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Free energy of (Co,Mn;_,);04 mixed phases from machine-learning-enhanced ab initio calculations
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(CoyMn;_,);0,4 is a promising candidate material for solar thermochemical energy storage. A high-
temperature model for this system would provide a valuable tool for evaluating its potential. However, predicting
phase diagrams of complex systems with ab initio calculations is challenging due to the varied sources
affecting the free energy, and with the prohibitive amount of configurations needed in the configurational
entropy calculation. In this work we compare three different machine-learning (ML) approaches for sampling
the configuration space of (Co,Mn;_,);Oy4, including a simpler ML approach, which would be suitable for
application in high-throughput studies. We use experimental data for a feature of the phase diagram to assess
the accuracy of model predictions. We find that with some methods, data pretreatment is needed to obtain
accurate predictions due to inherently composition-imbalanced training data for a mixed phase. We highlight
that the important entropy contributions depend on the physical regimes of the system under investigation and
that energy predictions with ML models are more challenging at compositions where there are energetically
competing ground state crystal structures. Similar methods to those outlined here can be used to screen other
candidate materials for thermochemical energy storage.

DOI: 10.1103/PhysRevMaterials.5.035402

I. INTRODUCTION

The mixed phase system (Co,Mn;_,);O04 is currently
under investigation for applications in next-generation con-
centrated solar energy storage technologies, which are based
on reversible redox reactions of metal oxides [1-3]. The
motivation of the mixed phase is to attempt to minimize
the shortcomings of the pure end members, such as cost
and toxicity for Co3Oy4, and sluggish oxidation rate and
poor reversibility for Mn3;O4 [4], by combining them in
(Co,Mn;_,)304. Gaining atomic-level insights into the sta-
bility of Co3O4 and Mn3;0O,4 mixtures at high temperatures
is therefore an important step towards the rational design of
these materials. However, the accurate prediction of phase
diagrams with free energies derived from ab initio calculations
can be particularly challenging for complex crystal structures.
For such systems, it may be necessary to sample extremely
large numbers of configurations.

Based on density functional theory (DFT) calculations of
formation energy at 7 = 0 K, published in Ref. [1], all com-
positions of (CoMn;_,);04 should decompose into the pure
phases Co3;04 and Mn3;O,4. However, the mixed phases have
been successfully synthesized in a number of works [1-3].
This implies that entropic contributions to the free energy of
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the mixed metal oxide phases must be responsible for the
stability at finite temperatures [5,6]. It has been suggested that
a large number of metastable configurations close in energy
to the T =0 K ground state may provide the explanation
here [1]. However, the full configuration space of this mixed
phase system would require millions of ab initio calculations
to study exhaustively, even after discounting symmetrically
equivalent structures [1]. Recent advances in the coupling
of artificial intelligence (AI) techniques and materials design
are creating new opportunities to tackle this challenge [7-9].
Specifically, Al-aided approaches, mainly from the subdo-
main of machine learning (ML) are helping to significantly
reduce the number of required computations, making the ma-
terials design process faster and cheaper than conventional
high-throughput exploration.

Here, in order to investigate possible entropic contribu-
tions to the reduction of the free energy of (Co,Mn_,);04,
and to develop a fuller theoretical understanding of the sta-
bility of these mixed phases, we use and compare different
ML methods to augment the DFT calculations performed in
Ref. [1]. To evaluate the accuracy of the sampling of the
configuration space with these different ML approaches, we
use the methods described in Ref. [10] to calculate the phase
coexistence region between the tetragonal hausmannite (H)
and spinel (S) phases of (Co,Mn;_,)3;04 from the predicted
free energy curves. In each case, the configurational entropy
contribution to the free energy is calculated using the different

©2021 American Physical Society
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FIG. 1. (a) (Co,Mn;_,);04 crystal structure indicating tetragonal distortion introduced by Mn ions on octahedral lattice sites. Produced
with VESTA [11]. Largest lattice parameter a in (Co,Mn;_,);O4 supercells as a function of (b) number of Co on tetrahedral (td) lattice sites
and (c) number of Co on octahedral (oh) lattice sites, data from Ref. [1] for set A- and B-type structures.

ML approaches and compared to experimental data for this
feature of the phase diagram. We discuss the relative strengths
of the different methods employed in this work and show that
an accurate prediction of different parts of the phase diagram
of this system depends the most strongly on accurately ac-
counting for different contributions to the free energy.

II. MIXED METAL OXIDE PHASES

The pure Co3O4 phase has a cubic spinel structure (S)
with space group 227. Below 1170°C, the pure Mn3;0y is a
tetragonally distorted spinel structure (hausmannite, H) with
space group 141 and distortion along one crystallographic axis
relative to the S structure. Above 1170 °C, Mn3Qy transitions
to a S structure [12]. The transition metal (TM) sites in these
structures are either tetrahedrally (td) or octahedrally (oh)
coordinated to the oxygen atoms. Mn ions substituted on oh
Co sites in the S structure are Jahn-Teller active, inducing
a tetragonal distortion of the lattice [13]. These Jahn-Teller
active oh sites are largely, but not solely, responsible for
a composition-dependent tetragonal distortion of the mixed
phases as shown in Fig. 1, where small changes in lattice
parameters are also correlated to a number of td Co. Plots of
all DFT lattice parameters as a function of Co composition are
shown in the Supplemental Material (SM) [14] (Fig. 1).

Three distinct Co-Mn substitution schemes were consid-
ered in Ref. [1] and form the basis of the training data used
for the ML methods in this study. Taking as a base the pure
Mn;0,4 with the cubic structure of Co3Qy, the data sets re-
ferred to as “set A” (“set B”) in this study correspond to
starting to substitute only td (oh) sites with Co until all td (oh)
sites are occupied by Co, and only then beginning to substitute
onto the oh (td) sites. Set A and B, as referred to in this work,
correspond to “scenario 1” and “scenario 2”, respectively, in
Ref. [1]. In the data set referred to as “set C” in this work
(or “scenario 3” in Ref. [1]), Co ions are allowed to substitute
freely on all TM sites in the crystal. The DFT training data
are composed of such structures after atomic positions and
cell volumes have been relaxed.

