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Precipitate growth kinetics under inhomogeneous concentration fields using a phase-field model
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We investigate precipitation dynamics in the presence of a local solute gradient using phase-field simulations.
During the homogenization heat treatment of the solidified Inconel 718 alloy, high Nb concentration within
the Laves phases or at the core of the secondary arms results in Nb diffusion into the γ matrix. The volume
fraction and spatial distribution of precipitation during subsequent annealing can be controlled by tailoring the
Nb concentration gradient in the matrix during homogenization. We use a surrogate Ni-Fe-Nb alloy for Inconel
718 to explore the growth dynamics of δ precipitates related to the local Nb concentration levels. The simulations
indicate that in the presence of a Nb concentration gradient the growth rate of δ precipitates is higher than in a
matrix of uniform average Nb concentration. The higher growth rate is a result of the higher local thermodynamic
driving force at the interface between the solute-rich matrix and the δ interface. We propose a phenomenological
model to describe the diffusion-controlled growth kinetics of the δ phase under a solute concentration gradient.

DOI: 10.1103/PhysRevMaterials.5.053401

I. INTRODUCTION

Additive manufacturing (AM) allows near-net fabrication
of components with complex geometries using custom de-
signs that are beyond the capabilities of conventional metal
casting approaches [1,2]. AM is finding increasing application
in many structural alloys, including nickel-base superal-
loys [3–7]. For nickel-base superalloys such as Inconel 718
(IN718), a postprocess heat treatment is applied to recover
the target mechanical properties, which are improved by the
precipitation of coherent phases such as γ ′′ [7–12].

In recent experimental studies [7,8], two steps of heat treat-
ments are suggested for AM IN718. Solidified microstructures
in IN718 contain undesirable Laves phases, which trap large
quantities of Nb, which is required for the precipitation of the
beneficial γ ′′ phase [4–8,13], and have detrimental effects on
the mechanical properties [4,6,7]. Therefore homogenization
to dissolve the Laves phase is an important first step in the
postprocess annealing of AM IN718. When the dissolution of
the Laves phase is complete, there are various levels of Nb
concentration gradients in the matrix depending on the extent
of homogenization [14]. During a subsequent aging treatment,
the hardening phases precipitate within the γ matrix [7,8].
Precipitation in a concentration gradient is of interest because
of the potential for creating gradient microstructures that are
known to possess attractive mechanical properties compared
to the homogeneous counterparts [15].

We use the phase-field (PF) method [16–18] to simulate
the microstructure evolution during postprocess annealing in
AM IN718. The PF method has emerged as a powerful tech-
nique to simulate microstructure evolution associated with
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solidification and solid-state phase transformations in multi-
component and multiphase alloys [16–24]. Solid-solid phase
transformations are characterized by the presence of elastic
strain fields associated with precipitate phases that show var-
ious levels of coherency with the matrix. The PF method is
well suited to incorporate the effect of elastic strain fields,
as well as the anisotropy in the matrix-precipitate interfacial
energy, that influence the precipitate morphologies [22–27].
We perform simulations using the PF code MEUMAPPS (mi-
crostructural evolution using massively parallel phase-field
simulations) that has been developed recently at the Oak
Ridge National Laboratory (ORNL) [27] as a part of the Exas-
cale Computing Program sponsored by the U.S. Department
of Energy. We use this code to investigate the growth dynam-
ics of precipitates in a surrogate Ni-Fe-Nb alloy for IN718.

This research presents important observations related to
the precipitation kinetics under Nb gradients in IN718 using
phase-field simulations, and the results indicate that the solute
levels within the γ matrix are linked to the growth dynamics
of the δ precipitates.

