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Sluggish diffusion in random equimolar FCC alloys
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We examine vacancy-assisted diffusion in the 57 random, equimolar alloys that can be formed from Cu,
Ag, Au, Ni, Pd, and Pt based on the well-tested embedded atom method functions of Foiles, Baskes, and Daw
[Phys. Rev. B 33, 7983 (1986)]. We address the suggestion [Yeh et al., Adv. Eng. Mater. 6, 299 (2004)] that
increasing the number of constituents causes diffusion to be “sluggish” in random, equimolar alloys. Using
molecular dynamics (MD) simulations of random alloys with a single vacancy, combined with calculations of
vacancy formation, we extract vacancy-assisted diffusivities in each alloy. After developing and applying several
possible criteria for evaluating “sluggishness,” we find that only a small minority (from 1 to 8, depending on how
sluggishness is defined) of the alloys exhibit sluggish diffusion whereas in the large majority of alloys diffusion is
faster and in quite a few cases ought to be considered vigorous (that is, faster than in any of the constituents). We
correlate diffusivity with a combination of the mean of the constituent diffusivity and a simple function of lattice
mismatch. We conclude that simply increasing the number of constituents in such alloys does not systematically
alter the diffusion, but that instead lattice mismatch plays a primary factor; sluggish diffusion is more likely
to occur in a window of small lattice mismatch (1–3%) even in binary alloys. Quantitatively, our calculated
diffusivities correlate with a combination of (1) rule of mixtures of the diffusivities of the constituents, and (2)
a simple function of the lattice mismatch; this accounts for the large majority of our calculated diffusivities to
within a factor of 2 (over a range of three orders of magnitude). We also find that while lattice mismatch on the
order of 1–3% is necessary for sluggish diffusion, it is not sufficient.
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I. INTRODUCTION

The hypothesis that a random alloy formed from equal
amounts of many constituents, often referred to as com-
positionally complex alloys (CCAs) or high entropy alloys
(HEAs), would exhibit sluggish diffusion seems to have
originated from a suggestion based on intuition [1–4]. That
intuition and other related ideas about “core effects” led to the
investigation of the actual properties of HEAs, with the result
that many such alloys have been made and tested and some
have shown decidedly favorable properties (see Ref. [5] and
references therein). Following those discoveries, there have
been more principled investigations—both experimental and
theoretical—of the sluggish diffusion hypothesis and the other
core HEA effects. This paper reports a systematic theoretical
investigation into the nature of vacancy-assisted diffusion in
random, equimolar alloys in order to determine the often
complex relationship between composition and diffusion.

A. Experimental literature and use of homologous temperature

In one of the first (and certainly one of the most cited)
papers on this subject, Tsai, Tsai, and Yeh [6] (“TTY13” in the
following) reported measurements of diffusivity in a five com-
ponent FCC, solid-solution-like alloy (CoCrFeMnNi). They
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analyzed those measurements with a “quasibinary” approach
and extracted pre-exponentials and activation energies for
each of the elements. They also set out to compare the tracer
diffusivities for each constituent to the values in other hosts
(pure metals and alloys). For this comparison, they argued
for the use of homologous values (that is, evaluating the dif-
fusivity extrapolated to the melt or solidus for each host, or
equivalently by scaling the activation energy by the melting
or solidus temperature). Their reason for using homologous
values was stated simply and briefly: “the activation energies
are usually linearly related to the melting points of the matrix
(host)” [7]. They found that the normalized activation energy
(Q/Tmelt ) for each of the constituents correlated positively
with the number of components in the alloys considered, and
this was then their confirmation of “sluggish diffusion”

Miracle [9] traced the mixed experimental evidence for
and against sluggish diffusion in HEAs, including the use of
homologous temperature. He pointed out that on a straight
comparison at the same absolute temperature, the diffusion
in many multicomponent systems is actually faster than in
simpler alloys. He also noted that the conclusion that the diffu-
sivity is positively correlated with the number of constituents
may be true for a limited set, but when he broadened the data
set to include more elements and alloys he showed that HEAs
are, in fact, slower than average, although not the slowest
compared with other FCC elements and alloys. In the larger
set he investigated, the slowest (again, extrapolated to the cor-
responding melting point) are two pure elements (Pb and Pt)
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and four binaries (Cr-Ni, Ni-W, Cu-Pt, and Ni-Cu). Miracle
concluded that HEAs are not “anomalous” or even “unusual”
or “exceptional” in their diffusive behavior in comparison
to elements and simpler alloys, even when judged based on
homologous temperature. Finally, he pointed to the need for
more robust analysis of the atomistic processes involved, such
as what is presented here.

We note that there are two separate themes that run through
the literature on sluggish diffusion: (1) whether a random
alloy with equal amounts of multiple components might be ex-
pected to show slower diffusion, and (2) whether comparisons
between hosts should use homologous rather than absolute
temperature. These are separate, if related, issues and it is
instructive to approach these questions separately to the extent
that it is possible.

B. Theoretical investigations

Complimentary to the experiments, the authors of TTY13
also proposed a theoretical analysis based on the complexity
of a multicomponent alloy. They argued for the existence of
“traps” that can pin an atom to a particular location, thereby
inhibiting diffusion. The traps occur randomly from varia-
tions in bond strength and bond length in the interactions
between various atomic pairs. They supported this by a sim-
ple nearest-neighbor bond-counting argument in which the
effects due to variations in bond strength and bond length
are lumped together into empirical parameters. They conclude
(without rigorous proof) that increasing the number of con-
stituents should increase the sluggishness of the diffusion.
This approach uses more detailed reasoning than the basically
intuitive suggestion behind the original hypothesis.

However, the correlation of sluggishness with increasing
number of constituents proposed by TTY13 is not borne out
by the available experimental data (see [9]). Some alloys
exhibit slower diffusion and others do not, and there is no
apparent correlation with number of elements. In other words,
the observed cases of sluggish diffusion in some alloys would
seem to depend on a specific cause beyond the presence of
many constituents.

Furthermore, the analysis in TTY13 is oversimplified
because migration barriers involve the difference of two en-
ergies, namely the energy of a local basin and the energy
of the saddle point transition to another basin. In the case
of vacancy-assisted diffusion, the saddle point usually cor-
responds to a migrating atom squeezing through a narrow
pass on its way to occupy a nearby vacant site. The analysis
in TTY13 considers variations in the local basin energetics
caused by random mixing of atomic types that they reasoned
includes variations of bond strength and bond length. By
contrast, their analysis uses the unjustified assumption that
the saddle point energy is the same throughout the material,
and independent of the type of migrating atom or its neigh-
bors. Finally, they do not clearly account for or discuss the
effect of the local basin energetics on vacancy concentrations.
Obviously, vacancy concentration is an important factor in
vacancy-assisted diffusion, and a thorough comparison of dif-
fusivities must take this into account or otherwise justify why
not. The approach in TTY13 is clearly an oversimplification
and a deeper analysis is called for.

Choi et al. [10] took a step in the direction of a deeper
analysis by calculating migration barriers for motion of a va-
cancy in a five-component alloy (CoCrFeMnNi) modeled with
second-nearest-neighbor modified embedded atom method
(MEAM) potential. They cataloged a number of different
barriers and showed an overall distribution by type of mi-
grating atom. Though the sampling was very limited it did
seem to show some features in agreement with experimental
data.

More reliable energetics are expected from first-principles
calculations (see Ref. [11] for NiCoCr and NiCoFeCr and
Ref. [12] for CrMnFeCoNi) where they consider vacancy
motion among several tens of neighboring configurations in
order to determine a distribution of barriers for a vacancy
exchanging with different types. The results are somewhat in
agreement with experimental data and also with the MEAM
calculations discussed in the previous paragraph. These two
theoretical investigations, however, have been limited to a
small set of alloys and neither offers much additional insight
into the general hypothesis of sluggish diffusion.

A more robust investigation related to the current report
is the recent work of Bonny et al. [13], that reports a study
of tracer diffusivities in various four-component alloys (made
from Ni, Fe, Cr, and Pd) studied using tailored EAM poten-
tials [14]. The migration barriers were calculated for a large
set of local configurations and entered into a training and
validation set for an artificial neural network that was then
implemented into an atomic kinetic Monte Carlo calculation.
The result is a deeper study of the effects of configurational
randomness in a set of four-component alloys on vacancy mo-
bility. They concluded that the diffusivities are higher in the
alloys studied with increasing number of constituents, directly
contradicting the sluggish hypothesis. They make no attempt
to reconcile their calculations with experimental observations
of sluggish diffusion in some alloys, and the authors call for a
“deeper and systematic study” of diffusion in multicomponent
alloys.