It is expected that the set C-type structures should be
higher in energy than those of either set A or set B types [1],
whichever is lower at the concentration of interest. However,

without the constraint of preferential occupation, the total
possible combination space is dramatically larger, opening up
the possibility of entropy stablization of the mixed phases [6].

To compare the sampling size required in each of the three
substitution scenarios, we take the 56 atom supercell used in
the DFT calculations in Ref. [1]. Each supercell contains 24
TM sites, 8 of which are td coordinated and 16 are oh coordi-
nated. In the set C scenario for N Co ions in the supercell, the
total number of possible combinations on the 24 TM sites is
given by

B 241
T ONIQ24 —N)!'

Whereas in set B, the total number of combinations for N <
16 would be

Cy ey

16!
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Then for N > 16, this would be
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Similarly for set A, the constraint of preferential filling gives
a total number of possible combinations for N < 8 as

8!
TNIS—N)
Then for N > 8, this would be
16!
TN =8®)NI6— (N -8

Due to the availability of all 24 sites for substitutions in set
C-type structures, at intermediate compositions the total num-
ber of possible configurations Cy is enormous. For example,
for x = 0.5 in (Co,Mn;_,)304, Cy for set C is 2.70 x 10°.
In comparison, for the same x for sets A and B, Cy is just
1820. For this reason, the data set in Ref. [1] sampled sets A
and B thoroughly, but was unable to substantially sample set
C, even after eliminating symmetrically equivalent structures.
Therefore, it was not possible in this study to consider con-
figurational entropy contributions from this large portion of
the total configuration space. For this reason, we have used
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the DFT data set of Ref. [1] as a starting point for training
different ML models to predict the energies of the set C-type
structures.

III. MACHINE-LEARNING METHODS

Recent years have seen many successes in the use of ML
methods for various applications in materials science [15-17],
where data sets are used to train algorithms to predict proper-
ties of interest. Here, to approximate the formation energy in
complex (Co,Mn,_,)304 mixed phases, we apply supervised
machine learning [18]. For this, various learning algorithms
and various representations for the atomic configurations (or
“descriptors”) exist which take into account rotational and
translational invariance [19-23]. Comparisons of some of
these methods can be found, highlighting their differing pre-
dictive capabilities and computational cost [24,25].

Common to all of these methods is the need to optimize
the model. During training it is important to consider over-
fitting and underfitting, or “bias-variance” trade-off [26]. To
avoid overfitting or underfitting, it is common to trial various
“hyperparameters” associated with the model complexity for
the particular ML method and to then compare the root mean
square error (RMSE) between reference outputs and model
predictions at the end of the training process. This is done
with both the training and validation data sets, to optimize
the hyperparameters, and a “hold-out” set of data, which was
not seen by the algorithm during training, to assess model
accuracy. Note that some differing terminologies are used in
the literature where the term “validation set” is sometimes
used for the “hold-out set,” or is sometimes replaced by “test
set.” In the case of underfitting, the RMSE on the training
data is large. While for overfitting the RMSE on the training
data is typically small, but coincides with either a plateau or
increase in the RMSE for the validation set with increasing
model complexity.

In this work we investigate the use of three different su-
pervised ML methods. The models are trained with a data
set of hundreds of final, relaxed structures of (Co,Mn;_,)304
and their corresponding total energies. In the next sections we
provide a brief outline of each method and a description of
their corresponding training hyperparameters.

A. Artificial neural networks (ANNSs)

Our ANN methodology is that of Ref. [27], which makes
use of symmetry functions for representing chemical environ-
ments, similar to those developed by Behler and Parrinello
[19,28,29]. During the construction of a descriptor for the
chemical environment, it is important to ensure that it is in-
variant with respect to rotations and translations of the system
and also to permutations in the ordering of the atomic inputs.
The design of the descriptor can also allow for more automatic
optimization of the model, and hence fewer hyperparameters
that need to be tuned manually [27].

The representation of input data to the ANN in this study
is an n-dimensional vector for each atom i in the system,

el )2
D; = ZCI(Z[)CI(Zj)e T fou(rijs Reat), ©)

which contains information about the atoms surrounding atom
i out to a certain cutoff distance R, by using a Gaussian
expansion of interatomic distances r;; to probe the surround-
ing space where [ labels each Gaussian in the expansion.
Parameters 1 and o are related to the probing of this space
[27]. In this particular implementation, these two parameters
are automatically optimized during training so that regions of
space which are more important for distinguishing different
atomic configurations are selected. f, is the cutoff function
which ensures that the contributions from neighboring atoms
smoothly goes to zero as r;; approaches Rcy;. c!(z) and ¢! (z i)
are the parts of the vector descriptor that are related to the
chemical identity of atom 7 and its neighbor j, defined by their
atomic numbers z; and z;. These vectors are initialized ran-
domly and are also optimized automatically during training.

The output of this ANN is the energy of atom i. The total
energy of a system is then the summation of all of the atomic
energies,

ESN =3 "E;. (7

The ANN is trained by minimizing the loss function. The
original implementation in Ref. [27] and also in Ref. [30]
trains simultaneously with forces and energy, whereas in this
study we train only with energies due to the lack of force in-
formation in the initial data set. Without including the forces,
the loss function in Ref. [27] is reduced to

2

; ®)

where Eppr are the reference total energies of the training
data and Eann are the predictions by the ANN model for the
same atomic configurations. Essentially, the ANN model is fit
to minimize the RMSE between DFT energies and predicted
energies for the training data.

Despite the automatic optimization of some of the param-
eters in Eq. (6), there are still various hyperparameters that
need to be tuned for the ANN, and carefully chosen to avoid
overfitting or underfitting. First, there is the cutoff distance
R.y¢ used when creating the descriptor for each atom in the
system. Then for model complexity, the architecture of the
neural network can be tuned by varying the layer size and
depth. A larger network allows for more model flexibility, but
too large can result in overfitting to the training data. Lastly,
the number of epochs can also be tuned. This is the number
of training cycles the model is optimized over. Again, here if
the model is trained over too many epochs this can result in
overfitting.