II. METHOD

In the MEUMAPPS-SS model, the total free energy F is
described by the sum of the various components of the energy
densities within a unit volume V , i.e.,

F =
∫

( fb + fel + fch)dV . (1)

The boundary energy fb is the sum of the energy contributions
at the diffuse inter-phase interface due to energy penalties
caused by gradients in order parameters φv , corresponding to a
δ variant v existing at the interface, and the boundary energies
between phases [27]. With twelve variants of the δ phase [28],
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the boundary energy is described as

fb = 1

2

12∑
v=1

[∇φv]T κv[∇φv] +
12∑

v=1

12∑
q>v

ωvq|φv φq|

+ω̄

12∑
q=1

φq

(
1 −

12∑
v=1

φv

)
, (2)

where κv is an anisotropic gradient coefficient of the δ vari-
ant, ωvq is the height of an energy well that depends on the
boundary width (5�x), and ω̄ is the average height. The first
term on the right-hand side of the above equation describes
the gradient energy. The second and third terms are for the en-
ergies at the δ − δ and the δ − γ boundaries, respectively. We
use the interfacial energy 0.8x̂ + 0.03ŷ + 0.8ẑ [J μm2/mol]
for all variants to calculate the κ and ω terms following the
method in Refs. [27,29].

For the elastic energy fel , we use the Steinbach-Apel ap-
proach [22,24,27] that interpolates fel as the sum of individual
strain energies of phases through an interpolation function of
the order parameter φ, which is given by

fel =
12∑

v=1

h(φv ) f δ,v
el +

[
1 −

12∑
v=1

h(φv )

]
f γ

el , (3)

where h(φ) = φ3(6φ2 − 15φ + 10) is an interpolation func-
tion of the order parameter. The strain energy for a phase
p is f p

el = 1
2ε

el,p
i j : Cp

i jkl : ε
el,p
kl , with the elastic strain εel

i j =
εtot

i j − ε∗
i j calculated using the total strain εtot

i j and the trans-
formation strain ε∗

i j . We used Khachaturyan’s approach [25]
that describes the total strain as the sum of the mean strain
ε̄i j and the heterogeneous strain δεi j , defined using the local
displacement gradients, which is given by εtot

i j = ε̄i j + δεi j .
An iterative approach proposed by Hu and Chen [23,24] is
used to compute the displacement field at every time step,
which, in turn, is used to estimate the elastic energy field.
Then the overall elastic strain between γ and δ is inter-
polated as εel

i j = ∑
v h(φv )εel,δ,v

i j − [1 − ∑
v h(φv )]εel,γ

i j . The
components of the elastic modulus tensor C are zero, ex-
cept (C11,C22,C44) = (203, 150, 135) for the γ matrix and
(C11,C12,C13,C33,C44,C66) = (260, 96, 97, 280, 109, 143)
for the δ variant in units of GPa.

The chemical energy f p
ch of a phase p is described using

quadratic functions of the element concentrations [26]. For the
Ni-Fe-Nb system, the total chemical energy fch is interpolated
using an expression similar to Eq. (3) [27], and the chemical
energy of each phase p is given by

f p
ch = Ap

1

(
X Fe − Ap

4

)2 + Ap
2

(
X Nb − Ap

5

)2 + Ap
3 , (4)

where X Fe and X Nb are the Fe and Nb concentrations in
mole fractions, and Ap

i values are fitting parameters. The Ap
i

parameters are obtained by fitting the Gibbs free energy from
the THERMO-CALC software TCNI8 Ni-based superalloys [30].
For the δ precipitate growth, we consider the fixed tempera-
ture T = 850◦C. At this temperature we obtained the Gibbs
free-energy data of the γ matrix with a resolution of 0.001
mole fraction within the ranges of 0.45 � X Fe � 0.75 and
0.0 � X Nb � 0.15 using THERMO-CALC. Similarly, we calcu-
lated energy values for the δ phase within 0.0 � X Fe � 0.2

and 0.1 � X Nb � 0.3. We used the same resolution of 0.001
for the free energy of the δ phase.