Another recent work [15] investigated the vacancy mobility
in disordered FCC Ni-Fe alloys by combining MD and Monte
Carlo methods using EAM potentials [14]. They found that
the vacancy mobility was a minimum (below the mobility in
the pure elements) at 20% Fe, which was tied to the percola-
tion threshold for the faster species (Fe). Based on this they
also speculated that increasing the number of components to
five ought to produce an optimally sluggish alloy because each
of the components would be at the same percolation limit of
20%.

Similar techniques were employed to study the effect on
vacancy mobility of compositional ordering in Ni-Fe alloys
[16], based on some first-principles calculations and also on
EAM potentials [14]. Similar to the minimum vacancy mobil-
ity observed in Ni-20% Fe, the ordered L12-Ni3 Fe structure
showed the lowest mobility among the structures considered,
with the vacancy found dominantly on the Fe sublattice. The
suppression of vacancy hopping in the ordered structures was
attributed to a lower effective attempt frequency associated
with fewer configurationally suitable exits for the vacancy.
The results suggest that in samples that are nominally dis-
ordered, any buildup of local ordering may inhibit vacancy
mobility.
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C. The plan of this work

Our goal is to theoretically investigate the vacancy-assisted
diffusion in random, equimolar alloys with varying numbers
of constituents to determine if there is a negative correlation
between number of constituents and diffusion. Specifically,
we choose to investigate diffusion assisted by single vacan-
cies in a single crystal, thereby avoiding the complications
of vacancy complexes or diffusion along grain boundaries.
We analyze the results both in terms of absolute diffusivity
and also homologous values. We also investigate correlations
between the constituent properties and the resulting diffusivity
in the alloys.

We have chosen to focus on “fully random alloys” (in the
words of TTY13), so as to key in on that part of the “sluggish”
hypothesis: increasing the number of components in fully ran-
dom alloys suppresses diffusion. It may well be experimentally
that nominally disordered alloys have in fact developed some
local degree of ordering or clustering. In that case, it is to be
expected that the loss of randomness (either to clustering or
ordering of the components) will affect the diffusivity, but
this is not what is described in TTY13. So, for the present,
we leave questions of deviations from random for a later
investigation, and instead focus the present investigation on
perfectly random alloys.

Random alloys offer intrinsic difficulties for theoretical
atomic-scale analysis. Electronic structure calculations like
local density approximation are highly accurate and can study
complex configurations but are, of course, limited in cell
size and simulation time. Semiempirical methods like EAM
[17] are significantly less computationally demanding at the
trade-off of some accuracy, but are challenged by the initial
lead time required for fitting potentials to target properties of
multicomponent systems. We avoid this lead time by using
an existing, well-tested [18–20] set of potentials for a multi-
component system of FCC metals. We argue that one does not
need a perfect set of EAM functions to address that question at
a generic level, but rather sluggish diffusion is being proposed
on general grounds and therefore should be testable with any
reasonable set of semiempirical potentials.

In the present work, we chose an existing set of EAM
potentials to study alloys formed from among six FCC con-
stituents, greatly increasing the number of possible equimolar
alloys compared to previous work. For example, the four-
component set of functions in Ref. [13] would permit 11
random equimolar alloys to be studied, whereas in this work,
the set of six constituents widens this to 57 unique random
equimolar alloys. We also deepen the analysis of the diffusion
mechanism by correlating with various properties of the con-
stituents. As discussed above, we analyze our results first with
absolute temperature and then with homologous temperature,
in order to isolate the effects of the number of con-
stituents, and clearly separate it from the use of homologous
values.

Our approach examines two parallel paths. First, because
the vacancy diffuses at least as fast as any individual element,
we examine the diffusion of the vacancy itself, irrespective of
the motions of the individual constituents, to determine if it is
less mobile in multicomponent alloys. Second, we refine the
analysis by tracking the diffusion of each of the six elements
in the various hosts (formed from that element and others in

the set), to see if the trend seen for the vacancy generally holds
for individual elements.

A complete analysis of diffusivity in alloys must include
both formation and migration energies [21]. In general, the
measure of the rate of vacancy-assisted self-diffusion is a
combination of vacancy concentration and vacancy mobility:

D = cM. (1)

The concentration is expected to have an Arrhenius form
and is associated with a vacancy formation energy,

c(T ) = exp
[
− Q f

kBT

]
. (2)

The mobility is also Arrhenius,

M(T ) = M0exp
[
− Qm

kBT

]
(3)

so that the activation energy for diffusion is the sum of forma-
tion and migration,

Qd = Q f + Qm. (4)

The activation energies and the preexponential are func-
tions of composition. Furthermore, tracer diffusivity is
similarly expected to show Arrhenius behavior, with the ac-
tivation energies specific to each component and host. In this
work we calculate both formation and migration energies as
functions of composition.

Our definition of sluggish diffusion needs to be made more
concrete. Is there a definition for sluggish which will serve
all circumstances (for example, recrystallization as contrasted
with phase separation)? Is mobility the key factor, or dif-
fusivity? Is the diffusivity (at a given temperature) or the
activation energy for diffusion a more appropriate measure?
Having evaluated some property of the alloy, what should it
be compared to? In analyzing our results, we consider sev-
eral possible criteria by which one might evaluate whether
diffusion in a particular alloy is “sluggish,” some of which
are more stringent than others. The end result is that we do
find a small number of alloys from our set that, even by the
most stringent criterion, could reasonably be called sluggish,
but a larger set of alloys that are the opposite (quite vigor-
ous). Furthermore, the search for reasonable criteria suggests
a general means of analyzing diffusion in alloys that has led
to significant correlations in our calculated diffusivities with
both diffusivities of the pure constituents and lattice mismatch
among the constituents. This broadens the scope of this paper
beyond the specific evaluation of the sluggish hypothesis.

This paper is organized as follows. In Sec. II we discuss
the methods used to calculate the vacancy concentration and
mobility factors in random equimolar alloys and our means
of making comparisons among them. Section III presents
results of the self-diffusion where we show that the number
of constituents is not the determining factor, but rather the
lattice mismatch. Section IV presents corresponding results
of tracer diffusivities, compares to experiments, and draws the
same conclusions. Finally, we summarize our conclusions in
Sec. V.
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TABLE I. Computed values for the activation energy for diffu-
sion (Qd = Qf + Qm ) compared to available thermochemical data.

Element Qd (eV) (this work) Qd (eV) (experiment)

Cu 1.95 2.13
Ag 1.74 1.82
Au 1.68 1.83

1.97 [29]
Ni 2.68 2.97

2.81 [30]
Pd 2.18 2.90
Pt 2.50 2.71 [26]

II. METHODS

A. Semiempirical potentials

We used the well-tested functions of Foiles, Baskes, and
Daw [19,20] (hereafter FBD), developed for the elements Cu,
Ag, Au, Ni, Pd, and Pt, and dilute binary alloys formed from
them. The FBD potentials were fitted to sublimation energy,
lattice constant, elastic constants, and vacancy formation en-
ergies of the elements, as well as the dilute heats of alloying
for all of the binaries. The vacancy migration energies were
calculated after the fit and constitute a test of the EAM. We
show that the general, approximate relation Q f /Qm = 2 for
the pure elements carries over to the alloys as well. The
FBD functions have been used in many studies [18] and have
proven to be robust and reliable. The melting points for the
elements in this set have been carefully calculated [22] and
will be of use in the present study. The present calculation of
alloying effects on diffusivity takes us further away from the
data used to train and initially test the functions.

In FBD, the experimental vacancy formation energy was
included in the original training set for the functions, and the
disagreement with experiment was as large as 0.2 eV with an
average of 0.05 eV over the set. A comparison to experimental
values for vacancy migration energies was used as a test of the
functions after fitting; the disagreement with these experiment
values was as large as 0.6 eV but on average was 0.14 eV. In
combining vacancy formation and migration energies to get
the full activation energy for diffusivity, we can compare to
experimental diffusion energies. Based on the known discrep-
ancies in formation and migration energies, we expect that
the disagreement with experimental diffusion energies could
average about 0.2 eV. In Table I we present the comparison to
available thermochemical data. The average discrepancy be-
tween our calculations and these experimental data is 0.3 eV,
with Pd showing the largest discrepancy (0.7 eV). Note that
these results are not new in that they involve properties of pure
elements that have been evaluated in previous publications.
We show these here by comparison to thermochemical data
in order to help calibrate our expectations later when we
compare our results for alloys to the same thermochemical
database.

