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Electronic noise of warm electrons in semiconductors from first principles
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The ab initio theory of low-field electronic transport properties such as carrier mobility in semiconductors
is well-established. However, an equivalent treatment of electronic fluctuations about a nonequilibrium steady
state, which are readily probed experimentally, remains less explored. Here, we report a first-principles theory
of electronic noise for warm electrons in semiconductors. In contrast with typical numerical methods used
for electronic noise, no adjustable parameters are required in the present formalism, with the electronic band
structure and scattering rates calculated from first principles. We demonstrate the utility of our approach by
applying it to GaAs and show that spectral features in AC transport properties and noise originate from the
disparate time scales of momentum and energy relaxation, despite the dominance of optical phonon scattering.
Our formalism enables a parameter-free approach to probe the microscopic transport processes that give rise to
electronic noise in semiconductors.
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I. INTRODUCTION

Charge transport in semiconductors is a topic of fundamen-
tal and practical interest with a well-established theoretical
foundation [1,2]. In many cases, a sufficient understanding
of the relevant physics at both low and high fields can be
achieved using the Boltzmann equation with semiempirical
scattering rates [3–6]. In other cases, a more precise descrip-
tion of the electronic transitions induced by phonons and other
perturbations is required. Such a description is now possible
owing to advances in electronic structure codes that enable the
ab initio computation of the transition matrix elements given
by Fermi’s golden rule performed in conjunction with the
numerical solution of the Boltzmann equation describing car-
rier dynamics [7–10]. While method development is ongoing,
these calculations are now routine for various semiconductors
including Si [11–13], GaAs [14–16], phosphorene [7], and
others [17–21].

In contrast, an equivalent treatment of fluctuations from a
nonequilibrium steady-state is lacking, despite the experimen-
tal accessibility of electronic noise [22,23] and its importance
in applications [24]. At equilibrium, the Nyquist relation, or
more generally the fluctuation-dissipation theorem, relates the
electrical conductivity to the spectral noise power [25–27].
Outside of equilibrium, the theorem no longer applies and
the spectral noise power must be computed with another ap-
proach.

The theoretical description of fluctuations about a nonequi-
librium steady-state has a long history. In 1935, Leontovich
used kinetic theory to examine velocity fluctuations of a
nonequilibrium gas [28]. Around 20 years later, Wannier es-
tablished the definition of a diffusion coefficient for transport
about a nonequilibrium steady state [29]. Hashitsume con-
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sidered a microscopic description of occupancy fluctuations
about a steady distribution using the Fokker-Planck equation
with a random source term [30]. In analogy with earlier
works on fluctuational Maxwell equations, Kadomotsev in-
troduced Langevin sources into the Boltzmann equation [31].
Shortly thereafter, Price derived that for spatially homo-
geneous fluctuations, a fluctuation-diffusion relation links
Wannier’s diffusion coefficient to the spectral density of
current fluctuations even outside of equilibrium [32]. For
this reason, the nonequilibrium noise at frequencies small
compared to scattering rates is known as diffusion noise.
In the same year, Lax formulated a general kinetic theory
of fluctuations for a Markovian system [33]. Throughout
the 1960s, Gantsevich and co-workers applied Lax’s kinetic
theory to dilute gases for which the evolution of the one
particle distribution function is governed by the linear Boltz-
mann equation [34]. Their technique, termed the “method of
moments,” demonstrated how to compute the spectral den-
sity of current fluctuations using only the solutions of the
linear Boltzmann equation. Concurrently with Gantsevich,
starting from Kadomotsev’s Boltzmann-Langevin equation,
Kogan and Shul’man developed a Langevin treatment of the
current density fluctuations [35]. Lax, van Vliet, and Kogan
and Shul’man independently confirmed that the method of
moments and the Langevin approach are equivalent [36–38].

As computational resources became increasingly available,
numerical implementations of the methods described above
permitted computations of electronic noise for both warm
(�T/T0 � 1) and hot (�T/T0 ∼ 1) electrons, where �T is
the steady-state temperature rise of the electrons and T0 is
the lattice temperature. Due to the lack of knowledge of
the precise transition rates between electronic states, these
studies employed simplified band structures and parame-
terized models for scattering such as deformation potential
theory for acoustic phonon scattering [39,40]. For example,
Stanton and Wilkins obtained the Green’s function of the
Boltzmann equation under the single-mode relaxation time
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approximation, demonstrating qualitative agreement with ex-
periment in GaAs for one [41] and two [42] valleys. Numerous
Monte Carlo simulations reported calculations of current
spectral densities in Si [39,43–47], GaAs [44,48,49], and
other semiconductors [50–53]. These works employed various
approximations such as Debye acoustic phonons, disper-
sionless optical phonons, and spherical approximations for
electron conduction bands. With empirical knowledge of band
structure parameters such as effective mass and approximate
relaxation times, reasonable agreement with experiments was
reported [39,43–48,50,54,55]. More recently, these methods
have been extended to heterostructures and have provided
insight into the design of low-noise devices [56–58]. While
studies with parameterized models can provide an adequate
description of the physics of interest in certain cases, they
are not predictive and are restricted to materials for which
empirical models of the dominant scattering mechanisms are
available. It is therefore natural to consider how advances in
the ab initio calculation of mean transport quantities [8,9] can
be applied to the nonequilibrium steady state.

Here, we present an ab initio theory of electronic noise
for warm electrons in nondegenerate semiconductors. The
formalism provides the spectral noise power and AC trans-
port quantities without any adjustable parameters. Using the
method, we show that the anisotropy and spectral features of
the noise power in GaAs can be explained by the disparate
timescales of momentum and energy exchange with phonons,
even though scattering is dominated by the inelastic polar
optical phonon scattering mechanism. The formalism is easily
extendable to other semiconductors of technological interest
such as InP, Si, and Ge. Our method provides a parameter-free
view of the microscopic transport processes responsible for
electronic fluctuations in semiconductors and will advance
fundamental studies of carrier transport and applications of
low noise semiconductor devices.

