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Metal-insulator transition in n-type bulk crystals and films of strongly compensated SrTiO3
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We start by analyzing experimental data of Spinelli et al. [Phys. Rev. B 81, 155110 (2010)] for the conductivity
of n-type bulk crystals of SrTiO3 (STO) with broad electron concentration n range of 4 × 1015–4 × 1020 cm−3,
at low temperatures. We obtain a good fit of the conductivity data, σ (n), by the Drude formula for n �
nc � 3 × 1016 cm−3 assuming that used for doping insulating STO bulk crystals are strongly compensated
and the total concentration of background charged impurities is N = 1019 cm−3. At n < nc, the conductivity
collapses with decreasing n and the Drude theory fit fails. We argue that this is the metal-insulator transition
(MIT) in spite of the very large Bohr radius of hydrogenlike donor state aB � 700 nm with which the Mott
criterion of MIT for a weakly compensated semiconductor, na3

B � 0.02, predicts 105 times smaller nc. We try
to explain this discrepancy in the framework of the theory of the percolation MIT in a strongly compensated
semiconductor with the same N = 1019 cm−3. In the second part of this paper, we develop the percolation
MIT theory for films of strongly compensated semiconductors. We apply this theory to doped STO films with
thickness d � 130 nm and calculate the critical MIT concentration nc(d ). We find that, for doped STO films
on insulating STO bulk crystals, nc(d ) grows with decreasing d . Remarkably, STO films in a low dielectric
constant environment have the same nc(d ). This happens due to the Rytova-Keldysh modification of a charge
impurity potential which allows a larger number of the film charged impurities to contribute to the random
potential.

DOI: 10.1103/PhysRevMaterials.5.044606

I. INTRODUCTION

SrTiO3 (STO) is a classic example of perovskite oxides.
Historically, the primary interest in this material was on its un-
usual dielectric properties. The dielectric constant κ increases
from around 300 at T = 300 K to 20 000 at low tempera-
tures. Due to its widespread use as a single-crystal substrate
for epitaxial growth of oxides, its commercial availability,
controllable surface termination, and close lattice match to nu-
merous complex oxide materials, STO has been employed as
an active component in oxide heterostructures and thin films.
Examples include, its use as a dielectric layer in field-effect
devices for tuning the carrier density of materials such as
cuprates, and in such systems as SrTiO3/LaAlO3 forming a
two-dimensional electron gas interface.

In this paper, we are concerned with fascinating and po-
tentially useful, electronic transport properties of STO, which
is a semiconductor with a 3.2 eV gap. n-type conduction
of STO has been most commonly achieved by substitution
of La3+ for Sr2+, Nb5+ for Ti4+, or by oxygen reduction
to SrTiO3−δ . Similarly, p-type doping has been achieved by
substituting trivalent metal ions, such as In3+, Al3+, Fe3+,
and Sc3+ for Ti4+. Transport data for electron doped STO
bulk crystals are summarized in Ref. [1]. Within the hy-
drogenic theory of shallow donors, the donor Bohr radius,
aB = h̄2κ/m�e2 = 0.053κme/m� nm, where m� � 1.4me [2,3]
is the effective electron mass and me is free electron mass.

*Corresponding author: huan1756@umn.edu

At T = 4 K, aB � 700 nm is so large that the Mott crite-
rion for the metal-insulator transition (MIT) in doped weakly
compensated semiconductors [4], nca3

B � 0.02, leads to a very
small nc � 5 × 1010 cm−3. Thus at all experimental concen-
trations of donors and electrons n > 1015 cm−3, STO should
be strongly degenerate and should have metallic conductivity.

Reference [1] presents temperature dependencies of re-
sistivity for a large set of n-type STO samples with
electron concentrations n ranging from 3.8 × 1015 to 3.79 ×
1020 cm−3. In Fig. 1, we plot by red dots the conductivity
at 4 K obtained in Ref. [1] as a function of n. (All the lines
in Fig. 1 are theoretical results and will be explained later.)
We see that the character of n dependence of σ dramatically
changes around nc � 3 × 1016 cm−3. This apparent MIT at
nc � 3 × 1016 cm−3 is in dramatic contradiction with the the-
oretical prediction, based on the Mott criterion.