ANN DFT
H Etot - Etot

B. Moment tensor potentials (MTPs)

MTPs are a class of ML potentials first proposed in
Ref. [20] and later extended for multicomponent systems [31].
The latest release of the software is described in Ref. [32].
Similarly to the ANN methodology outlined above, MTPs
represent the energy of an atomic configuration as a sum of
contributions of local atomic environments of each atom i,

ENT =) E. 9)
i=1
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Each contribution E; is linearly expanded via a set of basis
functions B,:

Ei=) &B, (10)

where the set of parameters & = {§,} are obtained during
training. Unlike ANNSs, the atomic environments are instead
represented by the moments of inertia of the neighboring
atoms. The moment tensor descriptors of the ith atom consist
of radial and angular parts and are given by

MY :Zfﬂ(ripzhzj)rij@”'®rij' (11)
. ~—
J v times

Here r;; is the position of the jth atom relative to the ith
atom and r;; is, as before, its length. The radial part is further
expanded as

No
i, zinzj) = ZC,(QI,ZI.Q(‘?)(F,‘J‘) (12)
p=1

and defines different shells around atom i and contains a
set of radial parameters ¢ = {cff;i,z/} which are also obtained
during training, and radial basis functions Q%) (r; ;) based on
polynomials. A cutoff radius Ry is also used here to ensure
smooth behavior at the edges of the atomic environments. The

angular part r;; ® - - - ® r;; contains the angular information
—

v times
about the atomic environment and is a rank v tensor. When the

radial and angular components are combined to form M*”,
for u = 0, the increasing ranks of the tensor can be interpreted
mechanically as the number of atoms within R, of atom i (or
as the “mass” of these atoms) for M%C, the center of mass
scaled by the mass for M%! and the tensor of the second
moments of inertia for M%-2, etc. For i > 0, this can then be
interpreted as weighted moments of inertia [20].

The basis functions B, in Eq. (10) are constructed by
defining the “level of moments” via

levM*™Y =2 4+ 4 + v, (13)

where the coefficients in Eq. (13) were found to be optimal in
Ref. [33]. The tensor contractions of a number of moments are
defined by adding together such levels. All such contractions
of one or more moments form the basis functions B,. As for
the symmetry functions representation with the ANN, these
basis functions are invariant to atomic permutations, rotations,
and reflections. The functional form of the MTP is defined first
by choosing a maximum level for the basis set lev,,x, and then
including all basis functions whose level is less than or equal
to that maximum. And second, by the size of the radial basis
Ny in Eq. (12).

The parameters & and ¢ make up the total set of parameters
that are found during training, @ = {&, ¢}. The total number
of basis functions (and hence the number of the correspond-
ing parameters &) grows exponentially with levp,y, but the
number of radial functions increases linearly with levy,x and
Nog. levmax and Ny are therefore the hyperparameters which
define the total set of parameters to be found during training
and hence define the model complexity. The computational
expense increases with the total number of free parameters;

and the optimal number of such parameters depends on the
total training set size, with the possibility of overfitting with
too many parameters for a small data set. During the training
process, fitting with MTP is performed using output variables
for each configuration in the training set for quantities from
ab initio calculations: total energy, forces, and the stress ten-
sor. Weights can be set to express the importance of each of
these quantities during the optimization. In the case of this
work, as the initial data set did not contain sufficient force
information, weights for forces were set to zero.

C. Extended mean field (EMF) model for a two-species,
two-site-type compound

An approach commonly known as the Miedema model is
often used to describe the mixing enthalpy of alloys [5,34].
The Miedema model was originally developed in the context
of liquid alloys, and it was expressed in terms of solution
enthalpies and interfacial area between species. Nevertheless,
its underlying basic concept is shared with a mean field model
in which the average energy of atomic configurations with
average species occupations ¢; is given by atom-pair contri-
butions ¢;€; j¢;, where i and j denote the species type [35]. In
binary mixtures of species a and b the two concentrations are
related by ¢, = 1 — ¢,. The total energy is

(E) = ¢2€aa + 2PaPpear + Ppep- (14)

The case of (Co,Mn;_,)304 is more complex because
there are two distinct site types: oh and td, and two species:
Co and Mn. We thus extend the model to account for all the
possible interactions between pairs of species and site types.
There are four types of atoms: Co on a td site, Co on an oh
site, Mn on a td site, and Mn on an oh site. This results in
a 4 x 4 matrix of pair interactions ¢;;. However, the matrix
is symmetric because €;; = €;, so only the ten elements con-
tained in the diagonal and the upper triangle are independent
parameters. We can write the energy as the quadratic form:

(E) = xex = x;€i;x;, (15)

where we assume summation over repeated indices. Here x =
x! = {xg, 1 — X, Xon, 2 — Xon} defines the average occupa-
tions of the system, where 0 < xy < 1 (0 < xop < 2) denote
the average Co concentration in the td (oh) sites, and 1 — xq
and 2 — x,, denote the corresponding Mn concentrations. The
occupation range of the oh sites is twice as large as for the td
sites, since there are twice as many of the former than of the
latter. The ¢;; are adjustable parameters to be fitted to the DFT
energies. To do this, we reshape the ten independent elements
of € as a single column array M and write N equations for
each of the DFT configurations that we want to include in the
fit as

E® = x"x"M, = AyMy, (16)

where u = (i, j) labels the ordered list of pairs (i, j), with 1 <
i < 4,1 < j < i, containing a total of ten elements. E™ is the
DFT energy corresponding to configuration n, whose concen-
trations array is X" = {xtg), 1— xf:), x(()'l?, 2 — x(()? }. Directly
substituting this into Eq. (16), the explicit values of A, in
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terms of the elements of X are
A= {thd’ (1 — Xta)Xed, XohXed, (2 — Xon)Xid,
(1 = x0)”, Xon (1 = xa), 2 = xn)(I = x), (17
Xops (2 = Xon)Xon, (2 = Xon)},

where the superscript (n) is omitted from the x for simplicity.
Equation (16) is a system of N equations with ten un-
knowns. It can be written in compact form as