II. THEORY

A. Steady-state transport

We begin by reviewing the ab initio treatment of steady-
state transport using the Boltzmann equation to set the
notation. Consider a nondegenerate, spatially homogeneous
electron gas subject to an external electric field E . The system
is governed by the following Boltzmann equation:

∂ fmk

∂t
+

∑
γ

eEγ

h̄

∂ fmk

∂kγ

= I[ fmk]. (1)

Here, fmk is the distribution function that describes the
occupancy of the electron state with wave vector k and band
index m, e is the fundamental charge, h̄ is the reduced Planck
constant, and γ = x, y, z indexes the crystal axes.

The collision integral, I, describes the scattering rates be-
tween electronic Bloch states mk and m′k′. In general, the
collision integral is a nonlinear functional of the distribution
function given by Fermi’s golden rule [1]. In the steady case,
the transient term vanishes, and we denote the solution of the
resulting equation as f s

mk.
In many problems, a good approximation is that the

Boltzmann equation can be linearized about an equilibrium

distribution as f s
mk ≡ f 0

mk + � fmk, where � fmk is the change
in occupation due to the electric field E relative to the equilib-
rium distribution f 0

mk. Under the nondegenerate assumption,
f 0
mk is well approximated by the Maxwell-Boltzmann distri-

bution. With this substitution and retaining only terms linear
in � fmk, the Boltzmann equation becomes [3]

∑
γ

[
eEγ

h̄

∂� fmk

∂kγ

]
+

∑
m′k′

�mkm′k′� fm′k′ = −
∑

γ

eEγ

h̄

∂ f 0
mk

∂kγ

,

(2)
where �mkm′k′ is the linearized collision integral

�mkm′k′ = 2π

N h̄

∑
m′νq

|gmk,m′k+q|2[δ(εmk − h̄ωνq − εm′k+q)Hem

+ δ(εmk + h̄ωνq − εm′k+q)Habs]. (3)

Here, gmk,m′k′ is the matrix element coupling electron state
mk to another electron state m′k′ = m′k + q via emission
or absorption of a phonon with wave vector q, polarization
ν, and occupancy Nνq given by the Bose distribution. N is
the total number of q-points. The linearized emission and
absorption weights are Hems = Nq + 1 − f 0

mk+q and Habs =
Nq + f 0

mk+q, respectively, if m′k′ = mk, and Hems = −(Nq +
f 0
mk ) and Habs = −(Nq + 1 − f 0

mk ) if m′k′ �= mk. Note that in
Eq. (2) we have moved the collision integral to the left-hand
side and defined Eq. (3) without the usual minus sign to
simplify the following expressions.

In the present study, we restrict the electric field to values
where � fmk � f 0

mk so that the linearization above is valid.
However, in the typical ab initio treatment of transport, the
electric field is further assumed to be small enough such that
∂ fmk/∂kγ

≈ ∂ f 0
mk/∂kγ

, allowing � fmk to be obtained by an
iterative method with only knowledge of �mkm′k′ and the equi-
librium distribution f 0

mk [8]. In the present problem, the field
is sufficiently large such that ∂� fmk/∂kγ

∼ ∂ f 0
mk/∂kγ

and the
neglected derivative term, ∂� fmk/∂kγ

, must be included. This
approximation was originally denoted as the ‘warm electron’
approximation since the excess energy of the electrons over
the thermal value can be nonzero while remaining small on
that scale [6].

To treat the drift term numerically, we employ a finite
difference approximation:

∑
γ

eEγ

h̄

∂� f s
mk

∂kγ

≈
∑

γ

eEγ

h̄

∑
m′k′

Dmkm′k′,γ � fm′k′ (4)

where the momentum-space derivative is approximated using
the finite-difference scheme given in Ref. [60] and Eq. (8) of
Ref. [59].

With these definitions, the steady Boltzmann equation be-
comes∑
m′k′

�mkm′k′� fm′k′ ≡
∑

γ

∑
m′k′

[
eEγ

h̄
Dmkm′k′,γ + �mkm′k′

]
� fm′k′

=
∑

γ

eEγ

kBT
vmk,γ f 0

mk. (5)

Here, we have analytically expanded the gradient of the
equilibrium Boltzmann distribution on the right-hand side
as ∂ f 0

mk/∂kγ
= −(h̄vmk,γ /kBT ) f 0

mk, where vm,k,γ is the group
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velocity along axis γ and kBT is the thermal energy. �mkm′k′

is defined as the relaxation operator that combines the drift
and scattering operators. Equation (5) shows that the steady
Boltzmann equation is now a system of linear equations. The
solution, � fmk, can be written symbolically using the inverse
relaxation operator:

� fmk =
∑
m′k′

�−1
mkm′k′

∑
γ

(
eEγ

kBT

)
vm′k′,γ f 0

m′k′ . (6)

Transport properties such as the electrical conductivity can
be defined using the steady distribution. In particular, the
linear DC conductivity σ lin

αβ can be expressed as

σ lin
αβ = 2e2

kBTV0

∑
mk

vmk, α

∑
m′k′

(
�mkm′k′−1 vm′k′, β f 0

m′k′
)
, (7)

where the factor of 2 accounts for spin degeneracy and V0 is
the supercell volume. The field is applied along the β axis and
the resulting current is measured along the α axis. The con-
ductivity of Eq. (7) is typically calculated in the cold electron
approximation for which ∂� fmk/∂kγ

� ∂ f 0
mk/∂kγ

and is thus
independent of the electric field.

