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We study free, capped, and encapsulated bilayer jacutingaite (Pt2HgSe3) from first principles. While the
freestanding bilayer is a large-gap trivial insulator, we find that the encapsulated structure has a small trivial gap
due to the competition between sublattice symmetry breaking and sublattice-dependent next-nearest-neighbor
hopping. Upon the application of a small perpendicular electric field, the encapsulated bilayer undergoes a
topological transition towards a quantum spin Hall insulator. We find that this topological transition can be
qualitatively understood by modeling the two layers as uncoupled and can be described by an imbalanced
Kane-Mele model that takes into account the sublattice imbalance and the corresponding inversion-symmetry
breaking in each layer. Within this picture, bilayer jacutingaite undergoes a transition from a 0+0 state, where
each layer is trivial, to a 0+1 state, where an unusual topological state relying on Rashba-like spin orbit coupling
emerges in only one of the layers.
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I. INTRODUCTION

Topological insulators have a finite gap in their bulk energy
spectrum but differ from standard (trivial) insulators because a
nonzero topological invariant is associated with the manifold
of occupied states [1,2]. In most cases, the nontrivial topo-
logical invariant results in the appearance of metallic states
that cross the bulk gap close to the boundary of a finite-size
system. The nature of the topological invariant depends on the
dimensionality and the underlying fundamental symmetries
of the system [3,4], including crystal symmetries [5,6]. A
paradigmatic example is the integer quantum Hall state in
two dimensions (2D), for which the topological invariant is
an integer C, known as the Chern number, which provides the
number of (chiral) states localized close to each edge and is
related to the quantized Hall conductivity σxy = C e2/h [7,8].

When time-reversal symmetry is preserved in 2D, although
the Chern number vanishes identically, another topological
invariant ν can be introduced [9–12], which is a Z2 num-
ber that can assume only two values: 0 or 1, i.e., trivial
or nontrivial. As a consequence of time-reversal symmetry,
gapless states appear at the edges of the system in pairs
of counterpropagating (helical) modes, and a bulk-boundary
correspondence relates ν to the parity of the number of
such pairs. In particular, we have that an even number
of helical pairs is topologically trivial (ν = 0), as states
belonging to different pairs can be mixed and adiabati-
cally gapped out without breaking time-reversal symmetry.
On the contrary, time-reversal-invariant topological insula-
tors (ν = 1), also known as quantum spin Hall insulators
(QSHIs), have an odd number of pairs, so that the presence
at each edge of at least one pair of helical gapless states is
robust.

Experimental realizations of the QSHI phase have been re-
ported in semiconductor quantum wells based on HgTe/CdTe
[13–16] and InAs/GaSb [17,18] heterostructures, as well
as in two-dimensional materials like WTe2 [19–22]. In all
these systems, the operating conditions where transport is
dominated by edge states are limited to fairly low tempera-
tures owing to their small bulk energy gap. A breakthrough
could be represented by monolayer Pt2HgSe3, which has been
predicted using first-principles simulations to be the first ma-
terials realization of the seminal Kane-Mele model [9,10] for
QSHIs, with a substantial energy gap of 0.5 eV [23] (and
could even give rise to a Chern insulator when functionalized
[24] or interfaced with a magnetic material like CrI3 [25]).
Although monolayers of this material could be potentially
exfoliated [26] from a bulk layered mineral called jacutingaite
[27,28], a clear experimental validation is still lacking [29].

When two QSHI monolayers are stacked together to form a
bilayer, the system is expected to become trivial in the limit of
weak interlayer coupling. Indeed, when the layers are almost
independent, we inevitably have an overall even number of
helical pairs that can hybridize and get gapped out, consistent
with the fact that the bulk topological invariant is defined only
modulo 2, so that νbi = νmono + νmono = 1 + 1 ≡ 0 mod 2.
Analogously, a trilayer should be nontrivial, and for thicker
layers we would expect an alternation of trivial and nontrivial
topologies that, in the bulk limit, would give rise to a weak
topological phase [30] relying on the translational invariance
along the stacking direction.