Then we fit the energy values as a function of X Fe and
X Nb to Eq. (4) using PYTHON with the least-squares fitting
method. The obtained Ap

i parameter sets are (Ap
1, Ap

2, Ap
3,

Ap
4, Ap

5) = (21 654.6796, 188 869.6365,–67 323.8182, 0.19,
0.14) for the γ matrix and (86 533.8069, 365 879.3077,–
77 299.9162, 0.09, 0.29) for the δ phase. The maximum errors
of the fitting equations with respect to the THERMO-CALC

data are 3.6% and 2.1% for the γ and δ phases, respectively,
which show quantitative agreement with the energy data at
T = 850 ◦C. It is worth noting that because the Gibbs free
energy is related to the temperature, the parameters should
be estimated separately for different temperatures of interest.
For example, the parameter set for γ becomes (28 300.9118,
185 748.1403,–86 558.1615, 0.3, 0.14) at T = 1100 ◦C. The
quadratic expression for the Gibbs free energy shown in
Eq. (4) results in linear equations for the chemical potentials
of Fe and Nb that make it convenient for the calculation of the
interface concentrations required in the PF model using the
Kim-Kim-Suzuki approach [20].

We solve the Ginzburg-Landau equation for the time evo-
lution of the phase field of a variant φv [27],

∂φv (ρ, t )

∂t
= −L

[
1

N

∑
v �=q

(
δF

δφv (ρ, t )
− δF

δφq(ρ, t )

)]
, (5)

and the Cahn-Hilliard equation for the alloy components [27],

∂X c

∂t
= �∇

(
Mc �∇ ∂ fch

∂c

)
, (6)

where L is the interface mobility, N is the number of phases
coexisting at a position ρ = (x, y, z), and Mc is the mobility
of an element c. We use the Kim-Kim-Suzuki approach [20]
to compute the solute concentrations at the various interphase
interfaces based on the assumption of equal chemical potential
of a solute within the phases at the interface. The governing
equations are solved using a Fourier spectral method [31].
The P3DFFT library for the fast Fourier transform (FFT) was
used to perform the calculations in a parallel computing envi-
ronment [32]. We considered 12 variants of the δ phase that
precipitate during heat treatments [7,8,14,26].

We used �x = 1 × 10−9 m (1 nm) for the grid spacing,
W = 5�x for the interface width, and �t = 0.01 s for the
time step. In order to estimate the interface mobility L, we
performed a separate simulation using δ precipitates growing
under a higher X Nb = 0.15. The mobility is calculated using
the procedure outlined in Ref. [33]. The mobility is sensitive
to the mesh resolution. For the resolution of 1 nm used in this
study, an average value computed using the above approach
for different concentrations was L = 1.475 × 10−10 m3/J s,
which we used in our simulations. In experimental measure-
ments [26,34–36], the diffusion coefficient varies between
∼10−16 and ∼10−18. We used the smaller value of D =
10−18 m2/s for both Fe and Nb elements.

Two simulation domains were considered: Nx = Ny =
Nz = 210�x for the large simulations involving multiple pre-
cipitates in Figs. 1 and 2, and Nx = Ny = Nz = 168�x for
simulations involving a single precipitate. Here Nx, Ny, and
Nz are the number of grid points along the x, y, and z axes,
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FIG. 1. Initial Nb profiles along the z axis. Three different pro-
files (red, green, and blue lines for cases 1, 2, and 3, respectively)
are used as the initial conditions for PF simulations in Fig. 2. The
simulation domain size along the z axis is 210 nm (Nz = 210 and �x
= 1 nm).

respectively. We used periodic boundary conditions along
all the axes. Other material and elasticity parameters can be
found elsewhere [26–29].

Our simulations were performed using 1764 IBM Power9
CPUs on Summit at Oak Ridge National Laboratory. The
simulation with a large system size took about 3 h for 20 000
iterations. For a smaller system, it took about 4.5 h for 60 000
iterations. If a smaller �x is used, it takes a longer time to
perform a simulation relevant to our simulation size because
it requires more grid points.