For sufficiently large fields that ∂� fmk/∂kγ
∼ ∂ f 0

mk/∂kγ
,

the DC conductivity depends on the electric field and is de-
fined with the relaxation operator:

σαβ (E ) = 2e2

kBTV0

∑
mk

vmk,α

∑
m′k′

�−1
mkm′k′ vm′k′, β f 0

m′k′ (8)

Another important transport quantity, the AC small-signal
conductivity σω

αβ , describes the linear response of the system
about a nonequilibrium steady state [22]. With the steady dis-
tribution f s

mk being set by a DC field E as described above, an
AC field perturbation along crystal axis γ , δEγ (t ) = δEγ eiωt ,
induces a fluctuation of the steady distribution δ fmk(t ) =
δ fmk(ω)eiωt . This fluctuation is governed by the Fourier trans-
formed Boltzmann equation:

∑
m′k′

(iω I + �)mkm′k′ δ fm′k′ = −
∑

γ

eδEγ

h̄

∂ f s
mk

∂kγ

. (9)

Here, I is the identity matrix. The fluctuation in the distribu-
tion function induces a current fluctuation about the DC value,
given as

δ jα = 2e

V0

∑
mk

vmk, α δ fmk. (10)

The small-signal AC conductivity is defined as the lin-
ear coefficient relating the current density variation to the
perturbation, σω

αβ ≡ δ jα/δEβ . An explicit expression for AC
conductivity can be obtained by combining the above expres-
sions:

σω
αβ = 2e

V0δEβ

∑
mk

vmk,α

∑
m′k′

(iω I + �)−1
mkm′k′

×
[∑

γ

−eδEγ

h̄

∂ f s
m′k′

∂k′
γ

]
. (11)

At equilibrium the steady distribution reduces to the equi-
librium distribution f s

mk = f 0
mk, the kinetic operator reduces

to the scattering operator, �mkm′k′ = �mkm′k′ . By examining
Eqs. (7) and (11), we see that at equilibrium the zero-
frequency differential conductivity is equal to the linear DC
conductivity σω=0

αβ (E = 0) = σ lin
αβ .

B. Fluctuations about a nonequilibrium steady state

We now consider fluctuations about a nonequilibrium
steady state induced by the stochastic nature of charge car-
rier scattering. Suppose that the steady state distribution
f s
mk is known. Just as in equilibrium, fluctuations in the

instantaneous occupation of the quantum states occur. Micro-
scopically, these fluctuations arise because of the stochastic
nature of the scattering described by �mkm′k′ . At steady state,
detailed balance requires that the mean flux of particles into
every quantum state is zero. However, the flux of particles into
or out of a quantum state is a Poissonian process and is char-
acterized by a variance. Therefore, the instantaneous net flux
into a quantum state is in general nonzero due to instantaneous
imbalance between the incoming and outgoing fluxes [61].
Consequently, the occupancy of quantum states fluctuates un-
der both equilibrium and nonequilibrium conditions.

In the macroscopic limit at which fluctuations are observed
in the laboratory, these distribution function fluctuations ap-
pear as instantaneous current fluctuations, or equivalently, as
electronic noise. A nonrandom characteristic of these fluctu-
ations is the spectral density of current density fluctuations,
which, by the Wiener-Khintchine theorem, is related to the
single-sided Fourier transform of the autocorrelation of the
current density fluctuations [22]:

S jα jβ (ω) ≡ (δ jαδ jβ )ω = 2
∫ ∞

−∞
δ jα (t )δ jβe−iωt dt (12)

where the overbar indicates ensemble average.
We seek to link the macroscopic current density fluc-

tuations to microscopic distribution function fluctuations.
Following Ref. [61], we now consider random fluctuations
about the nonequilibrium steady state, δ fmk(t ) = fmk(t ) −
f s
mk. In contrast to the fluctuations associated with the small

signal conductivity, these fluctuations are induced by the
stochastic nature of scattering rather than an external per-
turbation. The corresponding current density fluctuations can
be expressed in terms of the fluctuation in the distribution
function as in Eq. (10).

It follows that the ensemble average of the correlation
function of instantaneous current fluctuations along axes α

and β, δ jα (t )δ jβ , can be expressed in terms of the correlation
function of the occupancy fluctuations, δ fmk(t )δ fm1k1 :

δ jα (t )δ jβ =
(

2e

V0

)2 ∑
mk

∑
m1k1

vmk, α vm1k1, β δ fmk(t )δ fm1k1

(13)

Equation (13) shows that computing the spectral density of
current density fluctuations requires calculating the correla-
tions of single particle occupancy fluctuations δ fmk(t )δ fm1k1 .
This function is known as the time-displaced, two parti-
cle correlation function [61]. Through a quantum statistical
mechanical treatment, Gantsevich and coauthors have demon-
strated that the time-displaced, two particle correlation
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function obeys the same Boltzmann equation as the fluctua-
tion itself [34]:

∂

∂t
δ fmk(t )δ fm1k1 +

∑
m′k′

�mkm′k′ δ fm′k′ (t )δ fm1k1 = 0. (14)

The result of Eq. (14) can also be justified less mathe-
matically rigorously but with more physical intuition from
Onsager’s regression hypothesis (in particular, see Sec. 1 of
Ref. [61]).

