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In computational material design, ionic radius is one of the most important physical parameters used to predict
material properties. Motivated by the progress in computational materials science and material informatics, we
extend the renowned Shannon’s table from 475 ions to 987 ions. Accordingly, a rigorous machine learning (ML)
approach is employed to extend the ionic radii table using all possible combinations of oxidation states (OS)
and coordination numbers (CN) available in crystallographic repositories. An ionic-radius regression model for
Shannon’s database is developed as a function of the period number, the valence orbital configuration, OS, CN,
and ionization potential. In the Gaussian process regression (GPR) model, the reached R2 accuracy is 99% while
the root mean square error of radii is 0.0332 Å. The optimized GPR model is then employed for predicting a
new set of ionic radii for uncommon combinations of OS and CN extracted by harnessing crystal structures from
materials project databases. The generated data are consolidated with the reputable Shannon’s data and are made
available online in a database repository.
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I. INTRODUCTION

In computational materials design, ionic radii are essen-
tial physical features for the prediction of crystal structure
and material properties [1–3]. Data-driven studies have suc-
cessfully employed the ionic radius to capture the physical
and chemical behaviors in a variety of applications including
crystallographic nature [4–6], batteries [7,8], scintillators [9],
semiconductor absorbers [10–12], seawater properties [13],
and mineralogy [14,15]. In this background, computing the
ionic radius for arbitrary oxidation states and coordination
geometries to study material properties is of a considerable
theoretical and applied interest.

Ionic radius is not a fixed value for a particular ion but it
changes with oxidation state, coordination environment, and
orbital configurations among other properties. It is defined
by the distance between the nucleus of a cation (anion) and
its adjacent anion (cation) in a crystal structure. However,
calculating the ionic radii is a complicated problem as the
electron distribution is probabilistic and forms clouds with-
out clear boundaries to demarcate different ions. Therefore,
many scientists have worked on reasonable ways of defining
the ionic radii of different chemical elements [16–18]. The
most influential work was carried out by Shannon who pre-
dicted and compiled the ionic radii data for common oxidation
states (OS) and coordination numbers (CN) [16]. It resulted
in the most acceptable databases of ionic radii collection from
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Refs. [16–18]. Albeit this data has been used extensively in
different fields, the Shannon’s table is incomplete, as it does
not cover the entire periodic table due to a lack of struc-
tural information for all common and uncommon OS with
all possible coordination CN. Moreover, the absence of this
data has rendered difficulties in predicting and screening novel
compounds. For instance, most of the material searching for
new perovskite absorbers is restricted only to cations and
anions available in Shannon’s ionic radii collection [11,19–
23]. Researchers designing halide perovskites have been using
a wide range of effective ionic radius values for tin ion (Sn2+)
(from 0.93 to 1.36 Å) [20–23] resulting in misleading analysis
in numerous case studies. Therefore, extending Shannon’s
database could provide missing ion information for different
materials. Fortunately, during the last decades, computational
material science has evolved rapidly thanks to useful crystal
prediction tools such as USPEX [24] and CALYPSO [25]
and expanding databases for crystal structures [26]. Moreover,
a huge amount of experimental data has been accumulated
that can be employed for empirical correlations and com-
putational materials design [27]. The ideal design or model
should be able to connect any type of physical and chemical
properties of a compound to its constituent parameters [28].
Driven by the growth of material informatics, we developed
a robust ionic radii model for a complete periodic table and
tabulated the data of the missing ions in the already existing
databases for the research community [29–32]. The predicted
Shannon’s ionic radii can be used for classifying crystal
structures, tolerance factors, geometrical properties, etc. This
research is timely needed and relevant to the evolving material
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informatics field; but it will also find applications in many
other areas.