In this paper, we address this puzzle and show that the
Mott criterion fails because insulating bulk crystals of STO
used for intentional doping are almost completely compen-
sated, i.e., have large and almost equal concentrations N/2
of background charged donors and acceptors. When the in-
tentionally added concentration of donors and electrons n is
much smaller than N , MIT is driven by the random long-range
Coulomb potential of N charged donors and acceptors [5,6].
With decreasing n, the Fermi energy of degenerate electron
gas gets smaller while the screening of Coulomb potential
of impurities gets weaker. At some n = nc, the amplitude of
potential fluctuations becomes larger than the depth of the
electron Fermi sea and electrons get localized in large puddles
separated from each other by large potential barriers. We call
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FIG. 1. Dimensionless conductivity σ/(e2/h̄aB) as a function of
carriers concentration n at 4 K. Experimental data [1] are shown by
red dots. All data for n < 3 × 1017 cm−3 are obtained by reduction
of insulating bulk crystals, while higher concentration sample are
mostly doped by Nb. Theoretical predictions based on interpola-
tion between Eqs. (3) and (4) are shown by full line for strongly
compensated STO with the background impurity concentration N =
1019 cm−3 and by dashed line for uncompensated STO using Eqs. (1)
and (2). Upper thin gray line shows how results change for N =
5 × 1018 cm−3, while lower thin gray line is for N = 2 × 1019 cm−3.
Critical concentrations of MIT are shown by two thin vertical
lines as predicted by Anderson-Ioffe-Regel theory (left) and Efros-
Shklovskii theory (right) for N = 1019cm−3.

such a transition the percolation MIT in strongly compen-
sated semiconductor, to discriminate it from the Mott MIT in
weakly compensated semiconductor.

The plan of this paper is as follows. In Sec. II, we analyze
the experimental data of Spinelli et al [1] for conductivity at
4 K shown in Fig. 1. We calculate the Drude conductivity,
σ (n, N ), of compensated STO assuming that the scattering
happens only on randomly positioned Coulomb impurities.
For n � nc � 3 × 1016 cm−3, we obtained reasonably good
fit of the conductivity data, σ (n), with the concentration of
background charged impurities N = 1019 cm−3. Using this N ,
we show that the theory of the percolation MIT of Refs. [5,6]
gives nc close to the experimental value.

In Sec. III, we extend the percolation MIT theory to films
of strongly compensated STO with thickness d � 130 nm and
calculate the critical MIT electron concentration nc(d ). We
find that nc(d ) grows with decreasing d , because the Rytova-
Keldysh modification of the Coulomb potential of a charge
impurity slows down its potential decay within the STO film,
and allows a larger number of the film impurities to contribute
to the random potential breaking Fermi sea in puddles. The
theory of the percolation MIT developed here for STO films
is valid for all other compensated semiconductor films.

II. CONDUCTIVITY AND METAL-INSULATOR
TRANSITION IN STO BULK CRYSTALS

Let us start from the low temperature theory of metallic
conductivity. At large n, when na3

B � 1, electron gas is de-
generate and kF l � 1, where kF = (3π2n)1/3 is the Fermi
wave vector and l is the mean free path, so that one can
use the Drude formula for conductivity: σ = ne2τ/m�, where
τ = l/vF is the momentum relaxation time, vF = h̄kF /m� is

the Fermi velocity, and e is the charge of an electron. At
low temperatures, the dominant scattering mechanism is due
to ionized donors. In the standard Thomas-Fermi approxima-
tion, the screening radius of the degenerate electron gas [7,8]
rs = [(aB/4)(π/3n)1/3]1/2 is much larger than the electron
wavelength, kF rs � 1, so one can use the screened Coulomb
potential φ(r) = (e/r)e−r/rs to compute the momentum re-
laxation time and the corresponding conductivity. Under the
assumption that compensation is absent and the number of
ionized impurity centers is the same as the number of free
carriers n, we get for the conductivity of a degenerate gas

σ1 = e2

h̄aB

3π

2
na3

B f
[(

3π5na3
B

)1/3]
, (1)

where f (x) = [ln(1 + x) − x/(1 + x)]−1.
Due to the large dielectric constant, the scattering cross

section, 	 ∝ n−4/3, used to calculate Eq. (1), gets very small
quickly, as n increases. For n � 1017 cm−3, 	 � a2, where
a � 4 Å is the lattice constant for STO. Following Ref. [9],
we argue that once 	 � a2, it saturates and can not get any
smaller with increasing n. Indeed, for length scales of the
order a, there is no more dielectric screening, so the electron
“feels” the full potential of the charged impurity center e/a.
It leads to the geometrical cross section of the donor of the
order of a2. As a result, for n > ncore ∼ 1017 cm−3, Eq. (1) is
no longer valid and the conductivity is given by