III. RESULTS AND DISCUSSION

A. Growth of multiple precipitates

During the homogenization heat treatment, segregated el-
ements such as Nb slowly diffuse within the γ matrix. In
addition, the dissolution of the Laves phase formed by the
end of the solidification process leads to various levels of
Nb [14]. Accordingly, if the homogenization step is not
long enough, the segregated elements are not uniformly dis-
tributed within the matrix. The resulting nonuniform solute
fields can affect the precipitate growth during the annealing
step.

We use the THERMO-CALC software TCNI8 Ni-based su-
peralloys [30] in conjunction with the PF method to model
an inhomogeneous solute gradient within a secondary arm
spacing. Based on the THERMO-CALC software, the ternary
system of X Fe = 0.483 and X Nb = 0.056 shows reasonable
agreement with both the solidification range and the volume
fraction of the δ phase at T = 850 ◦C in IN718. We perform
the Scheil solidification simulation of this system, and the
result shows that the X Nb (X Fe) changes from 0.024 (0.523)
to 0.123 (0.258) as the volume fraction of γ increases.

We use these values to estimate an inhomogeneous solute
field for the initial solute profile. We assume that the high
X Nb is located at the center of the secondary arm spacing of
210 nm [37], and it linearly decreases along z according to
X Nb(x, y, z) = 0.123–0.001 46|z − Nz/2| until X Nb = 0.024.
We determine the slope to be −0.001 46 to keep the average
X Nb as 0.056 within the simulation domain. In addition, X Fe

FIG. 2. Microstructures from phase-field simulations and con-
centration maps at a mid-2D section. Simulation results in (a), (b),
and (c) used initial Nb profiles of cases 1, 2, and 3 in Fig. 1, respec-
tively. Left microstructures show δ precipitates (silver) after 200 s
at T = 850 ◦C. Right color maps are the Nb fields at the midsection
of the left microstructures. (d) δ fractions along the z axis for cases
1–3. In all simulations, δ seeds are distributed initially with fractions
according to the black dashed line shown in (d).

varies from 0.258 to 0.523 according to

X Fe(x, y, z) = 0.258 + 2.677(0.123 − X Nb), (7)
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which is linearly related to X Nb. We let the solute fields evolve
at T = 1100 ◦C within the γ matrix for 200 s, 600 s, and
1000 s, which correspond to the red, green, and blue lines
in Fig. 1, respectively. These lines indicate the Nb profiles
along the z axis. Then we use these solute profiles as the initial
solute field and perform a simulation by randomly adding
1000 supercritical nuclei of the δ phase. We assigned nuclei
to be one of the 12 δ variants chosen randomly and let them
grow at T = 850 ◦C.

When using a smaller radius of 1�x, most nuclei dissolved
quickly even in the Nb-enriched central regions. We per-
formed initial trials to determine the approximate nucleus size
that would become critical for most of the central regions with
Nb enrichment. A radius of 2�x was found to be adequate
based on these initial trials.

Figures 2(a)–2(c) show the δ phase precipitates (silver)
within the γ matrix after 200 s, obtained using the three initial
Nb profiles in Fig. 1. It can be seen from the microstructures
shown on the left-hand side that the surviving δ precipitates
are located near the central region. The δ nuclei located away
from the center dissolve quickly because their growth is not
energetically favorable due to an initially low Nb concentra-
tion.

The color maps on the right in Figs. 2(a)–2(c) show the
Nb concentration fields at the midsection of the microstruc-
tures on the left. The higher Nb (red) regions indicate the δ

precipitates. The δ precipitates for case 1 in Fig. 2(a) survive
in greater numbers and grow to a larger size than those for
the other cases in Figs. 2(b) and 2(c). In order to clarify the
δ survival and growth due to different initial Nb profiles, we
measure the δ fractions in Figs. 2(a)–2(c) along the z axis,
namely,

�(k) =
∑Nx

i=1

∑Ny

j=1

∑12
v=1 φv (i, j, k)

Nx × Ny
, (8)

where i, j, and k are the coordinates of a grid point along the
x, y, and z axes, respectively. In all three cases, the initial δ

fraction is the same as the black dashed line in Fig. 2(d). Due
to the initial Nb distribution, the fraction �(k) decreases from
case 1 (red solid line) to case 2 (green solid line) and case 3
(blue solid line) in Fig. 2(d).