Theoretically, the ionic radius is a fundamental property of
the atom that gains or loses an electron from its valence shell.
The contribution from the valence electron modifies the ionic
radius in two ways: (1) repulsions between valence electrons
are changed due to the increase/decrease in the number of
electrons, and (2) the effective nuclear charge experienced
by the remaining core electrons is altered by adding or re-
moving valence electrons. The seminal related works can be
traced back to Goldschmidt [33], followed by Pauling [18] and
Zachariasen [34]. Wasastjerna [35] originally calculated the
radius of ions using their relative volumes as measured from
optical spectroscopy. Pauling introduced an effective nuclear
charge to consider the distance between ions as a sum of an
anionic and a cationic radius with a fixed radius of 1.40 Å for
O2− ion [18]. A comprehensive analysis of crystal structures
then subsequently led to the publication of the updated ionic
radii by Shannon [16], with specific CN and different OS.
To be consistent with Pauling’s ionic radius values, Shannon
had used an ionic radius of 1.40 Å for O2− and called it an
“effective” ionic radius. The effective ionic radii for nitrides
was then calculated by Baur [36] and for sulfides/fluorides
by Shannon [37,38]. Zachariasen [39] developed a functional
form for calculating the bond length for oxygen and halogen
compounds of d-orbital and f -orbital elements. The effective
ionic radii of the trivalent and divalent rare-earth ions were
predicted by Jia [40] who calculated unknown radii for differ-
ent coordination numbers, ranging from 6 to 12, for 4 f orbital
elements. Recently, the effective ionic radii for anions have
been calculated for binary alkali compounds via accessing a
subset of suitable crystals from materials project [41]. Ouyang
carried out a comprehensive study for designing perovskite
materials using an ionic radii based ML descriptor [42].

Shannon derived the empirical ionic radius, called effective
ionic radii, by systematically reproducing mean experimental
cation-anion distances in crystal structures using the equation
R(i,anion) + R(i,cation) = d(anion-cation) where R(i,) is the ionic radii
and d is the interatomic distance. The data derived by Shannon
was formulated for 1000 average interatomic distances and
empirical bond-length/bond-strength values [37]. Corrections
to the radii were carried out for physical parameters using
correlations between: (1) ionic radii and unit cell volume,
(2) ionic radii and CN, (3) ionic radii and OS, and (4) ionic
radii and orbital configuration [16]. However, the main limita-
tions in Shannon’s data arise from its origin in using primarily
the oxide ion and hence poses a challenge when computing the
cation radii for other anions. To address the issue of different
anions, one can use the concept of difference in empirical
ionic radii [43] as different approaches for calculating the
ionic radius give relative values with a similar trend due to
the geometric nature of ions. To make this comparison, one
can subtract the oxide radius (O2−) [16] from another anion
radius (say sulfide ion, S2−). Negative difference would then
suggest that sulfide cation-anion distances are smaller than in
the oxide of the same element [38,43].

Rationally it is noticed from the literature that ionic radii
depend on many features, and their calculation requires us to
take into account corrections for OS and CN. Furthermore, for
better comprehension of the ionic radius and its relationship

to the physical and chemical properties, interaction between
ions and their electronic shells should be accurately taken
into account using valence electrons in s, p, d, f orbital con-
figurations. In addition, most of the literature work involves
interpolation or extrapolation without making a generalized
model based on physical descriptors [36,39–41,44]. Nonethe-
less, it is noticed that the differences between various methods
are not random and follow particular trends. Therefore, for
materials informatics, it is important to use a single standard.