AM =E. (18)

The solution to this (usually overdetermined) system can be
obtained as

M=A"E, 19)

where A~! is the pseudoinverse of A. We implement this
solution via a standard least-squares algorithm. Rather than fit
to the total DFT energies, the model is fit with the formation
energies calculated via
X\ o X e
B, =EQ0 - [(1-3)E" -3E] @0

where E570 and EX73 correspond to the total energy of the
pure phases. Formation energies are zero at the composition
extremes, when x = 0 or x = 3. To ensure that this is the case,
from each equation (n) in Eq. (16) we subtract the energy cor-
responding to the linearly weighed average between E (x = 0)
and E (x = 3) at x(n). Using Eq. (17), this yields
(n) (n)
W <Z,, e g E)M, 1)

where B=1{1,0,2,0,—1,0,-2,4,0,—4} and C=
{0,0,0,0,1,0,2,0,0,4}. This equation is solved similarly
to Eq. (19).

The only means to improve the prediction performance of
the EMF model is to increase the training set size, compared
to the various different hyperparameters associated with train-
ing the ANN or MTP. Unlike the ANN and MTP models,
the implementation of the EMF model in this work does not
depend on the exact atomic positions or cell volume of the
relaxed structures. While the classic Miedema model involves
additional terms, such as elastic strain and lattice structure
information [5,36,37], the EMF model in this work depends
only on the oh or td site occupancy of the Co or Mn species.

IV. RESULTS AND DISCUSSION

A. ML prediction of formation energies
1. Development of the training procedure

Training, validation, and hold-out sets. The initial DFT
training set from Ref. [1] contains 540 relaxed structures of
A and B type and 16 C type (see Sec. II). Another 496
C-type structures were calculated with the same settings as
in Ref. [1]: spin-polarized DFT calculations with the Vi-
enna ab initio simulation package (VASP) [38,39] and the
strongly constrained and appropriately normed (SCAN) meta-
generalized gradient approximation (meta-GGA) functional
[40]. 115 of the C-type structures contained 12 oh Co and
2 td Co. The remaining 381 C-type structures calculated are

randomly selected with various compositions. The total DFT
data set contains 1052 structures. When predicting energies
for the full configuration space of set C, the entire DFT data
set described above is used to train and validate the ML model.
However, the design of the training procedure (outlined in
the following subsections below) involved splitting this full
training set into various training, validation, and hold-out sets.

Imbalanced data sets. The training data across the full
composition range contain many more possible structures at
intermediate compositions than at the composition extremes.
This can pose a challenge when wanting to accurately predict
energies of structures that are less well represented in the
training data. As a test, the DFT data for A- and B-type
structures from Ref. [1] was randomly split into a training set
with 360 structures, and a test set with the remaining ones.
The initial training data for set A- and B-type structures con-
tained only the final, relaxed structures. Therefore, there was
insufficient force information from the relaxation trajectory to
fit interatomic potentials for the systems, as is often done in
other ML studies to predict the full potential energy surface
(PES) [19,27,41,42]. Only the basins of the PES for each
mixed phase were of interest for this study. Therefore, instead
ML models were trained to map initial, unrelaxed atomic
configurations onto final, relaxed energies based on DFT data
of similar structures.

The different hyperparameters associated with each of the
ML methods (see Methods section) were trialled to deter-
mine those which resulted in predictions for the validation
set with the smallest RMSE. The best performance models
were then used to predict total energies, and from them for-
mation energies Eg’lln via Eq. (20). Plots of formation energy
as a function of composition are shown in Figs. 2(a)-2(c).
The ANN method yields a smaller RMSE than MTP (3.1
vs 4.6 meV per atom). However, it performs worse at the
composition extremes than MTP, where the formation energy
even drops below the dashed line marking zero energy at
certain compositions.

In order to better balance the sampling for the ANN train-
ing, we trialled generating artificial data for the minority data
based on k-nearest neighbors using the SMOTE algorithm
[43]. However, the structures that this method generated were
often unphysical. This is likely to be due to the small sample
size and high dimensionality of the data with each atom type,
its coordinates as well as the types and coordinates of its
neighbors within the cutoff radius all being used to define the
representation of the structure. We found that the predictive
performance of the ANN at composition edges improves by
weighting higher (or oversampling) the minority data during
training [Fig. 2(b)]. This however slightly increases the RMSE
from 3.1 to 3.6 meV per atom.

Despite the low RMSEs obtained with the ANN, based
on the better qualitative agreement of the MTP predictions
for this imbalanced data set without the need for any data
pretreatment, we do not proceed further with the ANN method
for this study. The optimal pretreatment of training data is
an open research question [44] and beyond the scope of this
work. However, the improvements observed from oversam-
pling imply that further investigations into data pretreatment
procedures could result in a very good predictive performance
with the ANN. The optimal choice of ML method and data
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FIG. 2. Predicted formation energies and reference DFT data for set A- and B-type configurations of (Co,Mn;_,);04. All models are
trained with 360 structures of the total data set shown (540 structures). Structures not included in the training set are used as the hold-out set
to calculate the RMSE in units of meV per atom. (a) Predictions from the ANN with a RMSE of 3.1. (b) Predictions from the ANN with an
“oversampled” training set and a RMSE of 3.6. (c) Predictions from the MTP method with a RMSE of 4.6. (d) Predictions from the EMF

model with a RMSE of 2.7.

preparation procedure may also be dependent upon the par-
ticular system under investigation and the available data. For
example, the prediction accuracy may differ considerably for
a large, balanced data set where it is desirable to reduce the
impact of outliers in the data set on the model.

