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Decisive role of interstitial defects in half-Heusler semiconductors: An ab initio study
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Half-Heusler semiconductors satisfying 18-electron rule typically display promising characteristics for ther-
moelectric applications. A persistent inconsistency between the type of charge carriers in some of these alloys as
obtained from experiment and theory however casts serious doubt on the computational prediction of new and
efficient half-Heusler alloys. To gain insights into the origin of this disparity, we have investigated the effect of
intrinsic point defects on the electronic structure of four frequently studied half-Heusler alloys of the form XY Z
with Y being Ni or Co. Using state-of-the-art ab initio calculations, our study reveals that interstitial Ni and Co
are energetically most stable point defects in these alloys. Remarkably, interstitial defect modifies the location of
the Fermi level inside the band gap as well as the value of the band gap, thereby bringing in close agreement with
the corresponding experimental result. This work thus highlights the decisive role played by interstitial defects
in thermoelectric half-Heusler alloys, which may open a new avenue for deliberately utilizing these defects as a
strategy for tailoring electronic structure and hence the corresponding thermoelectric properties.
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I. INTRODUCTION

In the ongoing quest for materials that are capable of
converting huge amount of available waste heat into valuable
electrical energy [1–18], half-Heusler thermoelectric alloys
[19–29] have lately attracted enormous attention. These al-
loys are ternary intermetallics with the three elements in
1:1:1 stoichiometric proportion as represented by the gen-
eral formula XY Z (X and Y are transition metals and Z
is nonmagnetic element) [30]. Among the many desirable
properties, half-Heusler alloys exhibit good values of the
thermoelectric figure of merit, robust mechanical properties,
high-temperature stability and use low cost, nontoxic, and
earth-abundant elements. In recent years, the experimental
and theoretical observations of superior thermoelectric perfor-
mance in alloys within this family having 18 valence electrons
per unit cell have accelerated the search for new half-Heusler
alloys fulfilling the 18-electron rule [24,28]. The valence elec-
trons in these alloys occupy all bonding electronic states,
while antibonding states remain unoccupied thereby leading
to the semiconducting band gap. Examples of thermoelectric
materials belonging to this class of alloys include XNiSn and
XCoSb (where X = Hf, Zr, Ti) [31–37] and NbCoSn-based
alloys [38–41]. All the above mentioned half-Heusler alloys
with a valence electron count of 18 are promising candidates
for thermoelectric applications with large Seebeck coefficient
of up to several hundred μV K−1 and moderate electrical
conductivity. Furthermore, the valence electron concentration
in these alloys can be tuned by the partial substitution of
elements occupying the three available sites.

In spite of the existence of plethora of studies on half-
Heusler thermoelectric materials, a fundamental discrepancy
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remains between state-of-the-art theoretical and experimen-
tal findings. This discrepancy is manifested in terms of the
theoretical prediction of some of the undoped n-type narrow
band gap half-Heusler alloys as p-type semiconductor. For
instance, the ab initio electronic band structure calculations
performed within the density functional theory (DFT) frame-
work predicted NbCoSn to be a p-type semiconductor [39],
while experimental measurements found the alloy to be in-
trinsically n-type [40–42]. Similarly, the Seebeck coefficient
measurements for ZrNiSn and HfNiSn [43–45] confirmed
these alloys to be n-type semiconductors. The ab initio band
structure calculations, on the contrary, predicted these half-
Heusler alloys to be p-type in nature [46]. Other half-Heusler
alloys for which such a discrepancy exists between band
structure calculations [47,48] and experimental measurements
[49–51] include TiNiSn and TiCoSb. For understanding and
tailoring electronic band structure in a controlled manner to
improve the thermoelectric performance of half-Heusler al-
loys, resolving the above discrepancy between theoretical and
experimental findings is of pivotal importance.