B. Vacancy formation energies

The assumption of randomness in HEAs can be expressed
formally by considering averages over an ensemble of systems
with equal probability for any and all assignment of types

(consistent with overall composition) on the underlying FCC
lattice. The following simple argument shows how this can be
carried out. We begin with a large cell (no vacancies) of N
atoms, with all sites occupied by the same number of various
types so that the composition is equimolar. Now make N-2
copies of that cell (for a total of N-1 cells), and put them
together to form a larger solid from those cells for a total of
N(N-1) atoms with N(N-1) sites (that is, all sites occupied).
Next we form a new solid in a particular way so as to form
a representative sampling of the possible vacancies but with
the same number of atoms (hence more sites). From each cell
take a different atom: from cell no. 1 take atom no. 1, and
from cell no. 2 take atom no. 2, etc., and so leaving a vacancy
on a unique site in each cell. The last cell, numbered (N-1),
has lost an atom at site (N-1). The atoms removed can be put
together to form a new cell (which will be given number N),
and because those atoms are a complete sampling of the atoms
from the original cell except for the last site N, the new cell
will have only N-1 atoms, with no atom on the Nth site. So,
we now have N cells, each with N-1 atoms and 1 vacancy (on
site i in cell i), which are put together to form a solid. This
defective solid has N(N-1) atoms in it and also N vacancies
(for N2 sites total). The defective solid has larger volume, but
at zero pressure this does not contribute to the energetics. The
total energy required to make this representative sampling of
vacancies from the perfect lattice is �E , and will be extrinsic
(that is, increasing with N). Having created N vacancies, the
vacancy formation energy (Q f ) is then �E/N . Using this
procedure, we have calculated Q f for cells of 256 atoms and
random alloys with from two to six components. The results
have been compared for various different random assignments
of the types on the sites, and are converged in this regard to
better than 0.01 eV.

C. Vacancy and atomic mobilities

The EAM calculations for vacancy hopping are carried
out in molecular dynamics (MD) using the mean-square-
displacement (MSD) of all atoms, as done before, for
example, by de Lorenzi and Ercolessi [27]. All calculations
used LAMMPS [28]. Periodic cells were constructed with as
close to equimolar compositions as possible for the given total
number of atoms. The coefficient of thermal expansion (CTE)
was calculated for each cell and composition by equilibrating
and averaging using NPT dynamics in LAMMPS. This CTE
is used to expand the cell to an appropriate volume for the
desired temperature, and this is followed by deleting an atom,
equilibrating with Langevin dynamics, and finally running
under NVE dynamics while collecting the displacement data.
During the MD run, the atoms displace, some moving signifi-
cantly, and this diffusion is aided by the absence of the deleted
atom (i.e., by the “presence” of a vacancy). We also average
over which atom is deleted.

The value from a single run for the mobility is given [27]
by tracking the mean-squared displacement (MSD),

MSD(t ) = 〈|�u(t )|2〉, (5)

where �u(t ) = �r(t ) − �r(0) is the displacement of an atom at
time t from the beginning of the run, and the angle brackets
indicate an average over all atoms. For long times the MSD
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is linear in time with slope 6M̃, where M̃ is the average
vacancy mobility. This calculated factor is proportional to the
concentration of vacancies, so that the total vacancy mobility
is then M = NatM̃, where Nat is the number of atoms in the
simulation. In the rest of this paper we report the vacancy
mobility M, which is independent of the number of atoms in
the cell. The extension to tracer mobilities and diffusivities
is straightforward, in that the MSD [Eq. (5)] is restricted to
atoms of a particular type.

For each temperature, a single configuration is created by
deleting one atom from a cell at random, and running as
above for a time long enough to give a good sampling of
the diffusion (to be discussed more below). At each temper-
ature, at least 256 (occasionally up to 1024 for validation)
configurations are run independently (i.e., a different deleted
atom and different seeds for the velocity generation prior to
thermalization) and the values of M are then averaged to give
the calculated value for that composition at that temperature.
We have performed calculations for cells of 108 and 256
atoms, and confirmed that our calculated values of M do not
depend on cell size.

The appropriate simulation time for each sample depends
on the temperature and composition. We first estimate a value
of the diffusivity, from approximate values of M0 and Qm. The
series of calculations begins with the pure elements. In these
cases, the activation energies are known, but an estimate of
M0 is required. However, only a few calculations are enough
to improve the guess significantly, and we then calculate the
diffusivities for the pure elements. The next set of calculations
is for alloys. Estimates for alloy mobility are given by an arith-
metic average of the migration energies for the constituent
elements and a geometric mean of their corresponding pre-
exponentials. (We will show in the next section that this gives
a reasonable lower-bound estimate of the alloy diffusivity.)
Using this estimate, simulations were initially carried out for a
time t = λ2/M where λ (the diffusion length) is set at 3a0 (for
a0 the lattice constant of the alloy). After performing a set of
calculations at temperatures at approximately 50-K intervals,
the M are fitted to an Arrhenius form, giving an improved
value of M0 and Qm. Those values are then used to reevaluate
the diffusion length, and the set is redone with longer times
if λ < 3a0. For the lowest temperatures we studied (∼700 K),
this led to a total simulation time (counting all independent
samples) of ∼5 microseconds. At higher temperatures, the
required simulation time is much smaller. We have run spot
checks on various calculations by running 100 times longer
and found no significant changes in the results.

We use the Arrhenius fit to help measure the statistical
errors of the sampling. We first assume that deviations from
Arrhenius are due entirely to statistical sampling error. Next
we note that the run time t at each temperature was chosen
to make the diffusion length

√
Mt close to the same value

independent of temperature. This means that the sampling
error in M (related to the number of jumps) is proportional
to the value of M itself. In other words, the error distribution
in ln(M) is independent of temperature. Thus, we can write for
each sample Mi

ln (Mi ) = ln (M0) − Qm

kBT
+ ξi,

where ξi is a random number drawn from a centered Gaussian
distribution with width σr that characterizes the quality of
sampling, and ln(M0) and Qm are determined from the Ar-
rhenius fit by minimizing the function

χ (a, b) = 1

Ni

∑
i

[
ln (Mi ) − a − b

kBTi

]2

that is summed over the set of Ni samples {Mi} at tempera-
tures {Ti}. A straightforward statistical analysis then relates
the statistical error in the fitted values of ln(M0) and Qm to
σr , that in turn is measured by the minimum value of the
function χ . That is, χmin = (1− 2

Ni
) σ 2

r gives σr and then the
standard deviations for the Arrhenius parameters are σ (Qm) =
kB

σr√
Ni

[ 1
x2− x̄2

]1/2 and σ [ln(M0)] = σr√
Ni

[ x2

x2− x̄2
]1/2 with x2 =

1
Ni

∑
i

1
T 2

i
and x̄ = 1

Ni

∑
i

1
Ti

.
Melting alters atomic mobility significantly, and essentially

erases any vacancy that is present in the solid, so we perform
two checks to ensure that the simulations are performed below
the melting temperature (Tm). First, the diffusivities, when
plotted as ln(M) vs 1/T, are linear (i.e., Arrhenius) both below
and above Tm but with a shift in the slope. Any deviation
in slope at higher temperatures then results in a check for
melting. Second, we randomly check the crystallinity of the
samples by eye. We note that our samples seem to melt fairly
readily, and that for the pure elements this occurs within 50 K
of Tm as determined by Foiles and Adams [22]. This is in
contrast to the behavior reported by de Lorenzi and Ercolessi
[27], who were able to superheat their solids above Tm and
continue the calculations for solid diffusivity. We also note
that because of the eutectic effect, alloys may melt at a tem-
perature significantly lower than the compositional average of
the melting points of the constituent elements. The data we
report below were run up to as high a temperature as possible
without melting, giving an estimate (likely within 50 K) for
the melting points. These are the values we use when making
the comparisons using homologous temperatures.