Although the focus of this paper is on ionic radii, assigning
suitable OS to an ion plays an important role in determin-
ing material properties. The standard definition recommended
by the International Union of Pure and Applied Chemistry
(IUPAC) for OS of an atom is “the charge of this atom
after ionic approximation of its heteronuclear bonds” [45].
However, the practical implementation of this definition is
difficult since it is not general for any ion and the rules vary
for different elemental families [46]. As a consequence, it is
a common practice to employ linear combination of atomic
orbitals (LCAO) and electron counting for molecules. How-
ever, for inorganic crystalline compounds, electron balancing
does not work very well as they are dependent on valence
bond lengths and valence bond orders [47]. In these types
of compounds, the oxidation states are measured using the
local geometry based bond-valence (BV) analysis [48]. In
this method, both metal-ligand bonds are approximated and
assumed to be completely ionic. Also, the oxidation states
are determined by adding up valence-bond lengths. Currently,
most of the online materials’ data repositories such as Cam-
bridge Structural Database (CSD) [49] and Materials Project
[32] have embedded autoprediction of OS using BV method.
An alternative to the IUPAC algorithm was recently proposed
by Postils et al. [50] to develop the effective OS (EOS) sys-
tem utilizing chemical information from wave functions and
not solely relying on the Lewis based approach in order to
form a generic OS assignment scheme. For polyatomic ions
and metal complexes, quantum chemical calculations based
on wave function are also employed for electron portion-
ing [51–53], whereas experimental spectroscopic techniques
such as x-ray photoemission spectroscopy (XPS), near edge
x-ray absorption fine structure (NEXAFS), and neutron spec-
troscopy can be used for inferring OS as well [54]. Similarly,
assigning neighboring atoms and bonding types play an im-
portant role in defining CN [55]. Depending on the compound
type (oxides or intermetallic), a broad range of CN evaluation
algorithms exists. They are based on either local geometry
or interatomic distances [56]. For example, Brunner [57]
suggested a threshold value of interatomic distance for de-
termining CN, whereas O’Keeffe and Brese [58] proposed
CN prediction using bond-valence summation for assessing
nearest-neighboring atoms. Interestingly, most of the state-of-
the art methods for determining CN such CrystalNN [55],
valence-ionic radius estimator [59], and ChemEnv [56] are
based on the geometric principle of the Voronoi diagram for
polyhedron [60]. Although the current ML method for the
ionic radii is for arbitrary CN and OS; however, it could be
useful to read about the recent benchmark study for evaluating
CNs and the nuances of determining local environments [55].

Accordingly, we present a rigorous machine learning (ML)
approach to extend the ionic radii table of Shannon’s database
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FIG. 1. Workflow for extending the Shannon’s ionic radii database using machine learning and data harvesting. (a) Ionic radii machine
learning model for the existing Shannon’s database using physically guided features. (b) Collection of missing ions data from material
repositories and its comparison with Shannon’s database in terms of CN: 1–14. (c) Consolidation of both Shannon table and missing species’
ionic radii databases from predicted values using missing ions’ data and regression model.

using all possible combinations of OS and CN available
in material informatics repositories [29,32]. Rare oxidation
states and coordination environments, as well as those missing
in Shannon’s database, were considered. Data for different
combinations of OS and CN were carefully harvested from
the crystallographic database for 7969 crystal structures using
material repositories with the original data stemming from ex-
perimental databases [29,30,49]. Figure 1 shows the flowchart
adopted for the regression problem with selected features.
Regression on the Shannon’s ionic radius as a function of the
period number in the periodic table of elements, OS, CN, ion-
ization potential (EIP), and the valence orbital configuration
(s, p, d, f ) was performed. The developed model is valid for
all elemental families and not just limited to specific classes.
The descriptors presented here are relatively simple and phys-
ically intuitive, relying only on eight fundamental parameters
to describe an ion of any element in a periodic table. Several
state-of-the-art ML-based regression models were employed
including linear regression (LR), support vector machines
(SVM), decision trees (DT), and Gaussian process regression
(GPR). All the used methods worked satisfactory; however,
the GPR model showed the best predictive accuracy. For train-
ing and testing, sevenfold cross validation was performed for
the Shannon’s table [16]. By optimizing the hyperparameters
of the ML algorithms, Gaussian process regression (GPR)
showed the minimum root mean square error (RMSE) of
0.0332 Å with a coefficient of determination (R2) reaching
99.3%. These results illustrate effective implementation of the
regression model which was then employed for predicting a
new set of ionic radii for uncommon combinations of OS and
CN. We extended the Shannon’s ionic radii table from 475 to

987 ions by predicting ionic radii for 512 new compounds.
The generated data was then consolidated with the reputable
Shannon’s table as shown in Fig. 2. The newly developed
table should assist accurate prediction of crystal structures
by considering the ionic radius value based on the exact
OS/CN, rather than the common OS/CN, which translates to
better prediction of material properties. The resulting data has
been made available online in open database repositories for
research.

