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Prussian blue analogues (PBAs) are model host compounds for the intercalation of monovalent cations
for electrochemical energy storage and separations. However, the interactions among interstitial species and
their effects on atomic arrangements therein are understood mainly at a phenomenological level. Analyzing
correlations between electronic interactions and polyatomic arrangements in hydrated Prussian blue analogues is
complicated by the nonlocal hydrogen-bonding interactions between zeolitic water and framework lattices. Here,
we train machine-learning (ML) models to learn DFT-calculated energy landscapes of nickel hexacyanoferrate
PBA lattices with various lattice hydration degrees, oxidation states, and types of intercalated alkali cations based
on various three-particle feature parameters. This ML approach is enabled by using gradient-boosted regression
trees with features that are rotationally invariant geometric parameters. ML model accuracy is shown to be
a cation-specific indicator of correlations between energy and polyatomic arrangements. Overlap population
analysis among correlated atoms further confirms that such correlations are caused by the competition for dative
bonding between Lewis-acid intercalated cations and Lewis bases (cyanide and oxygen in H2O). Examination
of lowest-energy structures reveals that cation hydrophilicity and bare ionic radius determine dative-bonding
strength, resulting in cation-H2O ordering in interstitial space. The projected energy landscapes of hydrated
PBA lattices is also explored in subspaces spanned by certain many-particle feature parameters inspired by ML
analysis. The downhill traces in such landscapes indicate that lattice distortion is accompanied by two kinds of
collective movements: (1) rearrangements in the hydration shells around small and hydrophilic cations and (2)
collective attack of H2O molecules on nickel-cyanide bonds promoted by large, hydrophobic cations.
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I. INTRODUCTION

Prussian blue analogues (PBAs) have been and are being
used as redox-active host materials in aqueous electro-
chemical devices [1,2], including electrochemical cation
intercalation desalination cells [3–6] and alkali-ion recharge-
able batteries [7–9]. PBAs intercalate/deintercalate cations
from/into solution when transition metal centers therein are
reduced/oxidized. Unlike typical Li-ion host materials, PBAs
are hygroscopic as a result of H2O sorption into defect sites
where Fe(CN)6 units are missing [10] and within interstitial
vacancies [11] that are also accessible to cations at body-
centered sites [12]. While water molecules at such Fe(CN)6

defect sites are relatively inert during electrochemical cy-
cling [10,13], zeolitic water molecules in interstitial vacancies
actively interact with intercalated cations and the PBA frame-
work itself [14,15], resulting in lattice distortion [16,17] and
disordered spatial arrangement of interstitial species [18].
These effects are important because PBA framework distor-
tion affects long-term cycling performance [19], while the
interstitial arrangement of water molecules influences cation
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storage capacity and intercalation kinetics [20]. Therefore,
mechanistic understanding of the role that interstitial H2O
plays in mediating cation intercalation is essential to the
development of PBA electrodes with simultaneously high ca-
pacity, long cycle life, and high rate capability. Beyond these
attributes that are especially important for energy storage
applications, PBAs exhibit cation-specific reduction potential
[21], resulting in selectivity bias toward monovalent cations
with smallest hydrated ionic radius [22]. This attribute of
PBAs has enabled their application in selective electrochem-
ical separations for Cs+ over Na+ [23,24], K+ over Na+ [4],
and NH4

+ over Na+ [25]. While the hydration of intercalated
cations is commonly believed to play a role in determining
such selectivity preferences, understanding of bonding be-
tween and the arrangements of H2O, intercalated cations, and
PBA frameworks is needed in order to enable the design of
future redox-active host materials with molecular recognition
toward particular ions of interest.