The greater fraction of surviving precipitates in case 1
is linked to the initially higher Nb concentration near the
midsection. The higher Nb concentration leads to higher nu-
cleation density because of the reduced activation energy [38].
In addition, the higher Nb concentration leads to a greater
driving force for precipitate growth.

It is worth noting that the survival of the δ is related to the
critical nucleus size for a given Nb concentration. The width
of the δ precipitation region in the center will depend on the
size of the nucleus used in simulations. If we had introduced
nuclei of a larger size, the δ precipitation zone would have
been wider because more nuclei would have survived at lower
Nb concentrations. While we introduced nuclei with a fixed
size in our simulations, nucleation could also be modeled
through random perturbation of the order parameters of dif-
ferent variants using a Langevin noise. The width of the δ

precipitation region in this case would be influenced by the

choice of the parameters used in the Langevin noise model.
This will be investigated further in future studies.

These results suggest that the δ precipitate growth is re-
lated to the local Nb concentration. In addition, a local solute
gradient could also influence the growth kinetics of a precip-
itate. In order to quantify the effect of the local solute level
on the precipitation kinetics, we perform simulations using a
single precipitate that grows under different solute gradients.

B. Growth of a single precipitate

For the simulation of a single δ precipitate growth, one
supercritical seed with a radius of 2�x is initially located
at the center of the simulation domain. We first consider a
uniform distribution of X Nb = 0.1 within the matrix. Based
on Eq. (7), X Fe = 0.32 is imposed. In order to minimize the
incubation time associated with nucleation, we use a high X Nb

= 0.24 and a low X Fe = 0.047 within the δ seed, based on the
known levels of Nb and Fe inside the δ phase from the TCNI8
database [30].

The δ precipitate exhibits a platelike morphology, and
hence we can describe its morphology based on its radius r
within the (111) plane and thickness h orthogonal to the plane.
Under steady-state conditions, the interfaces normal to r and
h should satisfy diffusion-controlled growth dynamics based
on the power law g0t1/2 [39], where g0 is the growth constant.
Including the elastic strain affects only the growth constant,
and the power-law exponent remains 1/2 [40,41].

Figure 3(a) shows the δ (silver) at t = 300 s. In (a), the
δ shape as shown along the blue (111) plane is not a perfect
ellipse, because the shape is influenced by elastic energy and
anisotropy in the interfacial energy. We interpolate interface
positions (φ = 0.5) on the plane using the PARAVIEW program
[42]. At t = 0 s, the program interpolated 21 positions. As the
δ grows, it calculates more interface positions. For example,
we obtained 907 positions for the δ in Fig. 3(a). We averaged
the positions to compute the radius values for Fig. 3(b).

In Fig. 3(b) we plot r2 − r0(t0)2 as a function of time
t − t0 with a reference time t0. We averaged the interface
positions measured in the (111) habit plane to calculate the
radius r = r(t ) at a time t . From the time when it reaches the
steady state, the precipitate growth would show the power-law
growth and thus r2 − r0(t0)2 ∼ t − t0 [40,41]. It is difficult
to predict when the precipitate reaches the steady state, and
hence we use three reference times, t0 = 0 s, 150 s, and
300 s, and, at those times, the radii are r0(t0) = 1.7, 29.2, and
52.4 nm, respectively. In the plot, solid lines are for simulation
results and dashed lines are the fitted linear guide lines. The
insert in (c) is a log-log plot showing a linear fit.