σ2 = e2

h̄aB

a2
B

a2

(
3π2na3

B

)−1/3
. (2)

We see from Eq. (2) that σ (n) decreases with increasing n
as n−1/3. This dependence was first derived in Refs. [10,11]
and observed in heavily doped PbTe and SnTe in Ref. [12].
Using the Matthiessen addition rule, σ−1 = σ−1

1 + σ−1
2 , to in-

terpolate between Eqs. (1) and (2), we plot the dimensionless
conductivity σ/(e2/h̄aB) versus the carriers concentration n
in Fig. 1 by the dashed line. We see that at relatively small
n such ignoring compensation theory predicts 2–3 orders of
magnitude larger conductivity than the data.

We argue that the experimental conductivity is small be-
cause of almost complete compensation of insulating STO
crystals used in Ref. [1] and universally for intentional doping
by donors. Namely, these insulating samples contain uncon-
trolled and practically equal concentrations of background
donors (ND) and acceptors (NA) [1,13,14]. Thus the total con-
centration of charged impurities N = NA + ND is large and
this strongly reduces the conductivity. Below, we present an
evidence that N ∼ 1019 cm−3.

Background impurities increase the total number of
Coulomb impurities to (n + N ) and replace Eqs. (1) and (2)
by the following two equations:

σ = e2

h̄aB

3π

2

n

n + N
na3

B f
[(

3π5na3
B

)1/3]
, n < ncore, (3)

σ = e2

h̄aB

a2
B

a2

n

n + N

(
3π2na3

B

)−1/3
, n > ncore. (4)

We found that conductivity of a strongly compensated sam-
ple interpolated between Eqs. (3) and (4) gives the best fit
to the experimental data. This fit is shown in Fig. 1 by the
thick black line at N = 1019 cm−3, which agrees much better
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with the data than the dashed line obtained for uncompensated
samples. However, for larger n > N , while theory predicts
that conductivity should go down with n as σ ∝ n−1/3, the
experiment shows that it saturates or even slightly (like n0.1)
grows. This remains an unsolved puzzle.1

Mott’s condition for MIT critical concentration, nca3
B �

0.02, was derived for weakly compensated samples, so it is
understandable that it does not predict the correct critical con-
centration for strongly compensated samples. To include the
effect of compensation one can try the Anderson-Ioffe-Regel
(AIR) condition kF l � 1 for MIT [15,16]. The mean free path
of charge carriers in a strongly compensated STO sample with
N � n is

l = aB

(
3π2na3

B

)4/3

2πNa3
B

f
[(

3π5na3
B

)1/3]
(5)

Assuming that N = 1019 cm−3, we find the critical con-
centration for MIT to be ncAIR � 6 × 1015 cm−3. However, as
shown in Fig. 1, the predicted ncAIR is still five times smaller
than experimental nc. To understand such discrepancy, notice
that the Anderson-Ioffe-Regel MIT criterion is justified for
scattering by individual random charges calculated in Born
approximation. However, Efros and Shklovskii [5,6] showed
that the physics of strongly compensated semiconductor is
dominated by large long-range Coulomb potential of large
number of charged impurities which, because of week screen-
ing at MIT, becomes larger than the Fermi energy of electrons
and, therefore, breaks the electron gas in puddles separated by
potential barriers at n = ncES. Clearly, such situation can not
be dealt with in Born approximation. This transition happens
while locally, in puddles, electron gas is still a good metal with
kF l � 1. This means that ncES � ncAIR. Predicted ncES [5,6]
is given by

ncES = β
N2/3

aB
, (6)

where β is a numerical coefficient. Analysis of experiments in
compensated germanium shows [6] that β � 0.5. Using N =
1019 cm−3, we find that ncES � 3 × 1016 cm−3. We see from
the Fig. 1 that for strongly compensated semiconductor this
critical concentration agrees much better with experimental
MIT than ncAIR. As we mentioned in Introduction, the Mott
criterion for weakly compensated semiconductor (where it is
equivalent to AIR), nca3

B � 0.02, is more than 105 times off.
The derivation of Eq. (6) is very simple [5,6]. One

estimates the amplitude of fluctuations of the bottom of
conduction band in electrostatic potential fluctuations γ ∼
(e2/κrs)(Nr3

s )1/2 in a good metal with randomly distributed
Coulomb impurities, where rs(n) is the screening radius for