Visually, the dominant mechanism is hopping of a near-
est neighbor atom into the vacant site. Occasionally multiple
atoms will move in a coordinated way, reminiscent of what de
Lorenzi and Ercolessi [27] reported, but we have not studied
this in detail. It is important to note that our approach using
MSD makes no assumption about the nature of the diffusion,
beyond that we have designed the system so that there are only
single vacancies (thus excluding the possibility of vacancy
clusters).

Because vacancy hopping is the dominant mechanism for
evolution, our simulations could allow some degree of phase
separation to occur should this be energetically favorable. This
phase separation or compositional rearrangement is dependent
on, and therefore secondary to, the vacancy motion itself,
implying that the time scale of evolution is long enough that it
should be possible to run our diffusion calculations for a rea-
sonable time before the assumed randomness of our samples is
affected. To confirm this, we calculated particle-particle cor-
relations and found that the type-type frequencies for nearest
neighbors were very close to random occupations both before
and after the runs, so that we are indeed sampling properties
of fully random alloys.
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D. Sluggish criteria and reference diffusivities

Part of the difficulty of determining whether vacancies
are “sluggish” is choosing a suitable criterion. As a practical
matter there may be no single criterion suitable to all spe-
cific circumstances (that is, it may depend upon application).
For our purposes of investigating a general trend we seek a
general way of determining whether the vacancy mobility is
“sluggish” or “vigorous.” We first consider the problem for
examining the overall self-diffusion of the alloy (that is, the
diffusion of the vacancy). Later in this section we will extend
the analysis to tracer diffusivities (that is, atomic diffusion
analyzed element by element).

We have examined eight different criteria for evaluating
sluggishness that are discussed below. In the process, we will
define a way of analyzing a reference diffusivity that turns
out to be very useful—beyond the evaluation of the sluggish
hypothesis—to uncover some of the trends that are present
in our results. In the following, M and D are the vacancy
mobilities and diffusivities, and Q f , Qm, and Qd = Q f + Qm

are formation, migration, and diffusion energies. The sub-
script i refers to values in the pure constituents, and the mean
values denoted by angle brackets like 〈Q〉 are given by rule
of mixtures, as explained more below. The following outline
summarizes the criteria:

(1) “Just the slowest, ma’am” (at a given T)
(a) M < min{Mi}
(b) D < min{Di}

(2) Highest activation energies
(a) Qm > max{Qm,i}
(b) Qd > max{Qd,i}

(3) Positive “excess” energy (higher than rule of mixtures)
(a) �Qm = Qm(alloy) − 〈Qm〉 > 0
(b) �Qd = Qd (alloy) − 〈Qd〉 > 0

(4) Slow by comparison to “rule of mixtures” (at a
given T)

(a) M < 〈M〉
(b) D < 〈D〉

Criterion 1a compares the vacancy mobility in an alloy
to that in the constituents: is the vacancy less mobile in the
alloy than in any constituent? Criterion 1b is the same idea,
but based on diffusivity. This incorporates differences in the
vacancy concentration, as an alloy may have significantly
fewer vacancies and so lower diffusivity. The results of these
tests depend on the temperature at which the properties are
evaluated.

Criterion 2a compares migration energies for the alloy to
those of the constituents, while the comparison of diffusion
energies is made in criterion 2b. These are independent of
temperature, and while related, are not identical to 1a and 1b
because of differences in the pre-exponentials.

Criteria 3a and 3b are suggested by an analogy to the rule
of mixtures, by which an ideal mixture exhibits properties
that are a mean of the properties of the constituents. This
suggests, for example, that the migration energy of an ideal
alloy should be the arithmetic mean of the migration energies
of the constituents. Using the ideal alloy migration energy as
a reference, we evaluate the excess migration energy as

�Qm,alloy = Qm,alloy − 〈Qm〉, (6)

�Qd,alloy = Qd,alloy − 〈Qd〉, (7)

where the average for energies is arithmetic:

〈Q〉 = 1

N

N∑
i=1

Qi. (8)

These measures focus on the effect of alloying in com-
parison to the constituent properties, and thus are reasonable
measures for our present investigation. Obviously, the excess
migration energy or excess diffusion energy are not as phys-
ically significant as, say, the excess heat of mixing, but they
nonetheless are appealing constructs and in fact turn out to
provide remarkably helpful means of analyzing our results.

Because diffusion is largely dominated by the activation
energy for diffusion, a negative value for this difference means
that alloying has produced a medium that has faster diffusion
(given the same pre-exponential) than an average of the con-
stituents. This measure of the enhancement or reduction of
diffusivity due to alloying is then done at the same absolute
temperature.

The final criteria 4a and 4b are related to 3a and 3b with
the rule of mixtures applied to constituent diffusivities and
mobilities. Based on the expected Arrhenius behavior, the
arithmetic mean of migration energies corresponds to the ge-
ometric mean of mobilities (and similarly for diffusivity):

〈M〉 =
(

N∏
i=1

Mi

)1/N

, (9)

〈D〉 =
(

N∏
i=1

Di

)1/N

. (10)

This use of the rule of mixtures is a plausible hypothesis
but without rigorous backing. When we apply this rule of
mixtures to the results our calculations, though (in Sec. III E),
we find that, when combined with the lattice mismatch pa-
rameter [Eq. (16)], it is helpful for quantitatively describing
the diffusivity of the alloys we investigate.

Thus, we will use as a measure of the effect of alloying
the ratio of the alloy diffusivity to the mean of the constituent
diffusivities: (D/〈D〉). This can be decomposed into two parts:
the ratio for the pre-exponential (D0/〈D0〉) and the difference
for the diffusion energy �Qd . Our measure can be thought of
as the “excess” value of Q away from the rule of mixtures. In
this sense, these measures focus on the effect of alloying, and
so are reasonable measures to use in our present investigation.
We show that these mean values are in fact quite helpful in
understanding the trends relating to vacancy diffusion in these
alloys.

E. Using homologous temperature

To investigate the effect of using homologous temperature,
we include two criteria for evaluating diffusivity—similar
to the first four criteria from the previous subsection—at
the melting point or scaling the energies by the melting
temperature.

(1) “Just the slowest, ma’am” (at the melt or solidus tem-
perature, called generically Tm)

(a) M(Tm) < min{Mi(Tm,i )}
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(b) D(Tm) < min{Di(Tm,i )} (This corresponds to Mira-
cle [9].)

(2) Highest homologous activation energies
(a) Qm/Tm > max{Qm,i/Tm,i}
(b) Qd/Tm > max{Qd,i/Tm,i} (Similar to TTY13 [6].)

Note that criterion 5b is used by Miracle [9] and criterion
6b almost corresponds to that used in TTY13 [6], except that
there it is applied to tracer diffusivities. Because the melt-
ing/solidus point of the alloy is usually less than that of the
constituents, it is expected that using homologous tempera-
ture should be a less stringent criterion than using absolute
temperature (i.e., because the comparisons are done at lower
temperature where overall diffusion is slower).

F. Tracer diffusivities

For tracer diffusivities, the same calculations can be done
by specifying the type of atom considered, so that the mobili-
ties are restricted to a given constituent of the alloy. Likewise,
migration and diffusion energies are specific to migrating
type as well as host. In calculating the excess energies (see
previous subsection), as well as for comparison to experiment
(see below), this involves a further calculation of the energy
barrier for an atom in each of the pure constituent elements
in the ideal alloy. That is, we calculate the barrier for a single
atom of type A in a pure lattice of type B that begins next to
a vacancy and then jumps into the vacancy. This must also
include the binding energy of the impurity to the vacancy.
Once this is known, we can calculate �QA

alloy (superscript
indicates tracer of type A). An advantage of this definition for
�Q (with the rule of mixtures as reference) is that we can
compare directly to the thermochemical data for diffusion in
alloys that is available for many of the binaries that we are
considering. It is standard in the thermochemical analysis to
fit tracer diffusivity data as a function of alloy composition to
a general polynomial expansion in terms of compositions. For
example, for the Au-Ni binary system the activation enthalpy
for diffusivity for Au has been fitted to this function of the
binary composition (using the notation of Ref. [29] that is
typical of the literature):