It is noteworthy that most of the previous ab initio investi-
gations considered defect-free stoichiometric composition for
half-Heusler alloys. However, the half-Heusler alloys have
been found to be prone to chemical off-stoichiometry [52,53].
The intrinsic point defects resulting in off-stoichiometric
compositions have been previously reported for several half-
Heusler alloys such as TiNiSn [54–57], HfNiSn [58,59], and
ZrNiSn [33,60,61]. For instance, analyzing the Seebeck co-
efficient of TiNiSn using the Goldsmid-Sharp formula [62],
Barczak et al. [63] reported gradual reduction in the band
gap with increasing amount of interstitial defect. In good
agreement with this finding, ab initio studies showed that the
structural interstitial defects reduce the band gap of TiNiSn
[57,64,65]. These findings for TiNiSn indicate that intrinsic
defects may, in general, play decisive role in determining the
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FIG. 1. Schematic representation of the cubic C1b crystal struc-
ture adopted by half-Heusler alloys (space group F 4̄3m).

type of charge carriers and band gap of the above-mentioned
half-Heusler alloys and help in solving the long-standing dis-
crepancy between theoretical predictions and experimental
observations for similar n-type half-Heusler alloys.

The purpose of this paper is to underscore the general
impact of intrinsic point defects on the electronic structure
of the n-type Co- and Ni-based half-Heusler alloys. In order
to achieve an in-depth understanding, we carry out thorough
DFT-based investigations of the defect energetics and the
subsequent effect on the electronic structure in four widely
studied narrow band gap half-Heusler alloys viz. NbCoSn,
TiCoSb, ZrNiSn, and TiNiSn. Our calculations make an
interesting revelation that the p-type behavior theoretically
predicted earlier for the above stoichiometric half-Heusler
alloys changes to n-type with the consideration of intrinsic
point defects. Our results are, thus, in agreement with the
experimental observation, explaining the n-type nature and the
band gap of each of the above mentioned half-Heusler alloys.
To the best of our knowledge, the present study is first of its
kind highlighting the significance of intrinsic point defects for
deriving correct electronic structure within the DFT frame-
work for both Co- and Ni-based n-type half-Heusler alloys.

The rest of the paper is organized as follows. In the follow-
ing section, all details on the DFT simulations are provided. In
Sec. III, the results on defect formation energies and electronic
structure are presented along with the corresponding discus-
sion. Finally, in Sec. IV, the main conclusions of our work are
summarized.

II. COMPUTATIONAL METHODOLOGY

The underlying C1b crystal structure (MgAgAs-type with
space group F 4̄3m) of the half-Heusler alloys with general
formula XY Z can be visualized as an XZ rock salt sublattice
with half of the tetrahedral sites being occupied by Y as
shown in Fig. 1. We perform theoretical calculations using
DFT [66,67] as implemented in the Vienna ab initio Simula-
tion Package (VASP) [68–70]. The total energies and forces
are calculated using the projector augmented wave method
[71] together with the generalized-gradient approximation
(GGA) for the exchange-correlation potential parametrized by
Perdew, Burke, and Ernzerhof (PBE) [72]. The single-electron
wavefunctions are expanded using plane waves up to an en-
ergy cutoff of 500 eV. An energy tolerance of 10−7 eV is

used as a convergence criterion for the self-consistent elec-
tronic loop. All lattice parameters and atomic positions are
relaxed until the residual forces acting on each atom are below
0.0001 eV Å−1. Such strict choice of cutoff parameters and
convergence criteria result in DFT energies with an error �
0.1 meV atom−1. The defect formation energies and elec-
tronic band structures are calculated for 2×2×2 supercells
comprising 96 atoms as illustrated in Fig. 1. For the vacancy
formation, one of the 96 atoms is replaced by a vacancy, while
for the interstitial defect, an additional atom is placed in the
vacant 4d site of the C1b crystal structure. The interstitial
defect leads to approximately 3% excess concentration of
the element occupying the defect site. For the Brillouin-zone
sampling, the tetrahedron method [73] with a k-point grid of
8×8×8 is employed. A dense k-point grid of 14×14×14 is
used for the calculation of density of states (DOS).