In bulk jacutingaite, the layers cannot be considered
nearly as independent, so that this scenario is expected to
break down. Indeed, first-principles simulations have shown
that nearby layers are strongly hybridized, giving rise to a
large second-nearest-layer hopping [31]. This strong coupling
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FIG. 1. Band structure and lateral view of the crystal structure for (a) free, (b) h-BN capped, and (c) h-BN encapsulated bilayer jacutingaite.
In the top panels, the full band structure along the path �-M-K-� is shown with dots, while lines represent the Wannierized band structure
of the eight bands closest to the Fermi level. The red rectangle in (c) highlights the region around the gap magnified in Fig. 2. In the bottom
panels, we note that in each Pt2HgSe3 layer Hg atoms form a buckled honeycomb lattice [see also Fig. 3 for a top view in the case of (c)], with
Hg atoms in the two sublattices alternating above and below a Pt2Se3 layer. Dashed lines highlight the vertical position of Hg planes, showing
the inequivalence of inner and outer planes, the latter tending to extend farther away from the Pt2Se3 layer. This tendency, most apparent in the
free bilayer, is suppressed by the presence of h-BN, with the encapsulated bilayer recovering a more symmetric structure of each layer.

drives bulk jacutingaite into a semimetallic state endowed
with a dual topology [31–33] that combines a nonzero mirror
Chern number with a weak topology. Recent experiments have
verified both the semimetallic nature of bulk Pt2HgSe3 [34,35]
and the presence of surface states protected by the crystalline
mirror symmetry [36].

Here we consider bilayer jacutingaite and predict using
first-principles simulations that it is trivial, although in an
unexpected way, with νbi = 0 + 0. The trivial gap arises from
inversion-symmetry breaking in each layer, with competing
contributions from a structural distortion and the different
environments affecting intrasublattice hopping. As a result
of this sublattice imbalance, the Kane-Mele term that drives
the topological nature of monolayer jacutingaite [23] is re-
placed by a spin-orbit coupling that has the same sign on
the two sublattices. When encapsulated in hexagonal boron
nitride (h-BN), the trivial gap is strongly reduced and can be
turned topological by a small perpendicular field, promoting
bilayer Pt2HgSe3 into a promising system for experimental
explorations.

II. BILAYER STRUCTURES

Jacutingaite comprises AA-stacked honeycomb lattices of
Hg atoms, where the A (B) sublattice is positioned above
(below) a plane of Pt atoms (see Fig. 1). In the absence of spin-
orbit coupling, the electronic band structure of monolayer
jacutingaite contains gapless Dirac cones at the corners K
and K′ of the hexagonal Brillouin zone [23], which is similar
to what happens in graphene. These cones can be gapped in
two different ways. The first is by breaking the sublattice (in-
version) symmetry, e.g., by making the Hg distance to the Pt

planes different on the two sides, leading to a trivial insulator.
The second way to open a gap is via Kane-Mele spin-orbit
coupling, making monolayer jacutingaite a quantum spin Hall
insulator.

In bilayer jacutingaite, although global inversion symmetry
connecting the two layers is still present, there is no inversion
symmetry per layer; that is, the two sublattices in each layer
are no longer equivalent. This means that Hg atoms can be dis-
placed to make each layer by itself trivial (νbi = 0 + 0 = 0).
If no or only small displacements occur and the two layers
are almost independent, however, the combination of two
topological monolayers together makes the bilayer trivial,
following the heuristic rule νbi = 1 + 1 = 0. In either case,
bilayer jacutingaite is expected to be a trivial insulator.

To confirm this, we perform first-principles density-
functional theory (DFT) calculations of various few-layered
jacutingaite structures using QUANTUM ESPRESSO [37,38],
with a Coulomb cutoff [39] to reproduce the correct open
boundary conditions in the vertical direction and the van der
Waals compliant functional vdw-DF-cx [40–42] that gives the
best agreement with Raman experiments for the vibrational
frequencies of bulk jacutingaite [34] (for further details of
the calculations see Appendix A). The unit cell is hexagonal
(point group D3d or 3̄m) with the in-plane lattice constant fixed
to the bulk relaxed value a = 7.384 Å.

We first relax the structure of a freestanding bilayer, which
shows a large shift in the vertical position of the outer Hg
atoms. The distance of the Hg atoms to the Pt planes increases
from 1.73 Å in the monolayer to 2.02 Å for the outer Hg
atoms. The sublattice asymmetry is responsible for a large
trivial (νbi = 0 + 0 = 0) band gap of 290 meV at the K point
(see Appendix C and the discussion below). The same level
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TABLE I. Main properties of various layered jacutingaite struc-
tures. The monolayer and bulk have been studied before [23,31];
here we show results for free, capped, and encapsulated bilayers,
as well as for trilayer Pt2HgSe3 (see also Appendix B). The second
column contains the gap at K obtained using approximate DFT (see
Appendix A). The third column contains the z position of the Hg
atoms relative to the nearest Pt plane (see Fig. 1). Notice that in the
capped, encapsulated, and trilayer cases the position depends on the
layer (abbreviated “l.”).