�G∗
Au = xAu�GAu

Au + xNi�GNi
Au + xAuxNi�

0GAu,Ni
Au

+ xAuxNi(xAu − xNi)�
1GAu,Ni

Au , (11)

where the fractional compositions xAu + xNi = 1. The first
term on the right-hand side corresponds to Au diffusion in Au,
the second to Au diffusion in otherwise pure Ni, and the last
two terms to parameters describing diffusion across the full
range of alloying. The thermochemical fitting then results in
four parameters, the first of which is not specific to the Au-Ni
binary. For the case of equimolar alloys, the last term becomes
zero and the first two terms become an arithmetic average of
the activation enthalpies in the pure constituents. Then our
definition of �Q (i.e., comparing the activation energy in the
alloy to that of the ideal composite) can be compared directly
to available thermochemical data. If the agreement is perfect,
we should find for a vacancy V:

�GAu
Au = Q f (V in Au) + Qm(V in Au)

= Qd (V in Au), (12)

�GNi
Au = Q f (V in Ni) + Qm(V trading place with Au,

in otherwise pure Ni)

− Qb(V binding to Au in otherwise pure Ni), (13)

1
4�0GAu,Ni

Au = �Qd (Au in AuNi), (14)

where the last comes from evaluating Eq. (11) at 50-50
composition. We note again that the diffusion enthalpy is a
combination of formation and migration. While we calculate
formation and migration separately, in the thermochemical
literature only the full activation enthalpies for diffusion are
determined. However, we remind the reader that the EAM
functions were originally fit to the vacancy formation energies
available for the pure elements, and were tested successfully
on the vacancy migration energies in those elements, so those
are expected to be in reasonable agreement with experiment.

G. Statistical measure of properties

In the spirit of having a material formed from many con-
stituents, we also define statistical measures of the set of
constituents. For example, if we view the set of lattice con-
stants ({a0i}) in terms of a probability distribution, we can then
form various moments of the distribution. The first moment
of the distribution of lattice constants is the average lattice
constant,

a0 = 1

M

M∑
i=1

a0i. (15)

The average is the lattice constant of the alloy from Veg-
ard’s law, and constitutes a good estimate of the actual lattice
constant. The second moment, a2

0 = 1
M

∑M
i=1 (a0i )2, measures

the width of the distribution of lattice constants, so that the
ratio of the rms (root-mean squared) to the mean is the frac-
tional lattice mismatch for the alloy,

δ =
√

1
M

∑M
i=1 (a0i − ā0)2

ā0
. (16)

This parameter is often used to place bounds on suitable
candidates for high entropy alloys [30]. For the present FBD
set of elements, δ ranges up to nearly 8%. For the often-
studied so-called “Cantor alloy” (CrMnFeCoNi) studied in
TTY13, Owen et al. [31] evaluate δ to be ∼1%.

III. RESULTS FOR SELF-DIFFUSION

A. Vacancy formation and migration in the six elements

We examine first the results for the six pure elements (Cu,
Ag, Au, Ni, Pd, Pt). We report first formation, then migration.

The procedure for calculating vacancy formation energies
in the equimolar alloys reduces for the simple case of a pure
metal to the straightforward method used in FBD, and so we
expect and find agreement between our present results and
those in the original FBD paper.

By contrast, we note that our present method for calculat-
ing mobilities is dynamic rather than static as in FBD, and

043603-7



MURRAY S. DAW AND MICHAEL CHANDROSS PHYSICAL REVIEW MATERIALS 5, 043603 (2021)

FIG. 1. Arrhenius plot [ln(M ) vs 1/T] of the vacancy mobility
calculated for the six elements in the FBD set. Lines represent linear
fits.

so it is not necessarily expected to find agreement, but in fact
we do find our dynamical results in close agreement with the
static saddle-point calculations in FBD. In Fig. 1 we show the
calculated mobilities for the pure metals from the FBD set
(Cu, Ag, Au, Ni, Pd, Pt) at temperatures up to their respective
melting points [22]. As described above, these results were
calculated for cells of 108 atoms, checked against 256-atom
cells, with results representing the average of 256 total runs at
each temperature, each run for a diffusion length of 1 a0. (As
noted in the Methods section, the compositional homogeneity
of the pure metals allows for shorter runs than the alloys.)
From these we fit a line to ln(M) vs 1/T and extract M0 and
Qm for each element. These results are shown in Table II,
along with the saddle-point energies for the FBD functions
as calculated by molecular statics (constrained optimization).

From the Arrhenius fits and error analysis discussed in the
Methods section, we have determined that for the pure ele-
ments the statistical sampling errors on values of ln(M0) and
Qm are 13% and 0.013 eV, respectively. These independent
error estimates for Qm are consistent with the errors for the
elements seen in Table II (for the elements).

We find that the migration energies for all six metals cor-
respond to the saddle-point energy for vacancy migration.
Examining the energy surface for the system moving a nearest
neighbor into the vacant site, we find that the energy surface
for all of the FBD elements is quite simple, with the saddle

TABLE II. Computed values for the Arrhenius constants
(M0, Qm ) for vacancy migration compared to the migration saddle-
point energies from the original source [19]. (Note correction to Q
published in the erratum [20].)

M0 (Å2/psec) Qm (eV) Qm (eV)
Element (this work) (this work) (FBD [19,20])

Cu 190 0.67 0.67
Ag 230 0.77 0.78
Au 180 0.65 0.64
Ni 290 1.05 1.06
Pd 170 0.74 0.74
Pt 190 0.82 0.82

FIG. 2. Arrhenius plot of calculated self-diffusivity in Au, Pd,
and (random) AuPd, with the alloy diffusivity in between and close
to the mean of the constituents [Eq. (10)]. The solid lines are fits to
the data, and the dashed line for the mean is computed from those
fits.

point being halfway between the two lattice positions. This
is in contrast to de Lorenzi and Ercolessi [27] who find that
the migration energy is not equal to the saddle-point energy
but differs by about 0.2 eV. In their case, the dynamical effect
seems to be related to the more complex energy surface for
their gold “glue” potentials. (“Glue” potentials are generically
the same as EAM, but differ in some specifics.) We point
out that our MD calculations are the most appropriate way
to calculate the migration energy for the dynamical system.

B. Vacancy diffusivities in the 57 alloys

We present first in this subsection a selection of results for
the vacancy diffusivities (combining formation and migration
as described in the previous section) from the 57 equimolar
alloys (15 binaries, 20 ternaries, 15 quaternaries, 6 quinaries,
and one senary) that can be formed from the FBD elements.
The selection is intended to show the range of behavior among
the 57 alloys, where most are considered to be vigorous dif-
fusers but a small list of 7 can reasonably be called sluggish.

We note at this point that the statistical errors in ln(M0) and
Qm are slightly bigger for the alloys than the pure elements—
28% and 0.024 eV, respectively. These errors are small enough
that we can still extract meaningful trends from our calcula-
tions.

In Figs. 2 –4, we show the self-diffusivity for three binaries
(AuPd, NiPt, and AgPt) along with the pure constituents for
each case. The diffusivity in AuPd (Fig. 2) is moderate, in
that it is sandwiched between those for Au and Pd, and is
close to the mean [Eq. (10)]. Diffusion in NiPt (Fig. 3) is
enhanced in that vacancies in the alloy are faster than in either
Ni or Pt. Finally, diffusion in AgPt (Fig. 4) is marginally
sluggish in that in the alloy the vacancies diffuse slower than
in Ag or the mean of the two components, but still faster than
in Pt.

In Figs. 5 and 6, the diffusivity is shown for two ternaries
(AgAuNi and AgPdPt). Again, in these figures we plot the
diffusivities compared to the individual constituents and their
mean. The diffusivity is clearly enhanced in AgAuNi and
moderately sluggish for AgPdPt.
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FIG. 3. Arrhenius plot of self-diffusivity in Ni, Pt, and (random)
NiPt, showing enhanced diffusivity in the alloy (see Fig. 2 caption
for an explanation of the lines).

In Fig. 7, we show the results for two quaternary alloys,
AgAuPdPt and CuAgAuNi, with the former being slightly
sluggish and the latter vigorous. In Fig. 8, we show a quinary
(CuAgAuNiPd) that is vigorous, like all quinaries considered
here, and the only six-component alloy in our set (CuAgAu-
NiPdPt), that is moderately vigorous.