III. RESULTS

A. Intrinsic point defects

We begin investigations by calculating formation energies
of intrinsic point defects, i.e., vacancies, interstitials, and an-
tisites, of the half-Heusler alloys NbCoSn, TiCoSb, ZrNiSn,
and TiNiSn at 0 K. The point defect formation energies can
be estimated [74] from the following equations:

�E (Iα ) = E (defect) − E (perfect) − μα, (1)

�E (Vα ) = E (defect) − E (perfect) + μα, (2)

�E (βα ) = E (defect) − E (perfect) + μα − μβ, (3)

where �E (Vα ) and �E (Iα ) denote formation energies of a
vacancy and an interstitial defect of atom α, respectively.
�E (βα ) is the antisite formation energy of atom β replacing
atom α. E (perfect) and E (defect) are the total energies of the
system without any defect and containing a defect respec-
tively. μα denotes chemical potential of the atom α. In the
present study, we have chosen bulk ground state energies per
atom of elemental solids as their chemical potentials.

Figure 2 shows theoretically estimated point defect forma-
tion energies of the four half-Heusler alloys. Previous ab initio
calculations for TiNiSn predicted Ni interstitial to be the most
stable point defect in the alloy [57,64,65]. A comparison of the
calculated and X-ray photoemission spectroscopy measured
DOS further provided indirect evidence that excess Ni atoms
occupy vacant 4d sites in the C1b TiNiSn alloy [75]. Our cal-
culations using equations (1)–(3) indicate that Ni interstitial
is energetically the most favorable defect with lowest forma-
tion energy in both Ni-based alloys, i.e., ZrNiSn and TiNiSn
[Figs. 2(c) and 2(d)]. The formation energies of other point
defects are significantly higher than the Ni interstitial forma-
tion energy. For Co-based alloys, i.e., NbCoSn and TiCoSb,
the formation energies of interstitial Co defect are slightly
higher than those for the Ni interstitial in Ni-containing alloys.
Nonetheless, interstitial Co is the most abundant defect among
all intrinsic point defects in these two alloys [Figs. 2(a) and
2(b)]. This indicates that excess Ni and Co atoms, due to
their smaller atomic radius than other chemical elements in
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FIG. 2. Ab initio computed formation energies of various defects
in (a) NbCoSn, (b) TiCoSb, (c) ZrNiSn, and (d) TiNiSn at 0 K.

the above Ni- and Co-based alloys, are more likely to occupy
vacant interstitial sites. Our study of intrinsic point defects for
the half-Heusler alloys can also be interesting in the context of
full-Heusler thermoelectric materials for which such defects
are found to play decisive role in determining their thermo-
electric performance [76–79].

Note that our calculations indicate different magnetic prop-
erties for the two interstitial defects, i.e., Ni and Co. While
Ni interstitial is nonmagnetic in nature, interstitial Co defect
is stabilized in a ferromagnetic state in both NbCoSn and

TiCoSb. Without interstitial defects, all four alloys are non-
magnetic. The effect of different magnetic states exhibited by
the interstitial defects on the corresponding DOS is discussed
later in the paper.