System Gap at K (meV) �z Hg-Pt (Å)

Bulk <1 1.84
Monolayer 168 1.73
Bilayer 290 1.81 (inner Hg)

2.02 (outer Hg)
BN/bilayer 44 1.78 (outer Hg, capped l.)

1.80 (inner Hg, capped l.)
1.78 (inner Hg, free l.)
1.90 (outer Hg, free l.)

BN/bilayer/BN 27 1.80 (inner Hg)
1.78 (outer Hg)

Trilayer <1 1.84 (middle l.)
1.81 (inner Hg, outer l.)
2.02 (outer Hg, outer l.)

of displacement is found in trilayer jacutingaite (see also
Appendix B); however, the trilayer is semimetallic owing to a
large second-nearest-layer hopping between the outer layers,
similar to what happens in the bulk [31]. See Table I for an
overview of the Hg positions and band gaps of the different
studied structures.

The band gap in free bilayer jacutingaite is so large that
a topological transition cannot be obtained using reasonable
perpendicular external electric fields (up to 1 V/Å), un-
like monolayer jacutingaite, which has a transition at Eext =
0.36 V/Å. This is because the external electric field is never
sufficient to reduce the sublattice asymmetry. We note in pass-
ing that these values do not correspond to a potential drop
across the system (e.g., Eext = 1 V/Å does not correspond
to 1 V over 1 Å), as in first-principles simulations we can
set only the external electric field (related to the dielectric
displacement D through Eext = 4πD) and not the total electric
field as in experiments (through the gate voltages applied to
electrodes on the two sides of the system).

A possible way to restore sublattice symmetry, and thus to
make a topological transition more feasible, at least in one
layer, is to suppress the lattice distortion by encapsulating
one side of bilayer jacutingaite with h-BN. As can be seen
in Table I and Fig. 1(b), this indeed reduces the sublattice
asymmetry in one of the layers and reduces the gap. However,
the system is still 0 + 0 = 0 trivial, and fields up to 1 V/Å
do not induce a topological transition; instead, they make the
system metallic, with a charge transfer from the bilayer to
h-BN.

On the other hand, the reduction in gap size suggests
that fully encapsulating bilayer jacutingaite with h-BN might
bring us to the regime where we can induce a topological
transition via an electric field. We indeed find that the Hg po-
sitions are nearly symmetrical in h-BN encapsulated bilayers.

FIG. 2. Top: Band structure of h-BN encapsulated bilayer ja-
cutingaite around the K point in a small energy window close to
the Fermi energy for three different values of the applied external
electric field. Note that at zero field all bands are doubly degenerate
due to inversion symmetry, whereas at nonzero fields this degeneracy
is lifted. Bottom: The direct gap at the K point as a function of
perpendicular external electric field. Around Eext = 0.3 V/Å the gap
closes. For larger fields, a band inversion occurs, and the system is
a quantum spin Hall insulator with ν = 1. The indirect band gap is
shown in Appendix D, while the direct gap computed with different
functionals is reported in Appendix E.

Furthermore, the gap is reduced to only 27 meV, which brings
us into the regime that allows for a topological transition.

III. BAND STRUCTURE AND WANNIERIZATION

We will now discuss in depth the properties of the encap-
sulated bilayer structure. For simplicity, we locate the h-BN
layers on the two sides of the bilayer so that, in the absence
of an external electric field, the total system again contains
inversion symmetry, and we let only the vertical position of
the h-BN layers relax. The full band structure is shown in the
top panel of Fig. 1(c) for Eext = 0, where all bands are doubly
degenerate as a consequence of time-reversal and inversion
symmetries. Whereas the bandwidth of the four main bands is
about 1 eV, the band gap is only 27 meV (see the top left panel
of Fig. 2 for a closer look at the band structure around K near
the Fermi energy).