1In the recent paper [22], the authors used an unrealistic parameters
such as κ = 4 instead of � 20 000 and the effective mass m� � 6.5me

instead of 1.4me in order to fit data of Ref. [32]. In this way, they were
able to get inequality kF rs � 1, which allowed them to use theory of
Ref. [33] to predict a saturating behavior for conductivity at large n
and avoid dealing with compensation. However, as the authors admit
there is no justification for using such parameters. In reality, kF rs �
1 and the theory [7,8] is applicable.

a degenerate electron gas. Then, one equates γ to the Fermi
energy h̄2(3π2n)2/3/2m and solves for ncES.

Although Eq. (6) agrees with apparent MIT at nc � 3 ×
1016 cm−3 our theory meets two big problems when compared
to the data [1].

First, one should recall that this is a zero temperature
theory. It can work at finite temperature only if at n = nc

both the Fermi energy and the amplitude of disorder potential
γ (nc) are larger than kBT . In reality, simple estimates show
that at temperature 4 K they are four times smaller than kBT .
Thus no transition and localization of electrons in puddles can
happen at T = 4 K. At n < nc, energy γ (n) ∼ e2N2/3/n1/3,
it grows with decreasing n, but quite slowly [5,6]. Even for
the sample with n = 8.5 × 1015 cm−3 γ (n) is still two times
smaller than kBT at T = 4 K. How can this sample have
σ (n) ∼ 10−6σ (nc)? This may happen only if the disorder
potential is 30 times larger than our γ (n). We have no idea
how to explain such apparent large energy scale of disorder.
Even if we were able to do that, we would arrive much larger
nc in disagreement with experimental data [1].

Second, the resistivity of the sample with n = 8.5 ×
1015 cm−3 measured down to T = 1 K while being very
large showed apparent metal-like saturation at low tempera-
tures. This disagrees with expected in strongly compensated
semiconductor low temperature variable range hopping con-
ductivity [17]. We have no explanation for such behavior.

It was assumed above that donors and acceptors positions
are random, i.e., they are not making compact donor-acceptor
pairs. For samples made by cooling from a melt, the distri-
bution of impurities in space is a snapshot of the distribution
that impurities have at higher temperature, when their diffu-
sion practically freezes [18]. In relatively narrow band gap
semiconductors, at this temperature, there is a concentration
of intrinsic carriers larger than the concentration of impurities.
Intrinsic carriers thus screen the Coulomb attraction between
donor and acceptors, so that impurities remain randomly dis-
tributed in space. As a result, when the temperature is lowered
to the point where intrinsic carriers recombine, the impurities
are left in random positions [6,19]. STO is a wide gap semi-
conductor so that explanation based on intrinsic carriers does
not work. However, at temperatures of diffusion freezing, say
1000 K, STO still has a very large dielectric constant κ ∼ 100.
Therefore acceptors and donors in strongly compensated STO
can avoid making pairs.2

III. METAL-INSULATOR TRANSITION IN STO FILMS

STO films attract growing attention [14,20–23]. They are
made by three different methods: molecular beam epitaxy

2We can use analogy with water solutions (κ = 81) of simple salt
such as NaCl, where ions Na+ and Cl− play the role of our donors
and acceptors. It is known that at T = 300 K, salt stays dissociated
till concentrations as large as 1021 cm−3. Here we are dealing with
similar κ , comparable to two hydration radii of ions in water mini-
mum distance between donor and acceptor (lattice constant of STO)
but larger T and much smaller concentration N � 1019 cm−3. Thus
almost all donor-acceptor pairs should be dissociated at temperature
of diffusion freezing in STO.
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(MBE), pulse laser deposition (PLD), and spattering. MBE
films are grown from high purity elements and may have less
impurities and are relatively clean. PLD films are often grown
from STO single-crystal targets and are presumed to have the
same or close composition, i.e., they are strongly compensated
and have approximately the same N as STO bulk crystals.
Spattered films are typically grown from polycrystalline bulk
targets and have even more impurities [14].