B. Electronic band structure and density of states

Unlike the usual tendency to predict underestimated band
gap in solids [80–84], ab initio calculations yielded higher
values of band gap in comparison to experimentally mea-
sured values for the above-mentioned half-Heusler alloys
[48,85–87]. It has been speculated that slight change in alloy
composition in the experimental samples due to point defects
may explain this deviation from the usual trend observed
in semiconductors [57,64,65]. While external doping is the
commonly employed point defect engineering strategy for
tailoring carrier concentration and mobility [44–46,88–94],
intrinsic point defects can also modify electronic structure,
carrier concentration, and hence transport properties of half-
Heusler alloys [95–102]. The high-resolution angle-resolved
photoemission spectroscopy (ARPES) measurements can be
used to gain insights into the defect-induced changes in the
electronic structure [99,103]. Controlling the precise amount
of interstitial defects in the experimental samples is how-
ever a challenging task, which makes it tricky to correlate
the interstitial defect concentration with the corresponding
ARPES measurement. Here, we discuss the effect of the en-
ergetically favorable Ni and Co interstitials on the electronic
band structure and DOS. For a systematic understanding, it
is essential to study electronic structure without and with in-
terstitial defects. Figure 3 shows ab initio computed electronic
band structure for the four defect-free half-Heusler alloys. Our
calculations predict p-type behavior for all the alloys. While
these findings are in good agreement with existing theoretical
results [48,85,86], experimental measurements exhibit n-type
conductivity in these alloys. It is worthwhile to mention here
that previous computational studies have also examined the
effect of advanced approaches beyond the semilocal GGA
functional such as the hybrid functional and the GW method
for most of these alloys [31,52,104–106]. The GW approxi-
mation based on the many-body perturbation theory provides
qualitatively similar results as that of the GGA functional with
the former being more reliable, elaborate but computationally
very expensive. The HSE06 hybrid functional predicted 20%
to 50% larger band gap than the GGA functional for Ni-based
alloys. The effect is more severe for some of the Co-based
alloys where band dispersions computed with the HSE06
functional differ from the corresponding results obtained with
both the GGA functional and the GW method [31]. The effect
of electronic correlation on the thermoelectric properties has
also been reported in several materials. This includes RuSe2,
FeSb2, transition metal monosilicides, Co-based quaternary
Heusler alloys, oxide materials, and a few half-Huesler alloys
[107–115]. Nevertheless, the Ni- and Co-based half-Huesler
alloys chosen in the present study are not strongly correlated
electron systems and hence electronic correlation is expected
to have negligible effect on our obtained results.

Next, we investigate the effect of interstitial defects on
the electronic structure. Recent ab initio calculations focusing
on the impact of interstitial Ni defects in TiNiSn revealed
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FIG. 3. Electronic band structure of ideal, defect-free (a) NbCoSn, (b) TiCoSb, (c) ZrNiSn, and (d) TiNiSn calculated using DFT. The
Fermi energy (Ef ) is set to 0 eV and is marked by the dotted horizontal line.

several noteworthy features in the electronic band structure
and DOS [57,64,65]. The interstitial Ni leads to localized de-
fect states close to the Fermi level within the band gap. These
mid-gap defect states reduce the band gap and increase the
carrier concentration of the alloy, which is likely the reason
behind its attractive thermoelectric properties. Additionally,
interstitial Ni defect tends to shift the Fermi level of TiNiSn
in such a way that the alloy exhibits n-type nature as opposed
to the p-type nature for the defect-free alloy. While these
few previous investigations pointed towards the impact of
interstitial defects on the electronic structure, a comprehensive
understanding of the above-mentioned discrepancy between
theoretical and experimental findings for several Co- and Ni-
based alloys still remains elusive. Our theoretical calculations
predict mid-gap states arising due to interstitial Ni defect in
both the Ni-based alloys. The Fermi level also shifts closer to
the conduction band indicating n-type conductivity in ZrNiSn
[Fig. 4(c)] and TiNiSn [Fig. 4(d)]. Similar to Ni-containing
alloys, occupation of the vacant 4d sites in the C1b structure
by Co yields mid-gap electronic states in NbCoSn [Fig. 4(a)]
and TiCoSb [Fig. 4(b)]. These mid-gap defect states in the
up-spin channel of the DOS lower the band gap of Co-based
alloys. An additional peak close to the Fermi level also ap-
pears in the down-spin channel. More remarkably, interstitial
Co defect has similar qualitative effect on the Fermi level
of NbCoSn and TiCoSb as that of interstitial Ni in the two
Ni-containing alloys. In contrast to the p-type behavior of the
defect-free alloys, both Co-containing alloys with interstitial
Co defect exhibit n-type behavior. Our calculations thus reveal

that interstitial Ni and Co defects are pivotal in explaining
the experimentally observed n-type conductivity of Ni- and
Co-based half-Heusler alloys respectively.