When a finite external electric field Eext is applied, the
gap at K reduces, until it closes at about Eext = 0.3 V/Å, as
shown in the top middle panel of Fig. 2. At larger fields, the
gap reopens and increases with Eext, with bands at K that
are inverted, as shown in the top right panel of Fig. 2 for
Eext = 0.5 V/Å. The full dependence of the direct gap size
at K as a function of external electric field is reported in
the bottom panel of Fig. 2. It is important to stress that the
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FIG. 3. Top and lateral views of the crystal structure of h-BN en-
capsulated bilayer jacutingaite. In the top view, the green shaded area
highlights the hexagonal Wigner-Seitz unit cell and the (buckled)
honeycomb lattice formed by Hg atoms. Two Wannier functions as-
sociated with the two sublattices of the upper layer are also reported
as isosurfaces for both positive (blue) and negative (red) values. The
Wannier functions associated with the bottom layer can be simply
obtained by inversion symmetry.

calculated value of the critical field at which the topological
transition occurs might depend on the choice of approximate
DFT and the corresponding evolution of the energy gap with
Eext. Moreover, since approximate semilocal DFT typically
tends to underestimate energy gaps with respect to exper-
iments, the critical field might be severely underestimated.
To test the reliability of the above predictions we have thus
performed hybrid-functional calculations, which are expected
to provide more realistic estimates of the energy band gap
[43] (see Appendix E). The semilocal and hybrid-functional
estimates give a good approximation of the lower and upper
bounds of the critical field Eext, which should be compared
with experimental results.

To elucidate whether the band inversion is associated
with a topological phase transition, we map first-principles
eigenstates for the bands facing the energy gap into a set
of maximally localized Wannier functions (WFs) [44] using
WANNIER90 [45]. The Hg s orbitals are used as first pro-
jections to initialize the Wannierization procedure, as in the
case of monolayer [23] and bulk [31] Pt2HgSe3. We thus end
up with four WFs (eight by including spin), two per layer,
which are depicted in Fig. 3 for the top layer when Eext = 0.
While for the external sublattice the WF is similar to that
of the monolayer [23] and it is well localized on just one
layer, the inner WF has significant contributions from orbitals
in the opposite layer, signaling a strong hybridization between
the layers similar to what happens in bulk jacutingaite [31]. As
a result, the center of the inner WFs is significantly shifted in

(a)

(b)

(d) (e)

(c)

FIG. 4. Bilayer jacutingaite can be qualitatively understood as
two decoupled layers. (a) To verify this, we calculated the gap at
K as a function of external field for the individual layers using the
tight-binding model with interlayer couplings set to zero. Though the
gap is quantitatively underestimated (compare with Fig. 2), we still
find a topological transition in the top layer. (b) The dispersion close
to K changes only subtly when we have interlayer coupling (black
solid lines) or not (red and blue dashed lines) at zero field. (c) At
a finite external field of Eext = 0.46 V/Å, the dispersion for just the
top layer (red) and bottom layer (blue) still has a large overlap with
the full bilayer band structure. (d) The WCCs (in units of the lattice
parameter a) computed for the full tight-binding model (black) are
the same as the WCCs computed per layer (red and blue). (e) Same
calculation as in (d), but now at a finite field Eext = 0.46 V/Å. We
clearly see the topological nature of the bands in the top layer (red).

the z direction such that the center of the top WF of the bottom
layer is higher than that of the bottom WF of the top layer.

From the knowledge of the WFs, we can easily compute the
Z2 topological invariant using WANNIERTOOLS [46] by moni-
toring the evolution of the Wannier charge centers (WCCs)
over half of the Brillouin zone [47,48], i.e., the expectation
value of the coordinate along one direction of hybrid WFs
[49] as a function of momentum in the remaining direction,
along which they are delocalized. The Z2 invariant ν can
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TABLE II. Dominant tight-binding parameters of the band struc-
ture of encapsulated bilayer jacutingaite, obtained using WANNIER90.
The first column indicates the type of coupling; the second column
indicates how it acts on spin (s), sublattice (σ ), and layer (τ ) spaces.
NN stands for nearest neighbor, and NNN stands for next-nearest
neighbor. Notice that the NNN Rashba and Kane-Mele spin-orbit
coupling terms are highly imbalanced between the two sublattices.