The third method trialled is the EMF model shown in
Fig. 2(d). This method gave the best RMSE of all three meth-
ods (2.7 meV per atom) and did not suffer from the visibly
poor predictions at the composition edges as with the ANN. It
is likely that applying the constraint of zero formation energy
at the composition extremes in the EMF model is responsible
for this improvement. However, the EMF predictions do not
reproduce well the spread in the DFT data at each composi-
tion.

Assessment of prediction capabilities. Figure 1 shows
a substantial variation in the lattice parameters of the
(CoMn_,)304 supercells as a function of the number of Co.
It has been shown that cluster expansion predicted energies are
typically less accurate when the systems undergo substantial
atomic relaxation [45]. In the data set for (Co,Mn_, )30y, the
total energy of each supercell is most strongly dominated by
the total number of the substituting species, i.e., number of Co,
in the supercell. However, finer energy differences between

structures depend on the fraction of Co on td or oh sites and,
even more subtly, the variations in atomic arrangements be-
tween structures with the same number of Co on the same type
of crystallographic sites. As our EMF model takes only the
number of oh and td Co as its representation of the structure,
it is unable to distinguish between different structures having
the same number of oh and td Co.

The ANN and MTP methods are able to distinguish the
energies of structures with the same number of oh and td
Co only if the unrelaxed ionic coordinates in the input struc-
tures are scaled by the relaxed lattice parameters. Figure 3
shows the predicted MTP versus DFT energies when using a
completely unrelaxed structure as the input (a), and when the
unrelaxed ionic coordinates are scaled by the relaxed lattice
parameters (b). The Pearson correlation coefficient increases
from —0.0398 to 0.778 and the RMSE decreases from 6.14 to
0.969 meV per atom when using the relaxed lattice parame-
ters. Therefore it is important to obtain estimates of relaxed
lattice parameters for set C structures before predicting their
total energy with the MTP model, as described in the next
subsection.

Reference [45] highlighted the crucial influence of atomic
relaxation in the accuracy of the predicted formation energies
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FIG. 3. Correlation between reference DFT energies and MTP
predicted energies of the set C 12 oh 2 td hold-out set with
(a) completely unrelaxed structures as inputs and (b) structures with
unrelaxed ionic coordinates scaled by relaxed lattice parameters.

of mixed phases using cluster expansion. It appears that a
similar phenomenon is at play in our particular use of ML,
i.e., training only on fully relaxed configurations, whereby

strong relaxations lead to decreased prediction capability.
Nonetheless, this does not prevent the accurate prediction of
the solubility gap (Sec. IV B), or to calculate specific site
Co occupation probabilities that are in principle verifiable by
experiment [14]. The fact that the training set is one order
of magnitude smaller than one would need to train a full-
fledged interatomic potential makes this approach useful and
attractive when the availability of computed ab initio data is
limited.

Prediction of relaxed lattice parameters. Studies on alloys
often use Vegard’s [24,46] empirical law of a linear relation-
ship at constant temperature between the lattice parameters
and the alloy concentration, resulting from the different sizes
of the substituting atoms. However, for (Co,Mn;_,)304, fac-
tors other than concentration also affect the lattice parameters
for a given Co:Mn ratio. The occupation of the oh sites
strongly influences the lattice parameters (Sec. II). Also, in-
creasing Mn content does not smoothly distort the cubic
structure into the tetragonal cell shape of Mn3;Oy4. DFT train-
ing data in Fig. 4(d), and experimental measurements for this
system [13] show a composition-dependent phase transition of
the ground state structure from the tetragonal spinel of Mn3;Oy4
to the cubic spinel of pure Co304. The composition at which
the ground state phase transition occurs differs between the
A-, B-, and C-type structures [Figs. 4(a)—4(c)].

The lack of force information in the initial training data set
prevents us from relaxing cell shapes with an MTP potential.
Instead, we use all of the DFT training data (Sec. IV A 1) to es-
timate lattice parameters based on the number of oh and td Co
in the supercell. The training data is classified as cubic when
all three lattice parameters are the same within a tolerance of
0.05 A, and tetragonal otherwise. This gave 824 cubic and 228
tetragonal structures. Their formation energies as a function
of composition are displayed in Fig. 4(e). Best-fit quadratic
surfaces are then fit to cubic and tetragonal data separately for
each lattice parameter as a function of the number of Co on td
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FIG. 4. Lattice parameters (denoted a—c from largest to smallest) as a function of the number of Co atoms in the supercell from the training
DFT data for the lowest-energy structures that are (a) A type, (b) B type, (c) C type, and (d) all three sets combined. Structures are identified
as cubic when all lattice parameters are equal, within a tolerance of 0.05 A. (e) Formation energy as a function of composition for the same
DFT data with structures identified as cubic (tetragonal) denoted by crosses (filled circles).
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and oh sites in the supercells. For cases with several structures
with the same number of oh and td Co, the minimum energy
structure is used in the fit. These surfaces are then used to
predict the lattice parameters for cubic and tetragonal struc-
tures, both when sampling the full configuration space of set
C, and also to replace the true relaxed lattice parameters of the
training set. All best-fit surfaces are included in the SM [14]
(Secs. 2 and 3).

For both tetragonal and cubic structures, the largest
weighted mean error in the fits was for the largest lattice
parameter a, which is the one varying the most as a function
of composition. With this method any structure with the same
number of oh and td Co will be assigned the same volume.
However, the distribution of cell volumes in the DFT data for
C-type structures shows substantial variations, even between
structures with the same number of oh and td Co (see Sec. 4
of the SM [14]). Cell volumes of the 12 oh 2 td Co set have a
range of 9.78 A3 compared to 15.44 A> for the set of all C-type
structures with 14 Co, with the largest variance in the lattice
parameters being that of the largest lattice parameter a. On
this basis, the ability to distinguish structures with the same
number of oh and td Co may be beyond the capabilities of the
current model. However, the ability to distinguish structures
with the same number of Co but a different td:oh ratio is still
attainable, and important when later accounting for different
sources of entropy [10].