Solving Eq. (14) requires specifying an initial condition,
δ fm′k′δ fm1k1 , which is known as the one-time, two-particle
correlation function. For a nondegenerate system with a fixed
number of particles N , Fowler [62] and Lax [33] derived the
required condition as

δ fmkδ fm1k1 = fmkδkk1δmm1 − fmk fm1k1

N
, (15)

where the second term on the right-hand side indicates that
a correlation exists between occupancies due to the fixed
particle number. With this initial condition for the correlation,

Eqs. (12)–(14) can be combined to express the spectral density
of current fluctuations explicitly in terms of solutions to the
Boltzmann equation. For a single band, we drop the band
index to get

(δ jαδ jβ )ω =
(

2e

V0

)2 ∑
k,k1

vk,α vk1,β (δ fkδ fk1 )ω. (16)

As with the current density, the spectral density of distribution
function fluctuations is related to its analagous correlation
function by Fourier transform:

(δ fkδ fk1 )ω =
∫ ∞

−∞
δ fk(t )δ fk1 e−iωt dt (17)

By exploiting the stationary property of the autocorrelation
function, the spectral density can be expressed as [61]

(δ fkδ fk1 )ω = 2	
[ ∑

k′
(iω I + �)−1

kk′ δ fk′ δ fk1

]
. (18)

Combining Eqs. (15), (16), and (18), we obtain the follow-
ing expression:

S jα jβ (ω) = 2

(
2e

V0

)2

	
[ ∑

k

vk,α

∑
k′

(iω I + �)−1
kk′

∑
k1

vk1, β

(
f s
k′δk′k1 − f s

k′ f s
k1

N

)]

= 2

(
2e

V0

)2

	
[ ∑

k

vk,α

∑
k′

(iω I + �)−1
kk′

(
f s
k′ (vk′, β − Vβ )

)]
. (19)

Here, Vβ is the drift velocity along the β axis defined as

Vβ = 1

N

∑
k

vk, β f s
k, (20)

where N = ∑
k fk is the total particle number.

From Eq. (19), it follows that calculating the spectral
density of the current fluctuations requires solving the in-
homogeneous Boltzmann equation twice. First, the steady
occupation function must be obtained using Eq. (6). Then,
the Boltzmann equation is solved again with inhomogeneous
term f s

k (vk,β − Vβ ) with f s
mk ≡ f 0

mk + � fmk. The appropriate
Brillouin zone integrations are then performed to calculate the
power spectral density.

As a check of the above derivation, consider an equilib-
rium system for which Eγ = 0 and Vγ = 0. The equation is
simplified as f s

k = f 0
k and �kk′ = �kk′ . Then, we have

S jα jβ (E=0)=2

(
2e

V0

)2

	
[∑

k

vk, α

∑
k′

(iω I+�)−1
kk′ f 0

k′ vk′, β

]
.

(21)

With the same simplifications, the equilibrium AC conductiv-
ity from Eq. (11) is

σω
αβ (E = 0) = 2e2

h̄V0

∑
k

vk, α (iω I + �)−1
kk′

[
− ∂ f 0

k′

∂k′
β

]
. (22)

Combining the above expressions, we obtain the familiar
Nyquist relationship [27]:

S jα jβ (E = 0) = 4
kBT0

V0
	[

σω
αβ (E = 0)

]
. (23)

This relationship is formally valid only in equilibrium but
remains approximately true in the “cold” electron regime for
which ∂ f s

mk/∂k ≈ ∂ f 0
mk/∂k and � fmk � f 0

mk such that �kk′ ≈
�kk′ and f s

mk ≈ f 0
mk.

III. NUMERICAL METHODS

We now describe how to compute the spectral noise
power and other quantities using the theory from the pre-
vious section. The inputs to the Boltzmann equation are
the electronic structure and electron-phonon matrix elements
gmk,m′k+q calculated using electronic structure packages. First,
the electronic structure and electron-phonon matrix elements
for GaAs are computed on a coarse 8 × 8 × 8 grid us-
ing density functional theory (DFT) and density functional
perturbation theory (DFPT), respectively, with QUANTUM

ESPRESSO (QE) [63,64]. These quantities are then interpolated
to finer grids using Wannier interpolation with PERTURBO [65].
PERTURBO includes corrections for polar materials that are
necessary in GaAs [66].

The electronic structure calculations using QE employ the
same simulation parameters as in Ref. [14]. Briefly, we use
a plane wave cutoff of 72 Ryd and a relaxed lattice param-
eter of 5.556 Å. We set the Fermi level to obtain a carrier
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concentration of 1015 cm−3 corresponding to a nondegenerate
electron gas. We consider only conduction band electronic
states within an energy cutoff of 335 meV above the con-
duction band minimum (CBM). This energy window is larger
than the window used in typical electron transport calculations
since the present calculations allow the electric field to heat
the electrons, leading to occupation at higher energy states.
Further increasing the energy window by 50 meV had negli-
gible effect on the observables of interest like spectral noise
power.

In PERTURBO, we use a grid of 200 × 200 × 200 for
the Wannier interpolated electronic structures and electron-
phonon matrix elements. The transition rates of Eq. (3) are
calculated at 300 K. We consider convergence by determin-
ing the change in the spectral noise power at the maximum
electric field for which the � fmk � f 0

mk assumption is sat-
isfied. Numerical experimentation shows that this condition
is satisfied for E � 800 V cm−1. The spectral noise power at
800 V cm−1 using the 200 × 200 × 200 grid differs by less
than 1% from the value obtained on a grid with twice the
number of grid points. The delta function in the electron-
phonon matrix elements is approximated with a Gaussian
with a 10 meV broadening parameter [14]. Decreasing the
broadening to 6 meV changed the spectral noise power at 800
V cm−1 by less than 3%.

While PERTURBO performs the Wannier interpolation for
the electron-phonon interaction on fine grids [59], it does not
explicitly construct the collision matrix of Eq. (3). Instead,
the mobility is computed using an iterative scheme under the
cold electron approximation [8]. We found that this iterative
method was numerically unstable for the warm electron case.
We instead solved the linear system using the generalized
minimal residual (GMRES) algorithm as implemented in the
scientific PYTHON library [67]. The matrix was constructed by
modifying PERTURBO to output the elements of Eq. (3).