In Table III, we show the classification using the various
criteria described in the Methods section. Among the 63 mate-
rials considered here (6 pure elements + 57 equimolar alloys),
evaluated at T = 1000 K, the slowest materials (in increasing
order) are Ni, Pt, PdPt, AgPt, CuNi, AgPdPt, Pd, AuPdPt,
AuPt, NiPt. Note that these are simple elements and binaries
or ternaries; alloys with more constituents come later on the
list. Also note that all alloys are faster than at least one of the
constituents in pure form, e.g., PdPt, AgPt, AgPdPt, AuPdPt,
AuPt, and NiPt are faster than Pt, and CuNi is faster than Ni.

As expected, the first four criteria (1a, 1b, 2a, and 2b) are
more stringent than the latter four (3a, 3b, 4a, and 4b) and
result in fewer alloys being classified as sluggish. The sluggish
alloys are mostly binaries (five out of the 15 possible: AgAu,
AgPd, AgPt, AuPd, AuPt), though there are some ternaries
(four of the 20 possible: AgAuPd, AgAuPt, AgPdPt, AuPdPt)
and one quaternary of the 15 possible (AgAuPdPt). It is clear

FIG. 4. Arrhenius plot of self-diffusivity in Ag, Pt, and (random)
AgPt, showing slower vacancy motion in the alloy than in the mean
of its constituents. Note, however, that the diffusion in pure Pt is the
slowest (see Fig. 2 caption for an explanation of the line).

FIG. 5. Arrhenius plot for self-diffusivity of Ag, Au, Ni, and
(random) AgAuNi (see Fig. 2 caption for explanation of the lines).
By the criteria presented in the text, this ternary would be an example
of enhanced diffusion.

from Table III that all sluggish alloys are made from the same
four elements (Ag, Au, Pd, and Pt), and this will be largely
explained in the next subsection. We will consider in the
following a better evaluation of the magnitude of the changes
in diffusivity for all the alloys, but even at this level it is clear
that having many constituents alone is insufficient for sluggish
diffusion.

On the other side of the spectrum, we list in Table IV
those alloys that could be considered “vigorous” by reversing
criteria 1a and 1b; M > max{Mi} and D > max{Di}). We note
that Ni is the most common constituent on this list, and Pt is
the least common.

It is clear that this large set of alloys can be characterized
by many differences including number of constituents, but
also a wide variety of other properties like differences in cohe-
sive energy, lattice constants, moduli, etc. Without analyzing
these correlations as well, the above results are not particularly
illuminating.

Furthermore, simply qualifying an alloy as sluggish or vig-
orous ignores things that alloys can reveal by understanding
what controls diffusion. For this reason, we will next consider
what properties might be correlated with diffusivity as mea-
sured relative to the constituent means.

FIG. 6. Arrhenius plot for self-diffusion in Ag, Pd, Pt, and (ran-
dom) AgPdPt (see Fig. 2 caption for explanation of the lines). By
the criteria presented in the text, this ternary exhibits moderately
sluggish diffusion.
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FIG. 7. Two quaternaries, one showing slightly sluggish vacancy diffusion (left) and the other enhanced (right) (see Fig. 2 caption for
explanation of the lines).

C. Further analysis

While we have concluded that the presence of many com-
ponents alone is insufficient for suppressed vacancy mobility,
Figs. 2–8 do show some examples of alloys that are sluggish
or at least moderately slow. Here we consider the possibil-
ity of correlating the diffusivity of the alloys with various
constituent properties. This is useful for two reasons. First
and foremost, an understanding of correlative properties may
guide the theoretical investigation into root causes. Related to
this, as the current calculations use the semiempirical EAM,
these properties are included in the fitting of the potentials.
It is then helpful to understand the connection between pre-
dictions (such as vacancy mobility in a random alloy) and
training properties to help guide the empirical search for new
materials.

We begin by correlating with the mean of constituent dif-
fusivities. In the left panel of Fig. 9 we show a scatter plot of
the diffusivity against the mean diffusivity of the constituents.
There is considerable scatter, and the only conclusion is that
〈D〉 is close to a lower bound for D. We next investigate
whether this scatter might be reduced if we take into account
correlations with various properties.

The properties we consider in correlating to D/〈D〉 are
lattice constant (a0), sublimation energy (Esub), vacancy for-
mation energy (Q f ), vacancy migration energy (Qm), the
three cubic elastic constants (C11,C12,C44), and (in a slightly
different way) the dilute heats of mixing for the binaries.
We also consider combinations of the elastic constants in

the bulk modulus [B = (C11 + 2C12)/3], two shear moduli
[C = C44 and C′ = (C11 − C12)/2], average shear modulus
G = (3C + 2C′)/5, and the elastic anisotropy (A = C/C′).
In inspecting correlations, we consider the mismatch of the
alloy constituents similar to the parameter δ for mismatch
in lattice constants [Eq. (16)] and perform a simple Pearson
linear regression of the referenced diffusivity D/〈D〉 with the
rms of each property for a given alloy. For the dilute heats
of mixing, however, we correlated with the average of the
two heats of mixing: A in B and B in A and only considered
binary alloys. We find that the majority of these properties
show no strong correlation, with the notable exception of
lattice mismatch [δ, Eq. (16)], shown in Fig. 10. The figure
confirms a significant correlation between the diffusivity, the
mean of the constituent diffusivities, and the lattice mismatch.
Figure 10 again shows that having many components is not a
particularly important factor in the diffusivity, whereas lattice
mismatch is very significant. It also shows that many alloys
exhibit enhanced vacancy mobility, especially for δ > 0.03.
For smaller δ we see that most but not all alloys are sluggish,
but only by at most a factor of 2, which is not much for
diffusivity. Also, we see binaries, ternaries, and quaternaries
grouped around δ = 0.02 all with somewhat slower diffusion.
The slowest alloy (compared to the mean of its constituents) is
AgPt at δ = 0.02. As pointed out by Miracle [9], the measure-
ment of diffusion coefficients is difficult, and only differences
greater than a factor of 10 should be considered relevant.
While the measurement of diffusivities in simulations is more

FIG. 8. A quinary and the senary alloy, both exhibiting enhanced vacancy diffusivity relative to the constituent mean.
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TABLE III. Results of applying various sluggish criteria to the
results of our calculations, at T = 1000 K (and 1500 K in parenthe-
ses if different than at 1000 K).

Criterion Alloys meeting sluggish criterion

1a AgPd, AgPt (also AgPdPt at 1500 K)
1b none (AgAu only at 1500 K)
2a AgPd, AgPt
2b none
3a AgPd, AgPt, AuPt, AgAuPd, AgAuPt,

AgPdPt, AuPdPt, AgAuPdPt
3b AgPd, AgPt, AgAuPt, AgPdPt, AgAuPdPt
4a AgAu, AgPd, AgPt, AuPd, AgAuPd,

AgAuPt, AgPdPt, AgAuPdPt
4b AgAu, AgPd, AgPt, AgAuPd,

AgAuPt, AgPdPt, AgAuPdPt

accurate (in the sense of smaller errors around the mean),
and therefore the differences in Fig. 10 are large enough for
the classification of sluggish vs enhanced, we note that none
of the sluggish cases are expected to be slow enough to be
experimentally distinguished.

In Fig. 10 a quadratic fit to the scatter plot gives

ln (D) = ln (〈D〉) + f (δ) (17)

with a quadratic best fit being

f (δ) = −7.14δ + 901.8δ2 (18)

In the right panel of the Fig. 9, we replot the scatter plot of
the left panel but this time accounting for the correlation we
have established with respect to lattice mismatch in Fig. 10.
That is, when we plot ln(D) vs ln(〈D〉) + f (δ), we see a
significant tightening of the correlation. A good estimate of
D for an alloy is then

D = 〈D〉exp[ f (δ)]. (19)

This equation comes to within a factor of two for the major-
ity (within a factor of four in the worst case) of our calculated
values of diffusivities at 1500 K for the alloys. Considering
that our calculated diffusivities at that temperature are spread
over more than three orders of magnitude, this is a significant
correlation.

We next explore in more depth the significance of the
correlation in Eq. (19) by breaking the diffusivity down into
preexponential and activation energy. In Fig. 11 we see that

the pre-exponential trends toward suppressing vacancy diffu-
sion with increasing lattice mismatch, but in Fig. 12 we see the
opposite trend for the activation energy for diffusion. In fact,
the overall shape of the diffusivity shown in Fig. 10 looks to
be controlled by the overall behavior of the activation energy
for diffusion (Fig. 12).