Additional tetragonal training data. The Co-poor side of
Fig. 4(e) shows coexistence between tetragonal and cubic
C-type structures, with the latter corresponding to higher en-
ergies. This behavior is consistent with the tetragonal to cubic
phase transition in the pure Mn3;O4 compound [12]. However,
there is no such phase transition in the pure CozO4 com-
pound. For tetragonal structures, beyond the Co-poor range,
our method of creating structures based on estimated lattice
vectors will create some tetragonal phases that are not repre-
sented in the DFT training data, which could lead to extreme
extrapolation by the ML model.

Choosing a hard cut-off composition for the existence of
tetragonal structures based on the available DFT training data
would be a large approximation. Instead, additional tetragonal
structures are calculated with DFT and added to the training
set so that some of these types of structure are present in the
training data. The structures were selected by training a MTP
for tetragonal structures with just the available DFT train-
ing data and predicting energies for thousands of randomly
generated tetragonal C-type structures. The structures at each
composition 5-15 Co in the supercell that were predicted to
have the lowest energy by the MTP model were then selected
for the additional DFT calculations. The tetragonal MTP was
then retrained with this additional data for all subsequent parts
of this work.

Energy predictions when training with the estimated lattice
parameters. To assess the level of discrimination afforded by
the method, first MTP was trained with all cubic data except
those corresponding to (7, 11eq) = (12, 2), which formed the
hold-out set. ny(ony stands for the number of Co per super-
cell in td(oh) sites. This test yields an RMSE of 3.61 meV
per atom, but it does not achieve good correlation between
reference DFT energies and model predictions. This suggests
that one would need a fully trained interatomic potential to

TABLE I. RMSE in meV per atom and Pearson correlation co-
efficient between reference DFT energies and MTP predictions for
cubic hold-out set C-type structures with different total number of
Co in the supercell.

# Co 13 14 15 16 17 18

RMSE 6.06 2.46 3.57 1.40 5.40 1.05
Pearson coeff. 0.278 0.0758 0.787 0.878 0.313 0.934

distinguish between structures sharing the same (7, 1oh ),
which is not possible with the available amount of training
data.

On the other hand, when the hold-out sets contain different
mg/nen ratios, the cubic-trained MTP displays increasingly
larger Pearson correlation and smaller RMSE’s as the total
number of Co is increased (Table I). An exception is the 17 Co
data set, whose reduction in correlation is caused by a single
outlier [Fig. 5(a)]. From approximately 16 Co in the supercell
(2 per formula unit), the minimum energy structures for all
three substitution schemes are all cubic (Fig. 4). Therefore the
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FIG. 5. Scatter plots for calculated DFT total energies against
MTP predictions for hold-out sets of C-type structures with different
total number of Co in the supercell for (a) cubic structures and
(b) tetragonal structures.
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TABLE II. RMSE in meV per atom and Pearson correlation
coefficient between reference DFT energies and MTP predictions for
tetragonal hold-out set C-type structures with different total number
of Co in the supercell.

#Co 4 5 6 7 8 9 10

169  8.58 4.63
0.597 0.249 —0.133

RMSE 238 7.51 7.52 829
Pearson coeff. 0.889 0.726 0.0160 0.661

volume-composition relationship is much simpler and likely
to be better represented by our surfaces of best fit.

For cubic structures with less than 15 Co in the supercell,
correlations were typically poorer. For the 14 Co hold-out
set, this is due to a large portion of the set being structures
with the same oh:td ratio for which, as already discussed,
the model with estimated lattice parameters does not yield
well-correlated energy predictions. Furthermore, as can be
seen from Fig. 4, between the different substitution schemes
there is much more variation in cell parameters at intermediate
compositions where the phase transition occurs at different
compositions for the different substitution schemes. Energy
predictions for cubic structures at intermediate compositions
are therefore likely to be less reliable than those in the “clearly
cubic” regime for >15 Co in the supercell.

Similar hold-out tests were also performed for tetragonal
C-type structures and a MTP trained only on tetragonal data
[Fig. 5(b) and Table II]. In this case, better correlation was
typically achieved for Co-poor structures, i.e., in the “more

(a) ©)

tetragonal” regime. However tetragonal structures have con-
siderably more variation in lattice parameters than cubic ones,
even for as few as 4 Co in the supercell in set B [Fig. 4(b)].
It is therefore likely that the lattice parameter estimates are
less accurate for tetragonal structures, especially those com-
positionally closer to being B type. This is reflected by the
relatively large RMSEs presented in Table II. The correlation
substantially decreases upon increasing number of Co in the
supercell.

Intermediate compositions have a complex composition-
dependent phase coexistence and substantial cell volume
variation. There, accurate energy predictions likely can only
be obtained using a trained full potential capable of perform-
ing structural relaxation. However, for very Co-poor structures
and those with >15 Co in the supercell, energy predictions
with estimated lattice parameters are expected to be more
reliable. In all hold-out set tests performed in this section,
the settings for MTP training that achieved the best RMSE
were the level eight (i.e., with levy,, = 8, see Sec. IIIB)
with weights of 1.0 for energy and 0.0 for stress and forces
(due to lack of force information in initial training data). The
cutoff radius was R.y = 5 A. These settings were therefore
used in all subsequent parts of this work for sampling the
configuration space of set C-type structures.

2. Filling in the configuration space

Random sampling of set C. To sample the millions of
possible configurations of the 56-atom supercell for C-type
structures, we generate random structures and only retain
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FIG. 6. MTP total energy predictions for random samples of set C-type structures of (Co,Mn,_,);04 with 10 Co in the supercell. (a) 1000
attempts batch. (b) Batch from (a) augmented with a second 1000 batch. (c) 100 000 attempts batch. (d) Lowest 0.1 eV of distribution in (c).
(e) 2 million attempts batch. (f) Lowest 0.1 eV of distribution in (e). The mean (w) and standard deviation (o) of each distribution is given in

the legend.
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unique configurations. Figure 6 compares the distribution of
total energies for configurations with 10 Co in the supercell
predicted by MTP for random batches of 1000, 100 000, and
1 949 176 unique structures (the limit of possible configura-
tions for this particular composition is 1 961 256). The lowest
energy side of the distributions deserves particular attention,
as these configurations contribute the most to the total free
energy [Figs. 6(d) and 6(f)]. The mean and standard devia-
tion of the distribution for the sample of 100 000 structures
[Figs. 6(c) and 6(d)] has converged to that of the (almost)
complete sample [Figs. 6(e) and 6(f)]. Therefore, for all com-
positions of set C, the generation of 100 000 unique structures
is attempted (noting that at some compositions there are not as
many as 100 000 unique structures in the total configuration
space). Total energies are then predicted for these structures
with MTP and EMF models to sample the full composition
space of set C.