Table I shows a comparison of our calculated band gaps,
both in absence and presence of interstitial defect, with ex-
isting theoretically calculated and experimentally measured
values. A key observation here is that our predicted band
gap values without interstitial defect are in good agreement
with previous theoretical findings for defect-free alloys. The
calculated values thus obtained are significantly overestimated

TABLE I. Ab initio calculated band-gap values (in eV) of
NbCoSn, TiCoSb, ZrNiSn, and TiNiSn without (w/o) and with in-
terstitial defect. Previous experimentally measured and theoretically
computed (w/o defect) values are also presented for comparison.

This study This study Previous Previous
Alloy (w/o defect) (with defect) (calculated) (experiment)

NbCoSn 0.97 0.59 0.99a

TiCoSb 0.99 0.62 1.06b 0.57e

ZrNiSn 0.45 0.13 0.47c 0.18f

TiNiSn 0.43 0.10 0.42d 0.12f

afrom Ref. [116].
bfrom Ref. [32].
cfrom Ref. [117].
dfrom Ref. [65].
efrom Ref. [118].
ffrom Ref. [119].
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FIG. 4. Density of states (DOS) of (a) NbCoSn, (b) TiCoSb, (c) ZrNiSn, and (d) TiNiSn in presence of Co/Ni interstitial defect calculated
using DFT. TDOS (black curve) corresponds to total density of states while Co:d and Ni:d (red curve) indicate d-partial density of states of
Co and Ni, respectively. The ↑ and ↓ spins in (a) and (b) denote up-spin and down-spin channels, respectively. The Fermi energy (Ef ) is set to
0 eV and is marked by the dotted vertical line.

in comparison to experimentally measured band gaps. Our
calculated band gaps in the presence of interstitial defects,
however, reveal significantly better agreement with the cor-
responding experimental values for both Co- and Ni-based
alloys. Note that in the present study, we have chosen only one
extra atom as defect at the interstitial site of the considered
supercell. Choosing higher number of interstitial defects in
theoretical simulations usually lead to the formation of cluster
of defects, which may alter the predicted band-gap value and
carrier concentration [64,104,120]. Hence, interstitial defects
must be selected carefully in theoretical simulations in these
and similar half-Heusler alloys in order to explain the exper-
imental observation of band gap, carrier concentration, and
type of electrical conductivity. We believe that the present
understanding on the role of interstitial defects will help in
the computational design of efficient half-Heusler alloy based
thermoelectric materials with tailored properties in future.

IV. CONCLUSIONS

In conclusion, we have studied intrinsic point defects
in four frequently studied n-type half-Heusler alloys, i.e.,
NbCoSn, TiCoSb, ZrNiSn, and TiNiSn. To this end, ab initio
simulations have been employed to estimate defect formation
energies. Our calculations reveal interstitial Ni (Co) as the

most abundant point defect in Ni-containing (Co-containing)
alloys. The subsequent effect of interstitial defects on the
electronic structure is found to be remarkable. In contrast to
the experimental observation of n-type conductivity in these
alloys, most of the previous ab initio studies for ideal, defect-
free alloys predicted p-type behavior. Our study reveals that
the presence of interstitial Ni (Co) defect brings the Fermi
level closer to the conduction band in Ni-based (Co-based)
alloys leading to n-type behavior and explaining the exper-
imental observations. Furthermore, localized mid-gap states
close to the Fermi level appear due to the interstitial Ni and Co
defects. These defect states lower the predicted band gap and
improve the agreement with the corresponding experimentally
measured values. Our findings, thus, help in understanding
the origin of the long-standing discrepancy between ab initio
predicted and experimental results on the type of conductivity
in these alloys. This may pave the way for using interstitial
defects as a promising strategy for tailoring band gap and con-
ductivity type, thereby helping in the design of thermoelectric
materials with improved performance.
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