II. METHODOLOGY

Prediction of Shannon’s ionic radii (denoted as Ri in this
paper) for missing materials and ions in Shannon’s database
was performed using supervised ML and data harvesting as
described in Fig. 1. The regression model for all periodic
table elements was evaluated on a test/train split approach
with sevenfold cross validation. Almost the same results are
obtained using k-fold cross validation for k ranged between 4
and 10. The obtained mean errors for all the cases are ranged
between 0.0328 and 0.0391 Å. Please see Fig. S3 and Table
S4 in the Supplemental Material [61]. Statistical correlation
for strength and direction of the feature/target vector was
evaluated using Spearman’s rank coefficient (ρ). For data
mining, missing ions’ data in terms of coordination num-
bers and oxidation states were carefully collected from the
ICSD, initially rooting from the experimental data [29]. The
developed regression model is applied for the prediction of
new ionic radii based on the recently harvested coordination
environments and oxidation states from Materials Project. The
predicted data are then consolidated with existing databases to

043804-3



AHMER A. B. BALOCH et al. PHYSICAL REVIEW MATERIALS 5, 043804 (2021)

FIG. 2. Data comparison for the chemical environment in terms of oxidation state (OS) and coordination number (CN) from Shannon and
the present ML work. (a) Regions for features OS and CN covered by Shannon and ML work. (b) CN: 1–14 present in both the databases
considered. (c) CN present in each OS analyzed with an inset showing total Shannon and ML work data. In all these graphs, ML work consists
of 512 unique ionic information harvested.

extend the ionic information in tabulated form for ease of use
for the research community.

A. Data and features

Shannon’s data set contains about 475 ions [16]. The table
includes the ion, oxidation (formal charge), coordination, and
ionic radius. We selected physically guided features for estab-
lishing a regression model for the target function of Shannon’s
ionic radius as shown in Fig. 1(a). The features based on the
nature of the ionic radius are listed below:

(i) Atomic properties
(a) period number,
(b) s-orbital outer shell valence electrons,
(c) p-orbital outer shell valence electrons,
(d) d-orbital outer shell valence electrons,
(e) f -orbital outer shell valence electrons,
(f) e−EIP , ionization potential (negative exponent).
(ii) Ionic properties
(a) oxidation state (OS),
(b) coordination number (CN).

Data for elemental properties were extracted from the web
of elements [62], whereas OS, CN, and Ri were adopted from
the Shannon’s compilation [16] which includes Pauling [18]
and Ahrens [17] as well. The descriptors presented here are
relatively simple, having only eight parameters to describe
an ion of any element in the periodic table. However, it has
not been benchmarked for high or low spin materials as the
number of counts in the original Shannon’s table is low to
make any statistical significance for such a model. Orbital
outer shell valence electrons as a feature can be explained by
considering an example of scandium with orbital configura-
tion, Sc:1s2 2s2 2p6 3s2 3p6 4s2 3d1. When condensed [Sc]
uses a noble gas configuration it becomes [Ar] 4s2 3d1 and
accordingly our input feature vector for [s p d f ] would be
[2 0 1 0].