The initial evolution of the δ phase occurs under the ar-
tificial nucleation conditions, and it takes some time for the
conditions to reach a thermodynamically consistent state of
growth. During this stage, the δ growth rate (black line) is
faster than the linear slope expected from a purely diffusion-
controlled growth. As time proceeds (blue and red lines), it
approaches the diffusion-controlled growth limit. While we
measure the radius only up to ∼500 s, since the δ grows out
of the simulation box at longer simulation times, we expect
the power-law exponent to be satisfied (p = 1) under such
conditions.
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FIG. 3. Radius and thickness of a δ precipitate as a function of
time under initially uniform solute fields. The left image in (a) shows
a radius r of the δ (silver) within the blue (111) plane. On the right,
the φ profile along the white arrow across the center of the δ on the
green (101̄) plane is used to measure the thickness. (b) Shows r2 −
r0(t0)2 of a δ precipitate, where r is the average radius and r0 is the
radius at a reference time t0. We use three different r0(t0 ) [nm] = 1.7
for t0 = 0 s (black line), 29.2 for t0 = 150 s (blue line), and 52.4 for t0

= 300 s (red line). (c) The square of the half thickness as a function
of time. In both plots, solid and dashed lines are for the simulation
results and linear fits, respectively. The insets show the log-log plots.

We used PARAVIEW to estimate the thickness of the δ. We
obtained the φ profile along the white arrow on the (101̄)
plane, which is the green plane in the right image of Fig. 3(a).
This arrow passes through the center of the δ. We measured
two interface positions from the profile, and the distance

FIG. 4. Growth of a δ precipitate under different Nb gradients.
(a) Initial Nb profiles along the z axis at the center using different
gradient slopes. The δ nucleus is located at the center with a high
X Nb = 0.24. Black solid line is for the uniform X Nb = 0.1 field within
the matrix. Red, green, and blue dashed lines are for the gradients of
±0.002, ±0.004, and ±0.006, respectively. (b) The volume fractions
at different times. The inset is for the log-log plot.

between them was the thickness. Similarly, we obtained ad-
ditional φ profiles along four other lines that are orthogonal to
the (111) plane. Those lines are ±10�x apart from the white
arrow along the x and y axes.

We averaged the measured thickness values of the δ in
Fig. 3(c). The dashed line is the linear fit using the simu-
lation data (black solid line) from t = 50 s. The thickness
h in the simulation shows steady-state growth according to
(0.5h)2 ∼ t (dashed line) from the beginning. We assume
that due to the slow thickness growth, the solute profiles
quickly approach the steady state. Accordingly, we expect the
diffusion-controlled growth to be reached fairly early in the
process.

We consider the precipitate growth under three different
initial Nb gradients as shown in Fig. 4(a). We also introduce
a high X Nb = 0.24 and a low X Fe = 0.047 within the δ to
minimize the influence of the nucleation kinetics. Inside the
matrix, X Nb = 0.15 at the center region where a precipitate is
located. Otherwise, as illustrated in Fig. 4(a), X Nb decreases
away from the interface along the z axis with shallow (red
dashed line), moderate (green dashed line), and deep (blue
dashed line) gradients until X Nb reaches the minimum value.
The minimum X Nb is estimated by using the bilinear inter-
polation to keep the average X Nb = 0.1. X Fe is determined
using Eq. (7), and its average value remains X Fe = 0.32. The
gradient profiles represent solidification microstructures with
microsegregation of Nb corresponding to different cooling
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FIG. 5. δ precipitates for the volume fraction of Vf = 0.015. The
volume fraction is reached around t = 295.21 s for the uniform (a),
154.02 s for the shallow (b), 190.97 s for the moderate (c), and
209.51 s for the deep gradient cases (d). Blue plane indicates the
(111) plane.

rates of IN718 that lead to different Nb gradients in the matrix
coexisting with the Laves phase.

Figure 4(b) exhibits the volume fractions (Vf ) as a function
of time. Simulation results show that the δ phase under a Nb
gradient (dashed lines) grows faster than under the uniform
X Nb = 0.1 (solid line).

We have examined the δ morphologies due to the different
solute gradients, as shown in Fig. 5 when the volume fraction
of the δ phase is Vf = 0.015. The black box indicates the
simulation domain, and the gray shapes are the δ. Under the
initially uniform condition, the δ precipitate attains the vol-
ume fraction Vf = 0.015 at t = 295.21 s (a). The precipitate
can reach the same volume fraction earlier when a gradient is
imposed, i.e., t = 154.02 s for the shallow (b), 190.97 s for
the moderate (c), and 209.51 s for the deep gradients (d).