As described in Sec. II, the derivative term corresponding
to particle drift in an electric field E is approximated by a finite
difference matrix. Boundary conditions must be applied to
points that do not have a full set of first-nearest neighbors. To
do so, we assume that these points have zero occupation by re-
moving the contributions of these states to the finite difference
matrix. The energy window is selected so that these boundary
states indeed have negligible population, also ensuring that
scattering induced by the collision matrix �mkm′k′ for these
states can be neglected.

With the collision and drift matrices computed, we then
construct the relaxation operator �mkm′k′ , Eq. (5). The steady-
state distribution is obtained by solving the resulting linear
system given by Eq. (6). We then solve Eq. (19) with the in-
homogenous term constructed from the previously computed
steady-state distribution as input. For this second Boltzmann
equation, we include an iω term on the diagonal of the linear
system which corresponds to the Fourier transformed time
derivative. Finally, the spectral density is computed as a Bril-
louin zone integration over the distribution that solves the
second Boltzmann equation. The calculation of the AC mo-
bility proceeds in a similar way as for the steady distribution
except with the addition of the iω term.

In this work, we apply our method to GaAs. Owing to
computational limitations, we account for first-order electron-

phonon (1ph) processes and neglect higher-order interactions
that are reported to play a role in GaAs [16]. Also, recently
studies report the effect of quadrupole electron-phonon inter-
actions on electron transport [68,69]. In particular, the work
of Ref. [69] predicted a significant correction to the mobility
in GaAs limited by acoustic mode scattering. Our calcula-
tions were performed at 300 K at which the scattering is
dominated by polar optical phonons, and so we neglected
quadrupole interactions. Finally, we note that the method de-
scribed above is easily extendable to other technologically
interesting semiconductors. In particular, first-principles cal-
culations of electron-phonon interactions in Si, InP, and Ge
are now routine, noise calculations in these materials are the
subject of ongoing work.

IV. RESULTS

A. Transport

We begin by examining the steady state distribution and
associated transport observables in the cold and warm electron
regimes. Figure 1(a) plots the deviational steady state distri-
bution functions under the two approximations versus wave
vector parallel to the electric field, kx. We refer to this direction
as the longitudinal direction. At low fields E < 100 V cm−1,
the solutions are nearly identical, but as the field increases, dif-
ferences in the distribution functions emerge. Under the cold
electron approximation, Eq. (6) shows that � fmk is required to
possess odd symmetry about the Brillouin zone center because
∂ f 0

mk/∂k is odd with respect to kx while the scattering matrix is
even (�kk′ = �−k−k′ ); this symmetry is evident in Fig. 1(a).
In contrast, in the warm electron case the electrons can be
heated and the solution becomes asymmetric with increasing
field.

The transport properties of the warm electron distribution
differ from those of the cold distribution because warm elec-
trons in the high energy tail are able to emit optical phonons
and hence exhibit higher scattering rates. As reported pre-
viously [14], the predicted mobility of GaAs exceeds the
experimental mobility owing to the exclusion of higher-order
phonon scattering processes and the lower calculated effective
mass (0.055 m0) compared to experiment (0.067 m0) [16].

Therefore, to facilitate comparison we examine the DC
mobility normalized by its low-field value in Fig. 1(b).
The low-field value of the computed mobility is 17 420
cm2 V−1 s−1. At low fields E < 100 V cm−1, the mobility
under the warm and cold electron approximations agrees to
within 1%. At E = 800 V cm−1, the DC mobility of the
warm electrons has decreased by more than 10%. This be-
havior is qualitatively consistent with the sublinear current
voltage characteristic (CVC) of n-type GaAs [22], or a de-
crease in mobility with increasing electron temperature. The
field dependence of the normalized mobility shows favorable
comparison to experiment, implying that our calculation is
properly capturing the heating with the field.

In addition to steady quantities, the small-signal AC mo-
bility can be computed as in Eq. (11). Figure 1(c) presents
the small-signal AC mobility for the warm electron gas ver-
sus frequency for several electric fields. At zero frequency,
the equilibrium AC mobility is equal to the equilibrium DC
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FIG. 1. (a) Deviational occupation � fk in GaAs at 300 K under the cold (dotted lines) and warm (solid lines) electron approximations
versus longitudinal wave vector kx . Curves plotted for E = 100 (blue) and 800 V cm−1 (orange). The dashed black line is a guide to the eye.
(b) Normalized longitudinal (‖) DC mobility versus electric field of the cold (dashed blue line) and warm electrons (solid red line). The heating
of the electrons leads to a decreased mobility. The trend of the normalized mobility agrees well with experiments: Fig. 1, Ref. [70] (Upward
black triangles) and Fig. 4, Ref. [71] (Downward black triangles). (c) Real part of the longitudinal small-signal AC mobility versus frequency
for equilibrium (dashed black line), E = 100 (dash-dot blue line) and 800 V cm−1 (solid orange line) under the warm electron approximation.
The AC mobility exhibits spectral features at frequencies that are characteristic of the inverse momentum and energy relaxation times (see
Sec. IV C).

mobility, as expected. The decrease of the AC mobility with
electric field at is also consistent with the trend observed in the
DC mobility. At f ∼ 1 THz, the AC field frequency exceeds
the phonon-mediated scattering rates which redistribute the
electrons, and thus the AC mobility rolls off at all fields.
This result reflects the electrical response transitioning from
a purely resistive to a purely reactive regime as the frequency
exceeds the highest scattering rates.

The frequency dependence of the AC mobility indicates the
relevant timescales of momentum and energy relaxation [72].
In particular, for 800 V cm−1, we observe a lower value of
the AC mobility at low frequency, followed by a maximum at

around 100 GHz. This feature is due to energy exchange with
phonons and will be discussed in Sec. IV C.