Coupling Proportional to Value (meV)

On-site potential m σ zτ z 135
NN intralayer t σ x,y 233
NN Rashba λR sx,yσ x,yτ z 10
NN interlayer t1 σ x,yτ x,y 53
NNN intralayer t2 (1 − σ zτ z ) −34 (outer)

(1 + σ zτ z ) 32 (inner)
NNN Rashba λ′

R sx,y(σ z − τ z ) 28 (outer only)
NNN Kane-Mele λKM σ zsz(1 − σ zτ z ) 16 (outer)

σ zsz(1 + σ zτ z ) −2 (inner)
NNN interlayer t ′

2 τ x,y −20

then be obtained by considering the parity of the number
of times an arbitrary curve going from k = 0 to k = 0.5 (in
units of the primitive reciprocal lattice vector in that direction)
crosses the WCC lines [47,48]. As shown in Fig. 2, this
confirms the presence of a topological transition as a function
of the external electric field [see Figs. 4(d) and 4(e) for the
WCC evolution at small and large fields]. In particular, while
the system is trivial (ν = 0) in the absence of external fields
(confirmed also using a parity approach [50]), it becomes a
QSHI (ν = 1) when Eext > 0.3 V/Å, showing that the topo-
logical state of bilayer jacutingaite can easily be manipulated.

The mapping of the first-principles results into WFs can be
beneficial also for extracting an effective tight-binding model
that describes the behavior of bilayer jacutingaite, helping
us to gain additional physical insight into the mechanisms
underlying the topological transition. The resulting eight-band
model (including spin) reproduces the DFT band structure
around the band gap (see Fig. 1) and involves the sites of
two buckled honeycomb lattices—one for each layer—with
one orbital per site and spin (given by the WFs in Fig. 3).
We find that even though the WFs associated with the inner
sublattices are delocalized over the two layers (see Fig. 3 and
the discussion above), the effective tight-binding model is still
dominated by intralayer terms.

In Table II we summarize the most important terms of the
effective tight-binding model when Eext = 0. The two largest
contributions are by far the intralayer nearest-neighbor (NN)
hopping t = 233 meV and the sublattice symmetry breaking
on-site term m = 135 meV. The absence of layer-inversion
symmetry allows a NN (Rashba-like) spin-orbit coupling λR

that is vanishing in isolated monolayers.
The most important contribution that couples the two lay-

ers is a NN hopping t1 ∼ 50 meV, which, together with the
other relevant interlayer term t ′

2 in Table II, plays a minor
role in the band structure. To verify this, we calculated the
band structure using the full tight-binding model with and
without interlayer coupling. The result is shown in Fig. 4.
In the absence of a perpendicular field, the band- structure is
marginally changed: removing the interlayer coupling mainly

reduces the gap at K. The interlayer coupling can therefore
be neglected for a qualitative understanding of the topological
transition.

An external field now reduces the gap further in the top
layer, whereas it increases the gap in the bottom layer (Fig. 4).
This behavior is indicative of the topological transition that
goes from a ν = 0 + 0 to ν = 0 + 1 state. Indeed, Fig. 4(d)
[Fig. 4(e)] shows the evolution of the WCCs at small (large)
external field. In both cases the WCCs of the full model
(black) are consistent with the WCC computed for the sep-
arate layers (blue and red), thus justifying the assumption that
the topological invariant can be expressed as the sum of the
invariants in the two layers, νbi = ν1 + ν2. Moreover, while
for small fields both layers are trivial (and related by inversion
symmetry), for large fields the layers are no longer equivalent,
and the top layer (red) is nontrivial after the gap reopens at K.

Within each layer, the inequivalence of the two sublattices
not only makes the on-site energy very different (as expressed
by m) but also introduces a large imbalance in the intralayer
next-nearest-neighbor (NNN) hopping terms. It arises as a
result of the different (de)localizations of the Wannier orbitals
for the inner and outer sublattice sites. A first important ex-
ample of the NNN term is the hopping energy t2 that takes
approximately opposite values for the inner and outer sub-
lattices. In particular, we find that t2 is positive for the outer
sites, similar to what happens in monolayer Pt2HgSe3, while
it is negative for inner sites, in complete analogy with bulk
jacutingaite. This effectively staggered NNN hopping term
gives rise to a trivial gap at K that is found to compete with the
trivial gap associated with the on-site m (see also below). This
compensation is almost perfect in h-BN encapsulated bilayers
(contrary to the freestanding case), thus explaining the very
small trivial gap at K.