Recovering the symmetry degeneracy of the training data.
During the generation of the training data for set A- and
B-type structures in Ref. [1], the software package CASM
[47] was used to select only symmetrically unique structures
in order to reduce the total number of necessary DFT calcula-
tions. However, this introduces a bias into the data. A similar
approach is adopted by the SOD software package [48] to
reduce the number of calculations to perform when modeling
disordered solids, but in this case the degeneracy is retained
to allow the computation of “entropy-reduced” energy. For
the set A- and B-type training data, it was necessary to first
recover the symmetry degeneracy to remove the bias when
sampling the configuration space and we outline our proce-
dure for this in the SM [14] (Sec. 5).

Scaling data by combinatorial space. To scale by the total
number of possible combinatorial substitutions, the data are
grouped by the total number of Co atoms in the supercell and
then by the total number of Co on oh sites. A scaling factor
is then determined by finding the factor necessary to scale up
the total group size to be equal to the total combination space
for that particular number of Co and Co-on-oh-sites,

td oh

n. .. n..:
tot tot
Crot = , (22)
td td td h h h
nCo!(ntot - nCo)! n%o!(n?ot - n()Co)!

where nl, is the total number of td sites in the 56 atom
supercell, and nglo is the number of the td sites occupied by
Co. Similarly, n2! is the total number of oh sites and n2 is the
number of these sites occupied by Co.

For the randomly generated set C structures, this simply
results in multiplying each structure by the scaling factor.
However, for set A and B, which were set up to be symmet-
rically distinct structures, instead the symmetry degeneracies
of all structures with the same Co count and Co-on-oh-sites
count are summed to determine the total group size for each
Co count and Co-on-oh-sites count. The symmetry degenera-
cies are then scaled so that the total symmetry degeneracy
for each group equals the total combination space for the
particular number of Co and Co-on-oh-sites. This preserves
the weight of each structure in set A and B, where some
structures would have had more equivalent structures if they
had been generated randomly. Note that not all configurations

generated by CASM were successfully relaxed, but by scaling

the structures that did relax by configuration space, essentially
an average is being taken over the structures that did relax as
an approximation for missing structures from the training set.

B. Prediction of free energies

The thermodynamic stability of alloys, or other mixed
phases such as (Co,Mn;_,)304, depends on minimizing the
Gibbs free energy,

GIN,P,T;X)=H —TS, (23)

where N is the number of atoms, P is the pressure, T is
the temperature, H is the enthalpy, S is the entropy, and X
is a vector representing the full set of molar fractions of the
alloying species [5]. For solids at atmospheric pressure, G can
be approximated to the Helmholtz free energy F' [49,50]. As
shown in Eq. (23), the free energy is reduced by S. At low
temperatures, the product of 7'S is small, so the magnitude
of the free energy is dominated by H. However, at higher
temperatures, there is a stronger reduction of the free energy
by the entropic term.

There are many different possible contributions to the en-
tropic term, such as the different chemical substitutions within
the alloy (Schem), vibrational entropy (Syip), and degrees of
freedom due to electronic and magnetic excitations (Seje. and
Smag» T€Spectively) [5], giving

S = Schem + Svib + Setec + Smag +ee 24

From a statistical-mechanics perspective, the reduction in the
free energy by an increased number of states of the system
(from various entropic contributions) can be understood as
the phase enclosing more states in its phase space being
more likely to be visited as the system undergoes microscopic
transitions and hence has an increased stability relative to
other phases [49]. The stabilization of multicomponent alloys
due to the entropy of mixing from chemical substitution is a
fundamental concept of high entropy alloys (HEAs) and there
are a number of reviews on this particular subject such as
Refs. [5,51,52]. (Co,Mn_, )30, does not technically meet the
specifications to be considered a HEA, such as containing five
or more elements in nearly equal atomic ratios [52]. However,
this does not eliminate the possibility of stabilization of this
system from configurational or other entropy sources.

All available training data was used to train a MTP and
EMF model, where for the MTP model the training data was
split into tetragonal and cubic structures. While our EMF
model takes only number of oh and td Co in the supercell as
inputs for describing the system, it was necessary to estimate
lattice parameters for all of the randomly generated structures
used to sample the configuration space of set C with the
MTP model, as described earlier. The EMF model involved
ten fitting parameters compared to 156 for the MTP model
when training with the 8g basis set and three different atomic
species. These trained models were used to predict the ener-
gies of the full composition space of set C using the randomly
generated structures and scaling by combination space. As the
EMF model is unable to distinguish structures with the same
number of oh and td Co in the supercell, but with different cell
shapes and energies, only the minimum energy structure in the
training set for each number of oh and td Co is used to train
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FIG. 7. Formation energy as a function of Co composition in supercells of (Co,Mn,_,);04 with set C predicted energies shown in black
from (a) the MTP model and (b) the EMF model. Free energy curves calculated across a temperature range of 1200-1440 K including:
magnetic, vibrational, and configurational entropy as obtained from (c) the MTP model sampling of set C and (d) that of the EMF model.
Solubility gaps obtained from the tangents of the free energy curves [black lines in (c) and (d)] are shown in (e) and (f), respectively, where
experimental data is taken from Ref. [13]. Configurational entropy extracted from each model is shown in (g) for MTP and (h) for EMF.

the model. When predicting the free energies with the EMF
model, the scaling factor for set C structures is divided by two
as with the EMF model there is not a cubic and tetragonal
version of the same structure. With this model, there is only
the minimum energy phase at each composition.