In this paper, we focus on PLD films. They can be in-
tentionally doped by donors and studied in large range of
concentration of electrons n. In this section, we calculate the
critical concentration of electrons at MIT nc(d ) as a function
of the film thickness d . We show below that because of very
large dielectric constant of STO, the dielectric constant of
the film environment dramatically affects the amplitude of
the long-range random potential of Coulomb impurities of the
film and, therefore, the critical concentration of MIT nc(d ).
Here we consider two interesting experimental situations:
n-type doped STO film surrounded by materials with much
smaller dielectric constant κe and doped STO thin film on
insulating STO substrate.

A. STO film in low dielectric constant environment

In this section, we study thin STO films with dielectric
constant κ in environment with dielectric constant κe � κ , for
example STO grown on (and capped with) a non-STO per-
ovskite insulators with much lower dielectric constants κe ∼
25. In this case, according to Rytova and Keldysh [24–26], the
electric field lines of a charged impurity channel through the
thin film before exiting outside to the environment at distance
r0 = κd/2κe. At d < r < r0, the potential of such impurity is
only logarithmically different from e2/κd . Electrons screen
this potential at some screening radius λ(n). At MIT, the
screening becomes nonlinear and λ can be estimated from
the condition that fluctuations of impurity charge concentra-
tion in the volume dλ2 can be barely compensated by the
redistribution of the concentration of electrons n, such that
n ∼ (Ndλ2)1/2/dλ2. This gives

λ ∼ 1

n

(N

d

)1/2

. (7)

The corresponding amplitude of the Coulomb potential energy
fluctuations is

γ ∼ e2

κd
(Ndλ2)1/2 ∼ e2N

κnd
. (8)

In order to estimate the critical concentration of the MIT,
we equate the potential energy to the Fermi energy

γ ∼ h̄2k2
F /2m�. (9)

To proceed further, we should relate the local Fermi wave vec-
tor kF with the local density n. First, consider a very thin film
such that the motion along the perpendicular to film z direction
is quantized and restricted to the lowest subband. Namely, the
Fermi energy is smaller than the subband gap ∼h̄2/m�d2, or
equivalently d � k−1

F . In such a thin film, electrons have only
two degrees of freedom parallel to the film plane, and kF ∼√

nd . Substituting kF ∼ √
nd back into Eq. (9), we arrive at

FIG. 2. The phase diagram of MIT in the plane (n, d ), plotted
in log-log scale using dimensionless variables na3

B and d̃ = d/aB.
The blue solid curve corresponds to phase boundary Eqs. (10), (11),
and (6) for doped STO both in low dielectric constant environ-
ment (say, silicon oxide) and on insulating STO substrate. The red
dot-dashed curve corresponds to Eqs. (17), (18), and (6) in the
case of doped STO on MBE STO substrate. Above each curve the
system is metallic, while below the curve it is insulating. The dimen-
sionless thickness tick marks are d̃1 = (Na3

B)−1/4, d̃2 = (Na3
B)−1/5,

and d̃c = (Na3
B)−1/9.

the critical concentration

nc(d ) ∼ 1

d

( N

aB

)1/2

, d � d1, (10)

where aB = κ h̄2/m�e2 is the effective STO Bohr radius. The
above result is self-consistent if d � k−1

F ∼ (nd )−1/2, which
gives d � d1 = aB/(Na3

B)1/4. For N � 1019 cm−3 and aB �
700 nm, we have d1 � 15 nm.

Next, consider a thicker film with d � k−1
F and kF ∼ n1/3.

In this case, Eq. (9) gives the critical concentration

nc(d ) ∼
( N

aBd

)3/5

, d1 � d � dc, (11)

At d ∼ d1, Eq. (11) crosses over to Eq. (10), while at d �
dc = aB/(Na3

B)1/9, Eq. (11) matches the bulk value Eq. (6).
For N � 1019 cm−3 and aB � 700 nm, we have dc � 130 nm.
Eqs. (10), (11), and (6) are shown by the blue solid curve
in Fig. 2.

Since the above results Eqs. (10) and (11) are based on
d < λ < r0, one should check if it as indeed satisfied near our
MIT line. Inequality d < λ < r0 gives the restriction on n

√
N

d3/2

κe

κ
< n <

√
N

d3/2
. (12)

The upper and lower bounds on n Eq. (12) cross the
curve nc(d ) Eqs. (10) and (11) at d ∼ d0 = aB(κe/κ )2 and
d ∼ dc respectively. For typical κ/κe ∼ 103, the lower limit
d0 � 1 nm. Thus our phase boundary nc(d ) is valid at all
reasonable film widths d .