For a detailed clarification of the materials’ data acquisi-
tion methodology and harnessing data for 7969 oxides, the
Materials Project Representational State Transfer (REST) Ap-
plication Programming Interface (API) was interfaced using
the Python Materials Genomics (pymatgen) library [32,59].
The raw computed data were acquired based on user-defined
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criteria and then utilized to perform post-processing analysis
to derive further properties of the materials via the pymat-
gen library. The pymatgen is an open-source library that has
several packages such as core, electronic_structure, entries,
io, etc. In this work, OS has been estimated using the BV
module available in Python Materials Genomics (pymatgen)
code [59], whereas CN is extracted from the ChemEnv mod-
ule employed by Waroquiers et al. [56]. For OS, BV sum is
calculated for all unique symmetrical points in the structure
using elemental parameters tabulated by O’Keefe and Brese
[58] and BV = exp[(L0 − L)/B] relation. Here L is bond
length between two atoms and BV indicates bond strength.
L0 is the single bond length and it is dependent on OS and
CN implicitly, whereas B is a constant factor usually kept at
0.37 [63]. Then the maximum a posteriori probability (MAP)
estimation is carried out to find an OS combination that should
result in a charged balance cell. For CN, materials space of the
considered 7982 oxides in the work of Waroquiers et al. [56]
were used as an input criterion to obtain the matching existed
data in the Materials Project database [32] using query class,
which is based on MongoDB-like syntax. Details of the CN
extraction method are provided in the recent work of Waro-
quiers et al. [56] where they have compared the distorted local
environment in structures with perfect polyhedral geometries
to find symmetry measures and predict CN accordingly. Their
data were curated using low pressure stable phases and energy
above hull smaller than 100 meV/atom. Moreover, ions with
partial vacancies were neglected and only the oxygen anion
was considered (for example, no oxisulfide). After verifying
their existence in ICSD as either experimental or theoretical
data, we were left with 7969 oxides which represented an
approximately 80% of the structures.

B. Regression procedures

State-of-the-art supervised learning models were used to
develop the ionic radii ML model for Shannon’s data. The
model was trained with an objective function of RMSE min-
imization. First, we performed sevenfold cross validation to
learn the hyperparameters and avoid overfitting. In the second
stage, the best hyperparameter model for which k-fold reports
the lowest error was then selected to test the model for pre-
diction. Using this method, we chose the ML model with the
best average prediction error. Hyperparameters in fitting the
model are automatically determined internally for each regres-
sion algorithm using MATLAB [64]. The following machine
learning models and their subclasses applied for this work are
mentioned below:

(i) Linear regression (LR): linear, interactions linear, robust
linear, and stepwise linear.

(ii) Support vector machines (SVM): linear, quadratic, cu-
bic, fine Gaussian, medium Gaussian, and coarse Gaussian.

(iii) Decision trees (DT): fine, medium, and coarse.
(iv) Ensemble of decision trees: boosted trees and bagged

trees.
(v) Gaussian process regression (GPR): squared exponen-

tial, exponential, rational quadratic, Matern 5/2 and Matern
3/2 kernel.

C. Extension methodology for ionic radius

We analyzed the chemical information (OS and CN) for
a total of 7969 crystal structures from available databases to
extend the ionic radii database, as highlighted in Fig. 1(b).
Ionic information for 7969 oxides was extracted from the
Materials Project Database [32] for ICSD [29]. They are sum-
marized (excluding duplicates) in the Supplemental Material
Table S1 [61]. This resource provided oxidation states and co-
ordination environments for species, which were necessary for
the correct prediction of missing ions. A total of 512 unique
ions (in terms of CN and OS) were found after removing the
duplicates from the Shannon’s database. Accordingly, these
unique ionic features consisting of a new oxidation state and
coordination environment along with their elemental proper-
ties were then curated for the prediction of Ri.

GPR model was selected based on the lowest RMSE and
highest R2 achieved among other regression models. The
technical details of the GPR model are provided in the Sup-
plemental Material [61]. This ML model was then supplied
with missing ionic properties (OS and CN) shown in Fig. 1(b)
along with their respective elemental properties vector (pe-
riod, EIP, outer shell valence electrons in s, p, d , f orbitals) to
extend the ionic radii database. The predicted values were then
consolidated with Shannon’s original data to build an up-to-
date comprehensive table of 987 species and their respective
ionic radii. It should be noted that in the case of an overlap, we
kept the original Shannon’s empirical values, i.e., no value of
Shannon is altered in the proposed improved table. Figure 1(c)
displays the web interface [65] in a periodic table style that
was created for dissemination of the results, which can be
valuable to many natural sciences.