Even more compelling, the imbalance affects also two ad-
ditional NNN spin-orbit terms: Kane-Mele [9,10] and in-plane
Rashba-like [51] spin-orbit couplings. Also in this case, these
terms retain values very close to the one in the monolayer
for the outer sublattices [23,25,52], while they are strongly
suppressed for the inner sublattices, in analogy with bulk
jacutingaite, where the effect of spin-orbit coupling is almost
negligible [31–33]. Traditionally, topological transitions were
understood in terms of spin-orbit couplings that were identical
on both sublattices [9,10]. In bilayer jacutingaite, however,
the fact that the spin-orbit coupling is different on the two
sublattices requires an extension of the original Kane-Mele
model.

IV. IMBALANCED KANE-MELE MODEL

As argued in the previous section, the topological transition
can be qualitatively understood by decoupling the two layers
and focusing on only the top layer. We will now explore the
question of whether we can understand the transition purely
in terms of a short-range hopping model. To this end, we
introduce the so-called imbalanced Kane-Mele model, which
contains nearest (t) and staggered next-nearest-neighbor (t2)
hoppings, a sublattice symmetry-breaking potential m, and
two spin-orbit terms (see Fig. 5). In addition to the regu-
lar Kane-Mele (KM) term iλKM

∑
〈〈i j〉〉 νi jc

†
i szc j , which has

opposite signs on the two sublattices, we include a sublattice-
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FIG. 5. Terms in the imbalanced Kane-Mele model. We include
nearest-neighbor hopping t and next-nearest-neighbor hopping t2.
Sublattice symmetry breaking is included by the term mσ z. The
spin-orbit terms include the regular Kane-Mele term λKMσ zsz and a
sublattice-symmetric Kane-Mele term λ′

KMsz. The arrow directions
indicate the sign of the imaginary hopping. Finally, we include a
nearest-neighbor Rashba term λR that stabilizes an unusual topolog-
ical insulator phase when λ′

KM > λKM.

symmetric Kane-Mele term λ′
KM,

iλ′
KM

∑

〈〈i j〉〉
νi jc

†
i σ

zszc j . (1)

This term, as shown in Fig. 5, has the same sign of the spin-
orbit coupling term on the two sublattices. As a consequence,
the effective spin-orbit coupling on the two sublattices is given
by λKM ± λ′

KM.
In momentum space, the regular KM term is

proportional to λKMd (k)σ zsz, where d (k) = 2 sin(kxa) −
4 sin(kxa/2) cos(

√
3kya/2) [10], if we define the honeycomb

lattice with lattice vectors a1,2 = a
2 (±1,

√
3). Consequently,

the sublattice-symmetric KM term is proportional to
λ′

KMd (k)sz. As a result, at the K and K′ points, the
Hamiltonian reads

H = (m − 3t2)σ z + 3
√

3λKMκσ zsz + 3
√

3λ′
KMκsz, (2)

where κ = ±1 for the K/K′ valley. In the absence of spin-
orbit coupling, the trivial gap at K is determined by the
sublattice potential reduced by the staggered nearest-neighbor
hopping, m − 3t2. For λKM > λ′

KM > 0, the gap is insensi-
tive to the sublattice-symmetric KM term and is given by
� = |m − 3t2| − 3

√
3λKM. As long as this parameter � is

positive, the system is trivial, and for � < 0 the model is a
quantum spin Hall insulator with ν = 1. When the two spin-
orbit terms are exactly equal, λKM = λ′

KM, the system realizes
a semimetal with quadratic band touching as long as � < 0.
If the sublattice-symmetric KM term dominates, λKM < λ′

KM,
the system is either metallic (�′ < 0) or a trivial insulator
(�′ > 0), with �′ = |m − 3t2| − 3

√
3λ′

KM.
When the NN Rashba spin-orbit coupling

iλR

∑

〈i j〉
c†

i (s × di j )
zc j (3)

(arising from the inversion symmetry breaking in each layer)
is also included, not only is a finite gap opened in the

semimetallic phase when λKM < λ′
KM, but also a nontrivial

topological state emerges for m − 3t2 < λ′
KM. When m − 3t2

further decreases, the gap closes again (away from K/K′ at
three Dirac cones around each corner of the Brillouin zone),
and the system enters a trivial phase adiabatically connected
to the one for �′ > 0 when λR = 0. The topological phase
thus survives over a finite interval of values of m − 3t2, whose
extension increases with λR and is nonvanishing only when
m − 3t2 has the same sign as λ′