Total energies for C-type configurations of (Coy
Mn;_,)304 predicted by the MTP and EMF models were
used to produce plots of formation energy vs composition via
Eq. (20), which are shown in Figs. 7(a) and 7(b) for MTP and
EMF models, respectively. It can be seen that the EMF model
produces much more discretised energy predictions due to
its inability to distinguish structures with the same number
of oh and td Co. These formation energies were used to
calculate F' as a function of temperature and Co concentration
x, including also magnetic entropy, vibrational entropy, and a
correction to the configurational entropy at the composition
edges (due to finite-size limitations of the supercells). These
methods are outlined in Ref. [10], where the importance of
each of these contributions was demonstrated. Calculated F
curves from MTP and EMF are shown in Figs. 7(c) and 7(d),
respectively.

The calculated F' from each model is then used to compute
the SG (or phase coexistence region) between tetragonal (H)
and cubic (S) phases of (Co,Mn;_,)304. This method is again
described in Ref. [10]. Calculated SGs from MTP and EMF
are shown in Figs. 7(e) and 7(f), respectively, and compared to

experimental data from Ref. [13]. Both methods gave similar
SGs in this low-Co concentration range, but the EMF model
predictions diverge more from the experimental SG, espe-
cially at very Co-poor compositions and higher temperatures.

Figures 7(g) and 7(h) show the extracted configurational
entropy from MTP and EMF models, respectively. This is ex-
tracted from the predicted configurational free energy Feonfig.

via
9 Feonti
Sconﬁg = _<$> .
Vv

The most noticeable difference between the configurational
entropy predictions by the two models is the Co-poor side
where the EMF model gives larger configurational entropies
than with the MTP model at the same Co concentrations.
Based on the better agreement between the MTP prediction
and experimental data for the SG in the Co-poor region of
the phase diagram, and from comparing the set C energy
predictions to the DFT data for C-type structures [shown in
Fig. 4(e)], the MTP predictions appear to reproduce the known
features of the system more accurately. One may also ask how
classical force fields would perform versus ML predictions.
However, it is hard to make a comparison between classical
force fields and machine learned potentials on an equal foot-
ing because of the different methodologies and philosophies

(25)
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of their development: the classical potentials are typically
developed through many loops of trial-and-error, while the
machine learned potentials are trained automatically on an
ab initio database generated ad hoc for the present problem.
Some explicit comparisons can be found in Refs. [53,54].

With the experimental data available for the H+S SG, we
are only able to investigate the accuracy in the calculation
of the phase diagram, and the different ML methods used
to sample set C, for the Co-poor side of the phase diagram,
up to approximately x = 0.3 in (Co,Mn;_,)304. Further ex-
perimental data for Co-rich phases would provide valuable
information for assessing the accuracy of the ML predictions,
similar to the cation site occupancy measurements performed
in Ref. [55] for a Mn-rich composition. It was demonstrated in
Ref. [10] that composition-dependent magnetic entropy and,
in particular, the vibrational entropy from a higher energy
cubic phase, are vital to accurately reproduce the SG in the
Co-poor region. However, on the Co-rich side, where there is
no such higher energy phase, vibrational entropy may be less
dominant in determining F and hence other factors such as
the accuracy in the sampling of C-type configurations which
appear to be closer in energy to the ground state on the Co-rich
side in Fig. 7(a) may play a stronger role in the calculation of
F.Inthe SM [14] (Sec. 6) we compare the dominant set struc-
ture type as a function of temperature and Co composition as
predicted by the EMF and MTP models.

V. SUMMARY AND FURTHER WORK

We have explored the use of three different ML methods to
sample the full configuration space of (Co,Mn;_,)304: ANNs
and MTPs, originally developed to implement ML potentials;
and a much simpler EMF method, requiring as inputs only the
number of substituting species occupying particular types of
crystallographic site [i.e., octahedral or tetrahedral in the case
of (Coanl—x)3O4]~

Our ANN model was capable of achieving some of the
lowest validation RMSEs in many test cases. However, in an
imbalanced data set, as in the case of (Co,Mn;_,);04 with
fewer possible configurations at the composition extremes
without any data pretreatment, the ANN performed more
poorly than the other methods on minority type data. For
the MTP model, due to the lack of force information in our
initial data set, it was necessary to obtain estimates for the
relaxed lattice parameters of the set C structures based on
the DFT training data. In the Co-poor composition range of
the phase diagram we have compared available experimental

data [13] to model predictions. In this composition range both
EMF and MTP models provide reasonably accurate predic-
tions, with the MTP predictions being superior to those of
the EMF model at the lowest Co concentrations and highest
temperatures.

Studying the Co-rich side of the phase diagram of
(CoyMn;_,)304 and the spinel-rock-salt phase coexistence
region [13] could provide valuable insights for energy storage
via redox reactions [1-3]. To study this part of the phase
diagram, further experimental data to check the accuracy of
ML energy predictions would be very valuable. For example,
the predicted relative occupation of td and oh sites by Co
atoms at different temperatures and concentrations becomes
nontrivial beyond eight atoms per supercell: as we show in the
Supplemental Material [14], MTP and EMF models predict
slightly different occupations, which could be experimentally
verified to assess the validity of the models [14]. Furthermore,
it would be necessary to have additional ab initio data for
rock-salt structures. It may also be important to consider the
effect of a possible partial low-to-high spin-state transition of
oh Co in Co304 [56-59], which we have neglected in this
work as it focused on the Co-poor side of the phase diagram,
but could impact the magnetic entropy for Co-rich structures.

Software developed in this work for calculating the solubil-
ity gap of (Co,Mn;_,)304 with the EMF model and with data
from the MTP model in this work is available from [60] under
a BSD 3-Clause license. Data from ab initio calculations used
to train machine-learning models in this study is available
from [61]. The trained MTP potential files are also provided
in the SM [14].
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