III. RESULTS AND DISCUSSION

Prediction of the ionic radii for missing ions in Shannon’s
database was performed using supervised machine learning
and data harvesting from materials project. The developed
GPR regression model was primarily used to predict ionic
radii of rare oxidation states and coordination numbers not
considered in the current ionic radii databases. Regression
algorithms as function g(x), physical features of the period
number OS, CN, exp(−EIP), and outer shell valence electrons
in s, p, d , f orbitals were employed to Shannon’s ionic radii
database in the form of

Ri = g[OS, CN, Period, s, p, d, f , exp(−EIP)]. (1)

It is important to highlight that the ionic radii predicted from
this model are extensions of Shannon’s ionic radii.

A. Data analysis

We have analyzed the ionic radii data for the common
and uncommon oxidation states and coordination numbers
by comparing Shannon’s data to current online material
databases. Rare oxidation states and coordination environ-
ments, as well as those missing in Shannon’s database, are
considered for extending the ionic radii database. To highlight
the gaps in Shannon’s table and this study’s contribution,
called “ML work” hereon, a visualization for OS and CN
parameter space is provided in Fig. 2(a). The scatter plot
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shows the regions of OS and CN by Shannon and ML work
with the color showing the density of the occurrences.

Naturally the majority of the data points in Shannon’s re-
gion covers common OS and CN, whereas ML work was able
to identify uncommon unreported regions of CN as shown
in the pie charts of Fig. 2(b). Shannon’s data (total 475 ions
considered) comprises primarily the following common CN
geometries: CN = 6 with octahedral and trigonal prism has
187 occurrences, CN = 4 with tetrahedral and square planar
geometry has 70 ions, whereas CN = 8 has a frequency of
73. These three covers 69.5% of the total CN space reported
by Shannon [16]. On the other hand, data harvested for ML
work and missing ions showed primarily rare CN and OS. For
instance, out of 512 new unique ions, 15.8% were found in CN
= 5 with coordination geometry of trigonal bipyramidal and
square pyramidal. Shannon’s data, on the contrary, had only
5.2% of CN = 5. Similarly, CN = 2 for ML work had a 12.8%
occurrence, whereas Shannon’s table had 1.47% respectively
in their corresponding data sets. In terms of formal charge on
the ion, i.e., oxidation state, most of the data for Shannon’s
table is cation as the database itself was developed using
O2− anion with a sixfold coordination number and the ionic
radius of 1.40 Å. Figure 2(c) shows the summary for a CN
connecting to a particular OS covered by the present work and
Shannon. Both these sources provide a total of 987 species,
with the majority of the ions found in OS = 2 (23.7%) and
OS = 3 (30.1%) for both sets together. A total of 512 unique
ions in terms of CN and OS were found after removing the
duplicate information in the data sets as shown in Fig. 2(c).

These new unique ionic features consisting of OS, CN, and
elemental properties were then employed to extend the ionic
radii database using GPR.

B. Regression analysis for Shannon’s database

Regression on the ionic radius as a function of the period
number, oxidation state, coordination environment, electron
affinity, ionization potential, and orbital configuration was
performed for Shannon’s data. For evaluating the model ac-
curacy and features, these measures were used:

Root mean square error (RMSE):

RMSE =
√√√√1

n

n∑
i=1

(Ri − R̃i )
2
, (2)

R-square:

R2 = 1 −
∑n

i=1 (Ri − R̃i )
2

∑n
i=1 (Ri − R̄i )

2 , (3)

Spearman’s rank correlation coefficient:

ρ = 1 − 6
∑n

i=1 d2
i

n3 − n
. (4)

Here n is the number of observations, R̃i is the predicted
Shannon’s ionic radius, and R̄i is the mean of Shannon’s ionic
radii. di = rank(xi ) − rank(yi ) is the difference between the
two ranks of each observation in different variables.
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FIG. 4. Extension to new ions with results from the prediction and consolidated database. (a) Ionic radii predicted from ML work (GPR
model) merged with Shannon’s database as a function of atomic number. (b) General behavior of ionic radius as a function of coordination
number and oxidation state for N = 987 consolidated species. (c) Histogram of Shannon’s empirical database and current ML work showing
the similarity of the ionic radii distribution.