B. Diffusion noise

We now calculate the spectral density of current fluc-
tuations from the nonequilibrium steady state in GaAs.
Figure 2(a) shows the spectral density of longitudinal current
fluctuations versus electric field at an observation frequency
of 1 MHz, far smaller than any scattering rate. At equilib-
rium, the noise is given by the Nyquist relation, Eq. (23).
It is conventional to report the spectral density normalized

FIG. 2. (a) Spectral density of longitudinal current density fluctuations (solid red line) normalized to the Nyquist value vs electric field
along with Davydov spectral densities calculated using ADP (dash-dot blue line) and Fröhlich (dashed yellow line). At equilibrium, the noise
agrees with Nyquist-Johnson noise (dotted black line). The ab initio calculation predicts a steeper decrease in current PSD with field compared
to the approximations. The symbols correspond to experimental measurements (Fig. 11, Ref. [73]). (b) Relaxation time versus energy above
conduction band minimum for GaAs at 300 K using ADP (dash-dot blue line), Fröhlich potential (dashed yellow line), and computed (red
circles). The energy of the zone-center LO phonon is shown for reference (dashed black line). (c) Effective electron gas temperature versus
electric field for ADP (dash-dot blue line), Fröhlich (dashed yellow line), and computed (solid red line). The magnitude of electron heating is
similar among the various calculations.
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FIG. 3. (a) Computed power spectral density (PSD) of longitudinal (‖, dashed orange line) and transverse (⊥, dashed-dotted blue line)
current density fluctuations versus frequency at E = 800 V cm−1, along with the Nyquist-Johnson prediction for E = 0 (solid black line).
(b) Spectral density of energy fluctuations vs frequency at equilibrium (solid black line), E = 800 V cm−1 (dashed orange line). The time scale
for electron temperature fluctuations sets the upper frequency limit for the convective mechanism.

to the Nyqist value to allow comparison between samples of
different carrier density [23].

As the electric field increases, the computed noise de-
creases below the Nyquist value. Few experimental studies
of noise in GaAs cover the fields of present interest, but
reasonable agreement is observed with measurements by
Bareikis et al. [73]. We note that a decrease with field is
observed in other studies in GaAs [70,74] though the sparsity
of data in the relevant electric field range prevents direct
comparison.

To better understand the decreasing trend, we use an
approximate solution of the Boltzmann equation for an elec-
tron gas interacting quasi-elastically with a thermal phonon
bath [25,75]. Under the quasi-elastic approximation, the dis-
tribution function is expanded in momentum space using
Legendre polynomials. Because the distribution is nearly
isotropic in momentum space under quasielastic scattering,
only the two lowest Legendre polynomials need be re-
tained [76]; the zeroth-order term gives the occupancy versus
energy and is known as the Davydov distribution. The model
is parametrized by the energy dependence of the momentum
and energy relaxation times, τ and τε , respectively, and the
inelasticity ratio τ/τε [22]. Once these parameters are speci-
fied, the Davydov distribution can be computed and used with
Eq. (19) to calculate the spectral density of current fluctua-
tions [61].

Approximate analytic expressions for the electron relax-
ation times in semiconductors are available [3]. Previous
works have calculated the Davydov distribution for a power-
law energy dependence of the relaxation times such as that
from the acoustic deformation potential (ADP) [77–79]. How-
ever, in GaAs at room temperature, the long-ranged Fröhlich
interaction with longitudinal optical (LO) phonons is the dom-
inant scattering mechanism [14,15].

In Fig. 2(a), we compare the ab initio longitudinal spectral
density to that predicted using the Davydov distribution with
the ADP and Fröhlich scattering rates. The approximate relax-
ation times have been scaled to match the computed low-field

mobility, and the inelasticity ratio has been selected using an
estimation of the energy and momentum relaxation times (see
Fig. 3). The computed spectral density is observed to decrease
monotonically with the electric field. This decrease is captured
qualitatively by the Fröhlich calculation. In contrast, the ADP
noise increases monotonically with field.

These trends can be understood in terms of the differing
energy dependencies of the relaxation times in the various
approximations. Figure 2(b) shows the phonon-mediated re-
laxation times versus energy for electrons in GaAs at 300 K
for the three cases. Below the zone-center LO phonon energy
h̄ωLO ∼ 35 meV, the computed relaxation times are set by
LO phonon absorption [14]. Above the LO phonon energy,
LO emission becomes dominant and the relaxation times
sharply decrease to a value that remains roughly constant
until electron energies are near the L-valley minimum at
∼0.25 eV above the CBM. This absorption-to-emission tran-
sition is qualitatively captured by the Fröhlich approximation.
The ADP relaxation times agree reasonably well with the
computed ones in the emission-dominated region but do not
exhibit the absorption-to-emission transition.

The electric field dependence of the spectral noise power
reflects the balance between the growth of scattering rates
with electron energy and the heating of the electron gas by
the DC field [80]. To understand this balance, we examine the
effective electron temperature of the steady distribution for
the three cases in Fig. 2(c). The effective electron tempera-
ture is calculated as the temperature of a Maxwell-Boltzmann
distribution that yields the same energy density as the steady
nonequilibrium distribution. At low fields E < 100 V cm−1,
the temperature is equal to the lattice temperature. As the
electric field increases, the effective temperature increases,
corresponding to occupancy at higher energies and increased
scattering rates. Near equilibrium where the mobilities are
equivalent, the temperature rise predicted from each approxi-
mation is similar, but at higher fields, the ab initio calculation
predicts a slightly lower temperature than do either the ADP
or Fröhlich approximations.
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As the electron gas heats, higher energy states are occu-
pied and thus the spectral noise power, Eq. (19), includes
contributions from fluctuations in those states; hence, the
spectral noise power may increase on heating. On the other
hand, at these high energies, the scattering events which damp
out fluctuations are more frequent, tending to decrease the
noise. The competition between these mechanisms sets the
trends shown in Fig. 2(a). For both Fröhlich and the present
calculations, the sharp increase in scattering rates associated
with the absorption-to-emission transition dominates, and the
spectral density decreases monotonically with electric field.
In contrast, the ADP approximation shows increasing noise
with electric field as the heating of the electrons dominates
the weak increase of the scattering rates.