Above we ignored the concentration of charged impurities
in the environment of the STO film, Ne. Let us now evaluate
the role of such impurities following similar analysis in the
case of topological insulator films [27]. To save the electro-
static energy, the electric field lines of an impurity at distance
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z � r0 from the film surface first enter inside the STO film
and then radially spread inside the film to distance ∼r0 before
exiting outside the film to infinity. Thus one can think that
effectively each outside impurity is represented inside the
film by a charge e disk, with radius z and thickness d . In
the presence of screening, only small minority of the outside
impurities with z < λ contribute in fluctuating charge of the
volume dλ2. As a result, total effective concentration of impu-
rities projected from outside the film is Neλ/d . If Neλc/d < N ,
where λc is given by Eq. (7) at n = nc(d ), outside impurities
can be ignored and our results for nc(d ) are valid. Using
Eqs. (10) and (11), we get λc/d = (aB/d )1/2 at d < d1 and
λc/d = (aB/d )9/10(Na3

B)−1/10 at d1 < d < dc. We see that
λc/d grows with decreasing d , making small d more vulner-
able to external impurities. Thus, for d < d1, the condition of
validity of above results Neλc/d < N is d > aB(Ne/N )2.

B. Doped STO film on the insulating STO substrate

In this case, the dielectric constant is in first approxima-
tion uniform and we can deal with the Coulomb potential of
charged impurities with uniform concentration N . At MIT,
the screening by the electrons of doped STO film becomes
nonlinear. The nonlinear screening radius λ can be estimated
from the condition that fluctuations of the impurity charge
concentration in the volume λ3 of a cube including a square λ2

of the STO film can be barely compensated by redistribution
of the concentration of electrons n inside the film [28]:

nd ∼ (Nλ3)1/2/λ2. (13)

This gives

λ ∼ N

n2d2
. (14)

The corresponding amplitude of the Coulomb potential fluc-
tuations therefore is

γ ∼ e2

κλ
(Nλ3)1/2 ∼ e2N

κnd
. (15)

Remarkably, we arrive at the same result Eq. (8), as for doped
STO films in a low dielectric constant environment. This
means that for the case of a doped STO film on an insulating
STO substrate, the phase boundary nc(d ) is identical to one
given by Eqs. (10) and (11) and shown by the blue line of
Fig. 2, which was originally derived for doped STO films in
low dielectric constant free of impurities environment. It is
remarkable that due to the Rytova-Keldysh effect, relatively

small total number of impurities of the film lead to the same
disorder effect as much larger number of impurities in the
insulating STO substrate.

To emphasize importance of the Rytova-Keldysh effect, we
briefly consider a case of doped STO film on relatively a thick
buffer layer of undoped STO grown by MBE, which κe = κ

and concentration of impurities can be ignored. In this case,
the amplitude of potential fluctuations

γ ∼ e2

κλ
(Ndλ2)1/2 = e2

κ
(Nd )1/2 (16)

and is independent on the screening length λ. Next we
estimate the critical concentration nc using γ ∼ μ similar
to the previous section. If d � k−1

F , then kF ∼ √
nd , and

γ ∼ μ gives

nc ∼ 1

aB

(N

d

)1/2

, d � d2, (17)

where d2 = aB/(Na3
B)1/5 corresponds to d ∼ [kF (nc)]−1. On

the other hand, if d � k−1
F , then kF ∼ n1/3, and γ ∼ μ gives

nc ∼
(

Nd

a2
B

)3/4

, d2 � d � dc. (18)

At d � dc, nc crosses over to the bulk value Eq. (6). For N �
1019 cm−3 and aB � 700 nm, d2 � 35 nm. Equations (17) and
(18) are shown by the red dot-dashed curve in Fig. 2, which
at d � dc is substantially lower than the blue curve. Thus
we see that the Rytova-Keldysh effect allowing more distant
impurities to contribute to potential fluctuations dramatically
increases role of disorder. Similar enhancement of the role
of Coulomb interaction in large dielectric constant films was
studied for mobility [29] and hopping conductivity [30].

Theory of the percolation MIT developed in this section
is valid for all other compensated semiconductor films, for
example for PbTe films with thickness d � dc = 30 nm. (For
PbTe, the dielectric constant is ∼300 with effective mass
∼0.2me leading to aB ∼ 80 nm. Here following Ref. [31] we
assume that PbTe film has N ∼ 1019 cm−3 to estimate its
corresponding dc = aB/(Na3

B)1/9 � 30 nm).
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