Twenty different regression models were developed as
highlighted in the Supplemental Material [61]. Among all
the developed models, the GPR model with the Matern 3/2
kernel function (details in the Supplemental Material [61])
was the most accurate in predicting the ionic radii with an R2

of 99.3% and RMSE mean of 0.0332 Å. Figure 3(a) shows
the results for testing set error (sevenfold validation) using
the fixed optimal hyperparameter model. Using the selected
features, Fig. 3(a) shows the regression results of the GPR
model where it was able to achieve the minimum RMSE mean
of 0.0332 Å over sevenfold. The results are promising as this
is a first general-purpose model for all periodic elements,
whereas previous attempts have separately dealt with transi-
tion metals, nitrides, sulfides, etc. [36,38,40]. Moreover, the
main advantage of GPR is that it directly captures the model
uncertainty. To assess the robustness of the model, we per-
formed sevenfold cross validation on Shannon’s data of 475
ions where the hyperparameters of the model were optimized
using the quasi-Newton approach with a function tolerance
of 10−6 for Matern 3/2 kernel. The color bar in Fig. 3(a)
shows the absolute deviation |Ri − R̃i| for each point where
the majority of the data points lie in the standard deviation
of ±0.0398 Å as shown in the inset figure. To validate the
significance of the eight features—period number, OS, CN,
exp(−EIP), and orbital configuration s, p, d , f —we assess the
Spearman’s rank correlation coefficient (ρ) between individ-
ual feature and ionic radii as shown in Fig. 3(b). In the rank

correlation, the maximum correlation happens at a value of
1, whereas the direction is shown by the positive or negative
sign. Interestingly, the maximum correlation ρ = +0.64 was
found for CN. It shows that with an increase in CN, Ri also
increases. OS was found to have ρ = −0.52 showing a nega-
tive correlation with Ri. This is because as the OS increases,
atoms lose electrons hence the overall effective nuclear charge
increases resulting in reduced Ri. Period number resulted in a
value of +0.41 due to the addition of outermost shell which
causes the Ri to increase. This was followed by exp(−EIP)
with ρ = −0.25. Figure 3(c) shows that the absolute deviation
from the model follows normal distribution, signifying that
there is no systematic error present in the developed regression
method.

C. Extension to missing ions

We performed an extension of the new ions using the
GPR prediction model on a set of 512 ions as depicted in
Fig. 4(a). The completed consolidated table is shown in the
Supplemental Material Table S2 [61] with the feature vector
and ionic radii values. Here we kept the original Shannon’s
empirical values where we found an overlap, i.e., no ionic
radius from Shannon was changed in the proposed table. Fig-
ure 4(a) shows that the predicted elements were inclusive in
the range of atomic numbers by Shannon (from 1 to 102). In
Fig. 4(b) we see the effect of the oxidation state and coordi-
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nation number on the total consolidated data set. The radii
decrease with an increase in the oxidation state due to the
additional effective nuclear charge by losing an electron. The
ionic radius was found to increase with higher CN because the
electron field is stretched out by the existence of additional
surrounding ions for higher dimensional polygons.