KM, even in the limit λKM → 0.
From Table II it follows that in bilayer jacutingaite the

sublattice-symmetric KM term dominates: λ′
KM = 9 meV,

while λKM = 7 meV (their sum is the “outer” sublattice Kane-
Mele term, while their difference is the inner one). In the
absence of a field, the sublattice potential m controls the
physics, and we expect a trivial insulator. A perpendicular
electric field affects the value of m and t2 because of the
different z positions of the Wannier orbitals. In particular, by
Wannierizing the electronic structure at different Eext, we find
that the on-site potential and the staggered hopping t2 change
linearly with field, approximately as �m = − 135 meV Å
V−1 and �t2 = 9 meV Å V−1. This change has opposite signs
in the two layers, causing the bottom layer to have a larger
trivial gap upon the application of a field, whereas the top
layer reduces the gap.

Consistent with the results above, the imbalanced Kane-
Mele model thus predicts that the bottom layer remains trivial
with just an increasing gap at K, while in the top layer the gap
decreases and closes at a critical value when the field is such
that m − 3t2 = λ′

KM, in qualitative agreement with Fig. 4(a).
When Eext is further increased, the gap reopens, and the top
layer is in a topologically nontrivial state (ν = 1), protected
by the NN Rashba λR. This prediction is validated by the fact
that without spin-flipping intersublattice hopping terms (such
as λR), no topological transition occurs even in the full WF
tight-binding model. Of course, longer-range and interlayer
hopping terms in the full model play a role in the quantitative
determination of energy gaps and transition fields, but the
imbalanced Kane-Mele is sufficient to describe the essential
physical features of the topological transition occurring in
encapsulated bilayer jacutingaite.

V. OUTLOOK

We predict that h-BN encapsulated bilayer Pt2HgSe3 un-
dergoes a topological transition under the application of an
electric field, from a trivial insulator at zero field to a quan-
tum spin Hall insulator. The transition can be qualitatively
understood by considering the layers decoupled and described
by an imbalanced Kane-Mele model, with a new, sublattice-
symmetric next-nearest-neighbor spin-orbit coupling. This
additional term emerges from the inversion-symmetry break-
ing in each layer associated with the inequivalence of the two
sublattices. This imbalance also allows for a nonzero Rashba
spin-orbit coupling that plays an essential role in stabilizing
the topological phase in large fields.

Jacutingaite has been predicted to be potentially exfoli-
able [23,26], and consequently, bilayer jacutingaite can also
appear during an exfoliation process. Recently, experiments
have shown that this is possible [29], although the quality of
the exfoliated samples needs to be improved. If encapsulated,

044201-6



GATE-TUNABLE IMBALANCED KANE-MELE MODEL IN … PHYSICAL REVIEW MATERIALS 5, 044201 (2021)

exfoliated bilayer jacutingaite lead to the construction of a
gate-switchable topological insulator (off at zero field, on at
finite field), which is complementary to the monolayer case
(on at zero field, off at finite field) [23].
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APPENDIX A: CALCULATION DETAILS

As mentioned in the main text, all first-principles DFT
calculations were performed using the QUANTUM ESPRESSO

suite of codes [37,38]. Structural relaxations were carried out
using the cx variant [41] of the van der Waals compliant
vdw-DF [40,42] functional without spin-orbit coupling, with
pseudopotentials from the Standard Solid State Pseudopoten-
tial library [53] (efficiency version 1.0), with an energy cutoff
of 60 Ry for wave functions and 480 Ry for the density.
The Brillouin zone was sampled with 8 × 8 × 1 k points of a
uniform 	-centered Monkhorst-Pack grid with a cold smear-
ing of 0.015 Ry [54]. Band structures were computed by
including spin-orbit coupling through fully relativistic pseu-
dopotentials of the PSEUDODOJO family [55] with a wave
function cutoff of 80 Ry on top of self-consistent calculations
with 12 × 12 × 1 k points within the generalized gradient ap-
proximation as formulated by Perdew, Burke, and Ernzerhof
(PBE) [56]. Calculations with the Heyd-Scuseria-Ernzerhof
(HSE) hybrid functional [57] have been performed with
norm-conserving pseudopotentials [58] from the SG15 library
[59,60] that do not have nonlinear core corrections, using a
cutoff of 50 Ry both for wave functions and the representation
of the Fock operator, and a 6 × 6 k-point grid.