Due to anisotropy in the interfacial and the elastic energies,
the δ precipitate has a noncircular shape along the (111) plane
(blue plane) under the uniform condition as shown in Fig. 4(a).
However, we observe that the shape of the δ plates is different
in the presence of gradients in the Nb concentration. We
measure the angle of the maximum radius of the δ plate with
respect to the z axis, and it is 85.6◦ for the uniform case.
The angle is slightly increased to 89.2◦ when the gradient
has been imposed, as shown in Figs. 4(b)–4(d). For all cases
where a Nb gradient is initially imposed in the z direction,
the Nb-enriched region is located at the center of the domain,
which is asymmetric with respect to the (111) plane. Hence
the δ becomes elongated along the Nb-enriched region due
to the higher thermodynamic driving force. Accordingly, the
ratios between the maximum and minimum radii of the δ

plates for the gradient cases in Figs. 5(b)–5(d) are 1.76, 1.90,
and 1.84, respectively. These values are considerably higher

FIG. 6. Volume fraction as a function of time from the simula-
tions (solid lines) and prediction (dashed lines). Dashed lines are
the predicted growth rates using Eq. (10). For the uniform case,
the equation becomes Eq. (9) due to FR(t ) = 1. The inset is for the
log-log scale.

than the corresponding ratio of 1.26 for the uniform condition
case in Fig. 5(a).

Since the interface of the precipitate follows a parabolic
growth of t1/2 at steady state [38,40,41], the volume of the
precipitate should increase based on the power-law growth
exponent of 3/2 [39,43]. In our simulations, the δ precipitate
grows as a noncircular plate. The volume during growth is
mainly related to the mean radius of the plate and its thickness.
We have shown earlier that the thickness follows a diffusion-
controlled growth with a growth exponent of roughly 0.5,
while the growth exponent of the radius is higher at the initial
transient stage during which thermodynamic consistency is
being approached [Fig. 3(a)]. Hence, the power-law exponent
sg for the volume fraction given by

Vf = V0t sg (9)

is not 1.5 when evaluated from t = 0. When we fit the sim-
ulation results for the uniform condition (black solid line in
Fig. 6) to Eq. (9), the power-law exponent becomes sg = 2.15
with V0 = 7.24 × 10−8 (black dashed line).

The higher growth rate in the presence of a Nb gradient,
with a higher Nb at the precipitate-matrix interface shown in
Fig. 4(a), is probably due to the higher thermodynamic driving
force associated with the higher Nb concentration. Accord-
ingly, we can modify Eq. (9) by introducing an additional
contribution of FR(t ) as

Vf = FR(t ) V0 t sg (10)

to incorporate the effect of local solute concentration and
the associated thermodynamic driving force on the volume
fraction.

The term FR(t ) would be related to the free energy and the
diffusion dynamics. The chemical free energy is much higher
than the elastic strain energy and thus provides the main con-
tribution to the modification. The effect of Nb concentration
on the driving force for growth is obtained through Eq. (4).
In addition, the precipitate growth would approach the growth
kinetics under a uniform field as the solute field homogenizes.
Therefore the value approaches FR(t ) → 1 after a long time.
Based on our simulation results, we suggest an expression for
FR(t ) to describe the δ growth under a solute gradient, which
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is

FR(t ) = (X 2
r − b0[1 − exp(−t/τ )])s f , (11)

where the ratio Xr = X Nb
max/X̄ Nb is between the effective max-

imum and the average Nb concentrations, which are related
to the free-energy contribution. For the simulation with the
shallow gradient, those are X Nb

max = 0.15 and X̄ Nb = 0.1. The
constant b0 is determined by b0 = X 2

r − 1, and hence the
function FR(t ) approaches towards 1 as time elapses. For the
uniform case, the constants in the above equation become
Xr = 1 and b0 = 0, which leads to FR(t ) = 1. Then Eq. (10)
is the same as the power-law growth in Eq. (9). We assume
that the precipitate growth follows the same power law of
s f = sg = 2.15 for the uniform case. The characteristic time
τ is linked to the diffusion dynamics. We use the best-fit
approximation to obtain τ within the simulation results be-
fore 400 s for the shallow gradient simulation (red solid
line in Fig. 6). The modified Vf in Eq. (10) with the fitted
τ = 501 s (red dashed line) agrees well with the simulation
result.