Figure 4(c) shows the distribution of ionic radius predicted
and Shannon’s original database. The shape of these his-
tograms shows that the predicted Ri is comparable to the data
set used for Shannon’s ionic radii. The difference is primarily
due to the number of counts and rare OS/CN in our feature
vectors. The descriptors are relatively simple and physically
intuitive, having only features highlighting its robustness for
extending to new ions as they appear in online databases. The
completed consolidated table is uploaded at the open materials
database website. A comparison of ionic radii for cations
calculated using Brown and Shannon (BS) [66], Shannon
[16], Ouyang [42], and current ML work is presented in the
Supplemental Material Fig. S2 [61]. It should be noted that as
the code can predict ionic radii for any arbitrary OS/CN, care
must be taken when selecting chemical environment informa-
tion for realistic ionic radii calculation.

D. Further analysis

Our predictive model was extended to new ions based
on compounds that were primarily experimentally observed.
According to our statistical analysis, about 96% of these com-
pounds (7658 of 7969) are experimentally associated with
the multiple Inorganic Crystal Structure Database (ICSD) IDs
[56] (the complete data are provided in the Supplemental Ma-
terial Table S4 [61]). Hereunder, arbitrarily selected ions from
our predicted ionic radii data set are discussed to illustrate the
importance of our predictive model. For crystal structure clas-
sification, revised ionic radii have been adopted for accurate
tolerance factor predictions [20]. Searching for Sm2+ based
perovskites, Travis et al. [20] had to apply Sm2+ (CN-7) ionic
radius as Shannon’s table provides no 6 coordinate Sm2+ ion
[20]. An experimental investigation of BiCoO3 with pyrami-
dal polar coordination of Co3+ (CN-5) under high pressure
was implemented and spin transition was observed due to the
change of Co3+ (CN-5) in the atmospheric pressure phase to
the approximately isotropic octahedral coordination (CN-6) in
the high-pressure phase [67]; this is not covered in the original
Shannon table. Also, the structural and magnetic properties
of LiRO2 (R = rare earth) were experimentally studied by
Hashimoto et al. [68]. The x-ray diffraction measurements
have shown that the LiErO2 compound was found to form
β-type (space group: P21/c) with Li+ (CN-3) below room
temperature [68]; this is not covered in the original Shan-

TABLE I. The considered oxidation states that are not tabulated
in Shannon’s table

C: +2, +3 P: +4 S: +2, +3, +5
Cl: +1, +4 Sc: +2 Fe: +5
Co: +1 Ni: +1 Ge: +3
Se: +2 Y: +2 Nb: +2
Ru: +6 In: +1, +2 Sn: +2
Te: +5 La: +2 Ce: +2
Pr: +2 Gd: +2 Ir: +6
Pt: +6 Au: +2 Th: +3

non table as well. For octahedral coordination of Sn2+ with
(CN-6), there are efforts to stabilize the CsSnCl3 perovskite
structure, which prefers to form pyramidal coordination in-
stead of octahedral coordination, by ionic substitution of Sn2+

with smaller octahedral cations [69]. The octahedral coor-
dination Sn2+ was used as a possible candidate to replace
Pb2+ in perovskite structure due to its toxicity [69]. This
experimentally observed OS of Sn is not included in the
original Shannon’s table. Table I lists the considered oxidation
states that are not tabulated in Shannon’s table. For a concise
reference, all of them are among the listed oxidation state in
the seminal book by Greenwood and Earnshaw [70]. Many
other references can be found for each one of them. Nonethe-
less, they are certainly not among the common oxidation
states but they cannot be ignored.

IV. CONCLUSION

A very rigorous and highly accurate machine learning ap-
proach is employed to extend the renowned Shannon’s table
from 475 ions to 987 ions. In ML implementation, the original
Shannon’s table is used to develop the ionic-radius regression
model as a function of the period number, the valence orbital
configuration, OS, CN, and ionization potential. The model is
then implemented to extend the ionic radii table for all possi-
ble combinations of OS and CN available in crystallographic
repositories. Many ML methods are considered and a com-
parison was carried out. In the Gaussian process regression
(GPR) model, the reached R2 accuracy is 99% while the root
mean square error of radii is 0.0332 Å.

The generated data are consolidated with the reputable
Shannon’s data and are made available online in a database
repository [65].
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