In Fig. 13, we further break down the activation energy
for diffusion into contributions from formation and migration
energies separately. The resemblance is generally consistent
with the expected correlation between migration and forma-
tion energies.

Notice that because of the lattice constants of the six
elements of this set, the available combinations do tend to
produce more multicomponent alloys at higher δ. Specifically,
there is only one quaternary at δ below 0.03 and no quinaries
or senaries. Nonetheless, it is clear from comparing the alloys
at higher δ that there is not much difference in the diffusivity
(always in relation to the constituent mean diffusivity) among
alloys with two to six components with similar values of δ.
Notice also that the same trends are seen in formation and in
migration energies.

Figures 10–13 also show quadratic fits as function of δ

(dotted lines) to the data. In general, one can expect �Q =
Q−〈Q〉 to be a function of the various parameters of the
constituents, such as lattice constant, sublimation energy, etc.
We start with the hypothesis that the main difference with
regards to diffusion between the elements of this set is due
to the lattice mismatch, and that other differences (like in
cohesive energy) have a much smaller effect on the vacancy
mobility. If we consider �Q to be a function only of δ, then
a random equimolar alloy is symmetrical upon interchange of
types, and �Q is an even function of δ, with an extremum at
δ = 0. With other properties being a second order effect, the
type interchange symmetry will be slightly broken, resulting
in an added linear dependence on δ and an extremum at δ 	= 0.
The fits in Figs. 10 –13 with a near-quadratic dependence with
a minimum away from δ = 0 suggests that lattice mismatch
is indeed the dominating difference among these alloys and
that other differences among the constituents are of secondary
importance. We will investigate this hypothesis in more detail
in a future publication.

Considered together, these results conclusively lay to rest
the hypothesis of TTY13 relating complexity to sluggish dif-
fusion in multicomponent alloys.

D. Analysis using homologous temperature

Using the criteria modified for use with homologous tem-
perature (Sec. II E) we find that by criteria 5a and 5b no

TABLE IV. Results of applying various vigorous criteria to the results of our calculations. (Reversing criteria 1a and 1b: M > max{Mi}
and D > max{Di}.)

Number of constituents Vigorous alloys (reversing criteria 1a and 1b)

2 CuAg, CuAu, CuPd, AgNi, AuNi, NiPd, NiPt
3 CuAgAu, CuAgNi, CuAgPd, CuAuNi, CuAuPd, AgAuNi, AgNiPd, AgNiPt, AuNiPd, AuNiPt, NiPdPt
4 CuAgAuNi, CuAgAuPd, CuAuNiPd, CuAuNiPt, AgAuNiPd, AgNiPdPt
5 CuAgAuNiPd, CuAgAuNiPt
6 none
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FIG. 9. Left panel: Scatter plot of ln(D) vs ln(〈D〉) at T = 1500 K, where D is the calculated alloy diffusivity and 〈D〉 is the mean of the
constituent diffusivities [Eq. (10)]. The scatter is significant, and this plot shows that 〈D〉 is close to a lower bound for D. Right panel: Scatter
plot after taking into account correlation with lattice mismatch (see text). The scatter has been considerably reduced compared to the left panel.
The line in both panels is 1:1.

alloys are sluggish, while by 6a and 6b we find two: AgPt
and AgAuPt. On the other hand, we find even more cases
of vigorous diffusion (faster than any constituents) than with

FIG. 10. Scatter plot of vacancy mobility enhancement (D/〈D〉)
vs lattice mismatch (δ) for 57 alloys from the FBD set. The solid
horizontal line separates enhanced diffusion (above) from sluggish
(below). Diffusion is enhanced for most alloys, and only sluggish for
some alloys with δ < 0.03. The dashed line is a quadratic fit (see
text).

absolute temperatures. Scatter plots similar to Figs. 9 and 10
with homologous values show much larger scatter, almost

FIG. 11. Correlation of pre-exponential with lattice mismatch,
showing that randomness combined with lattice mismatch tends to
inhibit vacancy migration. The solid line separates enhanced (above)
from sluggish (below). The trend of the pre-exponential is decidedly
towards sluggish diffusion, increasing with lattice mismatch. How-
ever, this trend is overwhelmed by the opposite trend in the activation
energy (Fig. 12). (The dashed line is a quadratic fit; see text).
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FIG. 12. Scatter plot showing the “excess” activation energy for
diffusion (combined migration and formation) for alloys against
lattice mismatch. The solid line divides enhanced diffusion (below
the line) from sluggish (above the line). The trend correlates well
with that of Fig. 10, showing that trends in the activation energy
overwhelm trends in the pre-exponential shown in Fig. 11. The dotted
line is a quadratic fit (see text).

obscuring the trends (and insights) we have noted in the
previous subsections.

IV. RESULTS FOR PARTIAL (OR TRACER)
DIFFUSIVITIES

We now analyze the same results but in terms of the
diffusivity of individual constituents in the alloy (i.e., tracer
diffusivities) in order to make comparisons to the available
thermochemical databases. As in the above, we explore possi-
ble trends with respect to number of constituents, analyze the
use of homologous temperature, and explore possible correla-
tion with lattice mismatch.

A. Comparison to thermochemical database

As described in the Methods section, we have calculated
the values for �Qd [Eqs. (7) and (8)] for the elements in
these alloys, and show them in Table V, compared with avail-
able thermochemical fits [like Eq. (11) evaluated at equal
composition]. The table shows many cases of agreement be-
tween theory and experiment, but also individual cases of
disagreement (including some with the incorrect sign). The
average disagreement between our calculated values and the
available experimental values is 0.27 eV. Table V also shows
that for some alloys (CuAg, CuNi, AuNi) there are multiple
entries in the thermochemical database with disagreement
among the experimental values averaging 0.22 eV (max of
0.37 eV). Overall, we feel the agreement is reasonable, given
the challenges presented by the experiments and analysis, and

TABLE V. Values of �Qd for various constituents in the 15
binary alloys considered in this work compared to the appropriate
parameter [ 1

4 �0GA,B
A in Eq. (11)] obtained in thermochemical fits to

experimental tracer diffusion in the same alloys (where available).

Migrant Alloy Theory Experiment (Refs.)

Cu CuAg −0.09 −0.47, −0.26 [24,25]
Ag CuAg −0.31 −0.31 [24]
Cu CuAu −0.22 −0.19 [24,26]
Au CuAu −0.30 −0.24 [24,26]
Cu CuNi +0.05 −0.06 [23]
Ni CuNi −0.18 −0.27, +0.10 [23,32]
Cu CuPd −0.09
Pd CuPd −0.31
Cu CuPt −0.05 −0.14 [26]
Pt CuPt −0.36 +0.15 [26]
Ag AgAu −0.07 +0.09 [24,33]
Au AgAu +0.04 +0.05 [24,33]
Ag AgNi −0.39
Ni AgNi −0.46
Ag AgPd −0.04 −0.74 [34]
Pd AgPd +0.14 −0.02 [34]
Ag AgPt +0.09
Pt AgPt +0.13
Au AuNi −0.53 −0.51, −0.60 [35,29]
Ni AuNi −0.71 −0.35 [29]
Au AuPd +0.04
Pd AuPd −0.03
Au AuPt +0.08 +0.16 [34]
Pt AuPt −0.04 +0.39 [34]
Ni NiPd −0.52
Pd NiPd −0.46
Ni NiPt −0.45 −0.73 [36]
Pt NiPt −0.51 −0.78 [36]
Pd PdPt −0.01
Pt PdPt −0.02

also the difficulties presented by these calculations. Figure
14 shows a scatter plot between the theory and experimental
values showing some degree of correlation.

B. Trends with respect to lattice mismatch

In Sec. III C we showed correlation between the calculated
excess activation energy for vacancy diffusion and lattice mis-
match (Fig. 12). In this section we extend the same analysis to
tracer diffusivities in the binary alloys.

The left panel of Fig. 15 shows a scatter plot of the cal-
culated excess activation energy for tracer diffusivities. The
figure shows some correlation with lattice mismatch and is
reminiscent of Fig. 12. In the right panel of Fig. 15 we show
the same scatter plot for the corresponding parameter taken
from the available thermochemical data among those same
binaries. By itself, the thermochemical data would only mildly
suggest a trend, but taken side by side with the clear trend in
the calculated results, the experimental plot appears at least
consistent with such a trend. For both theory and experiment
(left and right panels) we do (independent) quadratic fits and
the trend shows up the same for both, though there is more
scatter in the experimental data.
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FIG. 13. Breaking down the trend in excess activation energy for diffusion correlated with lattice mismatch (Fig. 12) into contributions from
formation and migration components. Left panel: Excess formation energy correlated with lattice mismatch. Right panel: Excess migration
energy correlated with lattice mismatch. The dotted line is a quadratic fit given as a guide to the eye.