The evolution of the spectral density with electric field
demonstrates the sensitivity of the spectral noise power to
the energy dependence of the scattering rates. Although the
mobility at equilibrium is equivalent for all three cases, the
nonequilibrium noise behavior exhibits qualitatively different
trends depending on the energy dependence and inelasticity of
the scattering mechanisms.

C. Spectral noise power

The nonequilibrium noise exhibits spectral features that are
not present in the Nyquist-Johnson case. Figure 3(a) shows
the spectral density of longitudinal (L) and transverse (T)
current fluctuations (relative to the electric field axis) versus
frequency at E = 800 V cm−1. There are several notable
features of the spectral density in this figure. First, the spec-
tral density is constant at low frequencies and rolls off as
frequency increases, decreasing to 50% of its low-frequency
value at 300 GHz. Secondly, an anisotropy exists between the
longitudinal and transverse spectral densities. Finally, the lon-
gitudinal noise exhibits a nonmonotonic trend for frequencies
around 50 GHz, similar to that observed for the AC mobility in
Fig. 1(c). Spectroscopic measurements of the noise power at
these frequencies have not been performed, but these trends
are qualitatively similar to those observed in recent Monte
Carlo simulations [58].

We discuss each of these points in turn. Consider first
the noise at equilibrium. The zero-field curve shows that the
longitudinal and transverse spectral densities are equal and
coincide with the Nyquist-Johnson value, Eq. (23). As with
the AC mobility, the spectral density rolls off at frequencies
exceeding the phonon-mediated scattering rates because the
electronic system cannot redistribute in response to the fluctu-
ation. This roll-off behavior has been noted previously [6] and
has also been observed for phonon thermal conductivity (see
Fig. 1(b) in Ref. [81]).

Now consider the noise with E = 800 V cm−1. A similar
roll-off with increasing frequency as the equilibrium case
is observed. At low frequency, both the longitudinal and
transverse spectral densities are lower than the Nyquist value
because of the increased electron temperature. However, an
anisotropy exists in the spectral densities. The origin of this
feature is the ‘convective’ mechanism [22,25,82] and can
be understood by decomposing the current fluctuations into
two sources. The first is the fluctuation of the drift velocity,
induced by stochastic transitions between states of differing

group velocity. The second is the fluctuation of the electron
temperature, induced by random energy exchange with the
thermal phonon bath. Under nonequilibrium conditions, these
fluctuations couple. As the gas is heated by the electric field,
the fluctuating current induces a variation in the Joule heating.
The resulting electron temperature fluctuation changes the
conductivity, which in turn modifies the current. This coupling
only exists for fluctuations longitudinal to the electric field
because transverse fluctuations do not affect Joule heating.
In sublinear CVC materials such as GaAs, the conductiv-
ity decreases with electron temperature, and the convective
mechanism suppresses longitudinal fluctuations. This feature
is indeed observed in Fig. 3(a).

The convective mechanism is only present at frequencies
ωτε � 1, where τε is the energy relaxation time. As discussed
above, the local maxima from the convective contribution
appears at ωτε = 1 in the longitudinal direction (see Ref. [22],
Chap. 7). The energy relaxation time can also be extracted
by calculating the spectral density of electron temperature
fluctuations versus frequency. This calculation is the energy
analog of Eq. (19), where the relevant state quantity is the
energy instead of the group velocity. Figure 3(b) shows the
spectral density of energy fluctuations versus frequency for
several electric fields. At low frequencies, f < 10 GHz, the
spectral density increases with field as the temperature fluc-
tuations rise with higher Joule heating. At higher frequencies,
f ∼ 50 GHz, the energy fluctuations decrease to 50% of their
low-frequency values and begin to converge for the two fields
shown. This convergence signifies that the temperature of
the electron gas cannot change sufficiently rapidly due to its
finite thermal capacitance. Consequently, the convective noise
mechanism is removed and the anisotropy of the densities
in Fig. 3(a) also disappears; the longitudinal and transverse
spectral densities converge. The convective mechanism is also
responsible for the nonmonotonic trend of the AC mobility
seen in Fig. 1(c).

D. Quasi-elastic scattering

The present formalism for electronic noise permits the
study of the microscopic processes responsible for electronic
noise in a manner that is difficult to obtain by other methods.
As an example, consider the spectral features present in Fig. 3.
Comparing the frequency where the current power spectral
density and energy power spectral density reach half of their
low-frequency values (300 GHz versus 50 GHz, respectively),
the energy relaxation time is inferred to be around 6 times
longer than the momentum relaxation time, implying that the
quasielastic assumption is valid. This observation is surprising
given the well-known dominance of high-energy LO phonon
emission in GaAs [14] and that inelasticity is expected only
when the physical temperature is comparable to the Debye
temperature [6]. Analytical treatments of noise under domi-
nant LO phonon coupling typically assume strongly inelastic
interactions between the electrons and lattice (see Sec. 3.8 of
Ref. [25], Sec. 7.3 of Ref. [22], or Ref. [83]).