Crystal structures and Wannier functions are visualized
using VESTA [61].

APPENDIX B: TRILAYER CRYSTAL
AND BAND STRUCTURE

Although the main target is bilayer jacutingaite, we have
also considered the trilayer structure. In Fig. 6 we show
both the relaxed crystal structure and the computed electronic
band structure along a high-symmetry path in the Brillouin
zone. We note that in contrast to the bilayer cases shown in
Fig. 1, the system is metallic, mainly due to strong interlayer
coupling between the outermost layers that is similar to the
second-nearest-layer hopping of bulk jacutingaite [31].

Free Trilayer
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FIG. 6. (a) Lateral view of the crystal structure of free trilayer
jacutingaite. The central layer is symmetric, while in the other layers
the outermost Hg atoms are farther away from the central plane of
Pt atoms with respect to the inner ones. (b) Electronic band structure
of trilayer jacutingaite, where symbols represent direct calculations,
while lines are the result of a minimal tight-binding model based on
Wannier functions. The zero of energy is set at the Fermi level.

APPENDIX C: WANNIER CHARGE CENTERS
FOR FREE AND CAPPED BILAYERS

In the main text we introduced in addition to the encap-
sulated bilayer jacutingaite a free bilayer and a h-BN capped
bilayer (with h-BN only on one side), whose band structure is
shown in Fig. 1. In Fig. 7 we plot the evolution of the Wannier
charge centers to show that the free and capped bilayers are
topologically trivial. In particular, the Wannier charge centers
computed assuming the layers are decoupled (red and blue)
are the same as for the full system (black), suggesting that the
topological invariant for the bilayer can be expressed as the

(a) (b)

FIG. 7. Evolution of Wannier charge centers (WCCs) for (a) free
and (b) h-BN capped bilayer Pt2HgSe3. Both systems are topologi-
cally trivial. Note that the WCCs (in units of the lattice parameter a)
computed for the full tight-binding model (black) are the same as the
WCCs computed per layer (red and blue).
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FIG. 8. The indirect band gap (measured as the minimum of
the conduction band minus the maximum of the valence band) of
the encapsulated bilayer as a function of external electric field.
In the topological phase the gap is smaller than the direct gap at K in
Fig. 2 but still positive, suggesting the presence of a fully developed
band gap.

sum of the invariants of the two layers, νbi = ν1 + ν2, with
ν1 = ν2 = 0.

APPENDIX D: INDIRECT GAP IN
THE ENCAPSULATED BILAYER

In the topological phase, the direct gap at K of the encap-
sulated bilayer in Fig. 2 is not equal to the full band gap.
This is typical for band inversion and is visible in the band
structure of Fig. 2. Nevertheless, the maximum of the valence
band remains below the minimum of the conduction band; that
is, there is a fully developed band gap, whose magnitude is
shown in Fig. 8.

APPENDIX E: DIRECT GAP WITH
A HYBRID FUNCTIONAL

Standard approximations to DFT, including the gener-
alized gradient PBE approximation [56] used here (see
Appendix A), tend to largely underestimate the energy gap,

FIG. 9. Direct band gap at the K point for h-BN encapsulated bi-
layer jacutingaite as a function of the external electric field computed
using either the PBE [56] or the HSE [57] functional. Dots represent
actual calculation results, while lines are linear extrapolations.

so that topological transitions and the corresponding critical
electric field might also be affected. To test the reliability of
the conclusions in the main text, we report here results for the
direct gap at K (which controls the topological transition) of
the encapsulated bilayer using hybrid functionals (in particu-
lar the HSE functional [57]), which typically lead to estimates
of the energy gap in closer agreement with experiments [43].

Figure 9 shows that for Eext = 0 the gap is largely under-
estimated by almost a factor of 4 in PBE-DFT with respect to
hybrid-functional calculations. Still, the rate at which the gap
closes as a function of the external electric field is much larger
with the HSE functional than with PBE (note that the latter
results slightly differ from Fig. 2 because smearing is not used
in this case and thus the almost linear behavior extends down
to zero gap while deviations associated with smearing appear
in Fig. 2). As a consequence, a topological phase transition
still occurs even at the HSE level, and the estimated critical
field is only a factor of 2 larger than in PBE calculations,
supporting the robustness of the phenomena discussed in the
main text.
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