Figure 15 shows that the correlation with lattice mismatch
found for overall vacancy diffusivity is maintained for tracer
diffusivities. There is a reasonable agreement with available
experimental data to support the conclusion of a trend with

FIG. 14. Scatter plot of the experimental excess tracer activation
energy X [from Eq. (11)] against the theoretical values T [given
by �Qd in Eqs. (7) and (8)]. All values are taken from Table V.
There are three cases in Table V where two experimental values are
available in the literature, and these are connected by dashed vertical
lines on this plot. The diagonal line is X = T .

respect to lattice mismatch, though the experimental data
alone (in that it is somewhat scattered) might not have led to
this conclusion.

C. Trends with respect to number of constituents

Tsai, Tsai, and Yeh [6] (“TTY13” in the Introduction)
found a downward trend in the homologous activation energy
of tracer diffusion as a function of the number of constituents
in the alloy for their data set of some alloys among Co-Cr-Fe-
Mn-Ni. We have performed the same analysis for our larger
set of alloys, and in Fig. 16 we show an example of the
specific case of Au in various alloys containing Au. Similar
plots (not shown) for the other five elements in our set lead to
the same conclusion. No general trend is evident in the plot,
and there is nothing to suggest a causal connection between
number of constituents and the homologous activation energy.
It is possible to pick out a particular sequence of alloys where
the homologous activation energy has a downward trend (for
example, Au, AuNi, AgAuNiPd, AgAuNiPdPt), but it is also
possible to find a sequence with the opposite trend (for ex-
ample, Au, CuAu, CuAuPt, CuAuNiPt). (This echoes what is
pointed out by Miracle [9].) We have also made similar plots
using the activation energies for diffusion (not homologous
values), as well as the self-diffusion (not tracer diffusion) and
in all cases we find no correlation with number of constituents.
Though there are specific sequences of alloys that can be cho-
sen to show an apparent decrease in diffusivity with increasing
number of constituents, we conclude that such sequences are
purely accidental. Instead, the conclusion is that there is no
evidence here to suggest a general trend of slower diffusion
with increasing number of constituents. It is worth noting that
the use of homologous temperature only adds complication,
without making the test for sluggishness more stringent.
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FIG. 15. Left panel: Scatter plot of the calculated excess tracer activation energy against lattice mismatch for the 15 binary alloys (two
points for each alloy corresponding to the diffusion for each element in that alloy). For comparison, see Fig. 12, the same plot but for overall
vacancy diffusion. A quadratic fit to the points is shown as a dashed line. Right panel: Scatter plot of the corresponding parameter taken from
the available thermochemical data for the same binaries. A quadratic fit to the experimental points (similar to what is done for the left panel)
is shown as a dashed line.

V. CONCLUSIONS

We report calculations of vacancy-assisted diffusion in the
57 random, equimolar alloys that can be formed from Cu,
Ag, Au, Ni, Pd, and Pt, based on the well-tested functions
of Foiles, Baskes, and Daw [19]. Specifically, we address two
questions: (1) whether increasing the number of constituents

FIG. 16. Calculated homologous activation energy for tracer dif-
fusion for Au in various alloys containing Au, as a function of the
number of constituents in the alloy. Each point is a unique alloy.

is correlated with sluggish diffusion in these alloys, and (2)
if any insight can be gained from using homologous values
(e.g., evaluating diffusivity at the melt or solidus). From EAM
calculations in random alloys with a single vacancy, we de-
termine concentrations and mobilities for the vacancy, and
from them the Arrhenius parameters for self-diffusion as well
as tracer diffusivities. We analyze our sampling in order to
determine the statistical errors of our results. Furthermore,
our alloys are constructed to be as fully random as possible,
and our MD calculations, while long enough to give good
statistics on the diffusivity in the random alloy, are not long
enough to allow any sort of short-range ordering or clustering
to occur, so our results correspond indeed to properties of
random alloys.

We try several possible criteria for evaluating whether
diffusion in an alloy is sluggish or vigorous and find only
a small number in the set (two to eight out of 67 possible
alloys depending on the specific criterion; see Table III) of
candidates exhibiting sluggish diffusion. On the other hand,
the majority of alloys considered could reasonably be said to
exhibit vigorous diffusion.

We find it especially helpful to compare diffusivity in the
alloy to the average diffusivity of the constituents, constructed
by a in quotes to Rule of Mixtures (RoM) [Eq. (10) for
diffusivity, Eq. (8) for activation energies]. Using the RoM
as a benchmark for each alloy, we exhibit a further correlation
with respect to the lattice mismatch of the alloy. In fact, we
were able to show correlations in the diffusivity of all alloys
in our set in terms of (1) the geometric mean of the constituent
diffusivities, and (2) a simple function of lattice mismatch
[Fig. 10 and Eq. (19)]. This simple relation accounts for the
large majority of our alloy diffusivities to within a factor of 2,
and to within a factor of 4 for all of our set. This is encourag-
ing given that the diffusivities of the alloys considered here are
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spread over three orders of magnitude at 1500 K. Using this
measure, the few candidates for sluggish diffusion are seen
to be at most a factor of 2 slower at 1500 K (too small to be
resolved in most experiments), while the vigorous candidates
were enhanced by one to two orders of magnitude.

We find that lattice mismatch is the principal factor control-
ling diffusivity (relative to RoM) for the alloys, except for the
small number of sluggish alloys, all of which occur in a range
of small lattice mismatch (1–3%) (see Fig. 12). However, not
all alloys in this range of small lattice mismatch show sluggish
diffusion; we have so far been unable to uncover the factor(s)
beyond lattice mismatch that determine the small amount of
sluggishness seen among some of those alloys. It is clear from
Figs. 10 and 12 that the number of constituents in the alloy
is largely irrelevant; alloys from two to six constituents seem
to have about the same diffusivity (relative to RoM) as other
alloys with the same lattice mismatch.

We find also that using homologous values disturbs (even
removes) the correlation noted above. Figures similar to
Figs. 10 and 12 when plotted using homologous values show
much more scatter and exhibit no clear trend.

We also analyze tracer diffusivities, allowing us to compare
to the available thermochemical database of diffusivities in
binary alloys, and find that our calculated diffusivities are
in reasonable agreement with that database (comparable to
the self-consistency of that database). Again, we find that
lattice mismatch seems to be the controlling factor in these
results. As with the self-diffusivities, we find no significant
correlation with respect to number of constituents (Fig. 16),
whether or not we use homologous values. Instead, while it
is possible to select sequences of alloys (selected by choos-
ing successively more constituents to a previous alloy) that
show decreasing diffusivity, these sequences are accidental
(echoing Miracle [9]) it is just as easy to find sequences of
alloys that show the opposite trend with increasing number of
constituents.

With respect to the work of Osetsy et al. [15], we find
nothing in our results that could be correlated with a per-
colation model or with anything occurring spatially different
in equimolar five-component alloys than, for example, in the
equimolar binaries. This is likely due to the lack of a single

component that dominates the motion of a vacancy. In our
calculations, the vacancy does not appear to be confined to
move on the network formed by a single component, and so
the system is effectively always above the percolation limit.

To summarize, we show that (1) a simple rule of mixtures,
combined with (2) a simple function of lattice mismatch, can
be used to account largely for the results of our calculations
of diffusivities of random, equimolar FCC alloys. There re-
main beyond this account some other, smaller effects that we
have not yet determined. For relatively small lattice mismatch
(1–3%) some alloys are moderately sluggish (by at most a
factor of 2 at 1500 K). There is, however, a larger number of
alloys (above 3% lattice mismatch) that exhibit significantly
faster diffusion (by factors of 10–100). Our analysis shows no
correlation of diffusivity with the number of constituents in an
alloy.

Finally, we note that all of our conclusions are based
on results from a semiempirical potential that does not ex-
plicitly capture the differences in electronic structure among
these metals. The insights gained here strongly invite future
work based on more detailed electronic structure calculations,
though it is recognized that this may be computationally chal-
lenging.
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