We identify the origin of this discrepancy by examining
how individual scattering events contribute to the momentum
and energy relaxation of the electron system to the phonons.
These transfers can be expressed as sums over each of the
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FIG. 4. (a) Probability histograms of longitudinal momentum loss Rk (blue bars) and energy loss Rεk (yellow bars) normalized by the
thermal averages at 800 V cm−1. The dashed lines represent the average transfer per scattering event. At this field, the average fractional
dissipation of longitudinal momentum is ∼3× larger than that for energy. (b) Deviational occupation � fk in GaAs at 300 K versus energy
calculated under the RTA (dashed black line), hot Maxwell-Boltzmann (dashed-dotted grey line), and ab initio warm electron approximation
(solid orange line) at 800 V cm−1. The dashed black line is added as a guide to the eye. Neither the RTA nor the Maxwell-Boltzmann capture
the hot electron tail.

electron-phonon scattering processes in the collision integral
weighted by the energy and momentum of the mediating
phonon. Every electronic state in the BZ is coupled via
phonons to other states; by summing over all possible scatter-
ing processes, we obtain the average energy and momentum
exchanged in a single scattering event. More precisely, the
fractional change in momentum and energy per scattering
event are calculated from

Rx = 1

�kk〈|x|〉
∑

k′
�x �k′k, (24)

where x = kx, εk and �x = x − x′ is the difference in the
state quantity between k and k′. 〈|x|〉 denotes the thermal
average magnitude of the relevant quantity; �k′k represents
the component of the diagonal element of the collision matrix
(the scattering rate) corresponding to scattering from k to k′;
and other variables carry same meaning as defined in Sec. II.

These fractional changes at 800 V cm−1 are plotted as a
probability histogram in Fig. 4(a). In this figure, we have
binned each state in the BZ by the value of Rk and Rεk . For all
the states in a given bin, we calculate the probability of scat-
tering P ∝ ∑

bin �kk f s
mk (the final quantity is normalized to

unity). The horizontal position indicates the average fractional
change in energy or momentum induced by the event. Positive
values of the fractional change correspond to net transfers to
the lattice, or dissipation, while negative values correspond to
transfers to the electrons, or accumulation. The height of a bar
represents the population-weighted probability of scattering
in a given time interval.

Figure 4(a) reveals several important features. First, en-
ergy transfers are clustered into two groups. The grouping
of accumulation events around −0.75 corresponds to the
∼35 meV energy gain associated with LO absorption, which
dominates scattering of electrons below the emission thresh-
old h̄ωLO. The relatively disperse grouping of the dissipation

events reflects a balance between LO emission and absorp-
tion for states above the threshold. Second, in contrast to
energy transfers, momentum transfers grow with the wave
vector of the mediating phonon. Consequently, a broader and
more disperse distribution of momentum transfers is available.
Finally, the balance between dissipation and accumulation
differs between energy and momentum. In equilibrium, these
processes are balanced, but at 800 V cm−1, the net transfers
for both quantities are dissipative as the warm electrons trans-
fer excess momentum and energy to the lattice. The dashed
lines in the figure represent the average fractional transfer
per scattering event and indicate that the net momentum dis-
sipation exceeds the energy dissipation by around a factor
of 3. This imbalance is partly responsible for the disparate
time scales of energy and momentum relaxation observed in
Fig. 3.

The second contributing factor to the relatively long energy
relaxation time is the presence of a hot electron tail in the
calculated distribution. In Fig. 4(b), we plot the steady de-
viation distribution, � fs, calculated under the warm electron
approximation using the full e-ph scattering matrix versus
energy. For reference, the corresponding distributions for a hot
Maxwell-Boltzmann at the nonequilibrium electron temper-
ature and a ‘relaxation-time distribution’ obtained under the
warm electron approximation with only the on-diagonal ele-
ments of the scattering matrix. The ab initio treatment predicts
a hot electron tail that is not observed with either approximate
method. Although representing only a small fraction of the
population, these hot electrons are at energies 5–10× the
thermal average value. Consequently, many scattering events
are needed to return these electrons to equilibrium, further
increasing the energy relaxation time. The result is that the
quasi-elastic approximation is unexpectedly accurate despite
the inelastic nature of optical phonon scattering, and thus
explaining the features in the spectral noise power and AC
mobility.
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V. SUMMARY AND FUTURE OUTLOOK

The primary numerical tools used to study electronic
noise are Monte Carlo (MC) methods [56–58,84,85]. These
simulators have many advantages, including the ability to in-
corporate realistic device geometries and space charge effects
through coupled Poisson solvers, and they are thus useful to
interpret experimental measurements on devices. However,
MC studies rely upon semi-empirical models of scattering and
electronic structure that require parameters such as deforma-
tion potentials, sound velocities, effective masses, and energy
gaps to be specified and calibrated against experiment. The
methods are thus most useful for well-characterized materials
for which these empirical models are available.

A parallel development in the transport field has been the
introduction of ab initio methods to study low-field transport
phenomena without adjustable parameters. These methods
enable not only the computation of low-field transport prop-
erties such as electronic mobility [8,9] and phonon thermal
conductivity [86] but also an understanding of the micro-
scopic scattering processes that underlie these macroscopic
properties and prediction of the properties of new materials.
However, thus far these methods have been restricted to the
low-field, cold electron regime.

In this work, we have described an ab initio theory of
electronic noise for warm electrons in semiconductors. The
method requires no adjustable parameters, with the phonon
dispersion, band structure, and electron-phonon coupling cal-
culated from first principles. Further, this method permits

the study of transport even when the electrons are not in
equilibrium with the lattice, being free of the cold electron
approximation used in previous transport studies. To demon-
strate the method, we performed calculations in GaAs, a
technologically relevant material, and demonstrated that the
spectral features of the AC mobility and current noise are
linked to the disparate time scales of energy and momentum
relaxation. The quasi-elastic approximation is unexpectedly
accurate in GaAs despite the dominance of polar optical
phonon scattering. Our work paves the way for first-principles
studies of electronic noise in other semiconductors that will
advance the study of transport phenomena and applications of
low-noise semiconductor devices.
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