For the predictions of the moderate (green dashed line)
and deep (blue dashed line) gradients, we use Xr = 1.34 and
1.28, respectively. The concentration at the interface changes
quickly with a high gradient, so the effective maximum Nb
concentration needs to be lower than that for the shallow gra-
dient, which leads to a smaller Xr ratio. The other parameters
s f and τ are related to the diffusion, and they are consistent
in our system. As shown in Fig. 6, the predictions for the
other gradients also show quantitative agreement with the
simulation results.

At a longer time, the δ growth slows down in the simu-
lation. This is because, as the precipitate grows outside the
simulation domain, one side of the δ approaches the other
side due to the periodic boundary. We expect that the sim-
ulation result would follow the predicted dashed line better
if the simulation domain size were larger. It is worth noting
that the power-law exponents sg and s f would be 1.5 under
steady-state conditions because diffusion controls the inter-
face growth.

IV. CONCLUSIONS

We performed PF simulations of solid-state phase trans-
formations to investigate precipitate growth kinetics within
the γ matrix using a surrogate Ni-Fe-Nb alloy for IN718.
Our simulations indicate that both the nucleation and growth
rates of the δ phase are accelerated due to the solute enrich-
ment associated with interdendritic segregation of Nb in a
Ni-Fe-Nb alloy used as a surrogate for IN718. We additionally
investigated the growth dynamics of a single precipitate under
various solute gradients indicative of different cooling condi-
tions characteristic of those expected under AM conditions.
Within initially uniform solute fields, the interface growth
of a precipitate shows the power-law growth exponent close
to 1/2 at steady state, as predicted for diffusion-controlled
growth [40,41]. Due to the slow growth of the thickness
of the δ phase, it reaches the exponent of 1/2 quickly. On

the other hand, it takes a longer time for the δ radius to
approach the steady-state growth rate. At an intermediate
state before reaching the steady state, the δ radius grows
faster for nonstabilized elastic and solute fields. Accordingly,
the volume fraction shows a different growth exponent of
sg = 2.15 in Eq. (9), instead of the predicted value of 3/2
[39,43]. With X Nb = 0.15 for the initial δ-matrix interface
Nb concentration, a shallow gradient results in the precipi-
tate interface facing a higher Nb for a longer time, which
results in a faster interface growth due to the higher thermo-
dynamic driving force. In addition, the asymmetric interface
growth linked to the local Nb level leads to a precipitate
morphology different from that under the homogenized con-
centration field. In order to describe the volume fraction of
a precipitate under a solute gradient, we introduce a phe-
nomenological function that is linked to the free energy and
the diffusion dynamics. The modified prediction including the
phenomenological approach agrees well with the simulation
result (Fig. 6).

Advanced manufacturing processes such as additive man-
ufacturing are currently being used to manufacture structural
components. The solidification microstructure under such
processing conditions is characterized by solute enrichment,
such as Nb enrichment in the Ni-base superalloy 718. Nb
enrichment plays a critical role in the type, morphology, and
spatial distribution of precipitates that form during postpro-
cess heat treatment of these components [5,14,44,45]. The
simulations presented here highlight the relationship between
precipitate growth kinetics and the local solute conditions
characteristic of those expected under AM solidification con-
ditions. The results are relevant to the design of customized
heat treatment for AM components in alloy 718, especially the
development of gradient microstructures that show consider-
able improvement in the mechanical properties compared to
materials with uniform microstructures.
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