
related to anharmonicity. This provides a search direction. In
addition to a small P3, the low average or maximum dipole po-
larizability and vdW radius are necessary to achieve a high κL.

IV. CONCLUSIONS

In summary, we screened over 60 000 crystal compounds
with phonon P3 as the feature quantity and identified a set
of semiconducting compounds with high thermal conduc-
tivities. Screening was performed based on our developed

feature-based transfer learning, which bridges the gaps be-
tween the “big data” required for credible machine learning
and the “small data” of thermal conductivity. Transfer learning
directly models the connection between the basic crystal in-
formation and the thermal conductivity with a neural network
by transferring descriptors acquired through pretraining for
P3. The successful prediction of high-thermal-conductivity
crystals demonstrates the advantage of extrapolative pre-
diction via transfer learning, and reveals the descriptors
that are dominantly correlated with the anharmonic phonon
properties.

The final, obtained materials in the top-14 list by feature-
based and transfer learning screening all show high thermal
conductivities, including boron arsenides (BAs), carbon (C),
boron nitride (BN), and heterodiamond (BC2N). They have
thermal conductivities on the order of 1000 Wm−1 K−1, val-
idating the accuracy and high efficiency of the developed
screening method. Although most of these are superhard ma-
terials with a large group velocity, the results are nontrivial.
It has been observed that for some superhard materials, a
large dispersion could lead to a large P3 and limit thermal
conductivity. Because screening via P3 prefers to search crys-
tals with a high thermal conductivity in three different lattice
directions, 2D materials such as hexagonal BN and graphite
do not appear in our top-14 list due to the weak atomistic
interaction in the out-of-plane direction.

The screening also identified known materials that have
yet to be studied in the context of heat transport. These
include two types of novel carbon crystals with mixed
phases of diamond and lonsdaleite and two phases of BC2N.
These materials may be advantageous over well-explored
high-thermal-conductivity materials in terms of thermody-
namic stability and facileness of synthesis. These findings
should contribute to next-generation thermal management
technology by broadening the alternatives of high-thermal-
conductivity materials and adding degrees of freedom to their
surface affinities with various other materials for composite
syntheses and integration.
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