Past studies have attempted to characterize the interactions
between zeolitic water molecules and PBA frameworks us-
ing first-principles calculations [14] and ex situ experiments
[15,26,27]. The x-ray diffraction (XRD) pattern for nickel
hexacyanoferrate (NiFe-PBA) has shown evidence of water
cointercalation with Na+ ions and of water’s interactions
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with cyanide ligands that induce reversible cubic-monoclinic
lattice transformations [28]. Recent first-principles calcula-
tions have predicted the electronic structure within PBA
supercells having two distinct redox-active centers and have
shown that the affinity of water molecules to the framework
dilates interstitial space, facilitating low-strain cation interca-
lation [29]. Contrarily, others have found that the presence
of water in PBAs deteriorates cycling performance. Fourier-
transform infrared spectroscopy (FTIR) spectra have revealed
that MnCoNi-PBA alleviates water-induced capacity fading
by intercalating dehydrated Na+ ions [17]. Also, strong Zn-
water coordination in a ZnFe-PBA causes the formation of
Fe(CN)6 defects during PBA synthesis, exacerbating long-
term capacity fading [19]. In the MnCr-PBA lattice interstitial
water stretches cyanide ligands, making framework lattice un-
stable [20]. These conflicting results indicate that water-lattice
interactions alone are not sufficient to explain the effects
of interstitial H2O on the electrochemical activity of PBAs.
Instead, we show here that water-cation and cation-lattice
interactions must be understood in concert due to the confined
environment of the interstitial space within PBAs.

Past work has also linked cation-water interactions to
cation intercalation kinetics at solid/electrolyte interfaces.
Various PBAs show preference for intercalating K+ ions
[15,30] over Li+ ions [31] as K+ ions are less coordinated
by solvent molecules. Aside from alkali cations, the selec-
tivity of multivalent cation intercalation into PBAs has been
characterized [32] with CuFe-PBA, in particular, showing se-
lectivity for Al3+ intercalation over Mg2+ due to the compact
hydration shell around Al3+ [33]. Earlier research using NiFe-
PBA to intercalate Ca2+ from both aqueous and nonaqueous
electrolytes showed that reversible capacity is only achiev-
able when the Ca2+ are dehydrated [34,35]. The suppressed
activation energy of redox kinetics at PBA/electrolyte also im-
plicates interfacial dynamics to the intercalation preferences
of PBAs [36].

Bulk interactions between intercalated cations and zeolitic
H2O inside PBA lattices have also been implicated in their
electrochemical behavior. H2O coabsorption has been shown
to increase reduction potential for intercalation of Li+ and
Na+ into PBAs, while intercalation of K+ is not accompanied
by H2O coabsorption [30]. Recent observations of switchable
thermal expansion in PBAs suggest that ordering of cations
and water can occur in the bulk of PBAs [37,38] thus differ-
entiating the interactions between cations and water in such
interstitial environments from those in bulk liquid electrolytes.
Since the spatial confinement of water has recently been
shown to suppress its dielectric screening [39], confinement
of coabsorbed water within the moderately sized interstitial
space of PBAs (∼5 Å) is likely to screen cation-framework
interactions to a lesser extent than water would in bulk form.
Water coabsorption has been studied in other electrosorp-
tion materials, as well. Non-Faradaic MXene materials have
shown ∼1 H2O per Li+ and ∼0 H2O per Na+ [40]. In con-
trast, poly(vinylferrocene) films have shown coabsorption of
>9 H2O per electron during electrosorption of organic anions
[41], and after electrosorption of ReO4

− poly(vinylferrocene)
shows relatively weak ReO4

−/vinyl interactions and no di-
rect ReO4

−/Fc+ interactions [42]. We posit here, and later
demonstrate using first principles modeling, that cation-

specific ordering of interstitial water molecules affects the
cation-framework interactions that are responsible for ion
recognition by PBAs.

Previous atomistic modeling of PBAs has focused on link-
ing cation-framework interactions to macroscopic phenomena
in the absence of water. Supported by the Landau theory and
XRD data, the magnetic ordering temperature of the MnMn-
PBA lattice has recently been shown to increase with the
strength of cation-cyanide interactions [43]. The tautomerism
of Fe-CN-metal chains in PBAs has been used to show that
the active redox center switches from Fe to Mn when inter-
calated Rb+ ions are present to strengthen orbital interactions
between Fe and Mn [44]. Building on DFT calculations that
revealed the mutual repulsion of interstitial vacancies, we
used grand canonical ensemble theory to predict the variation
between equilibrium intercalation potential with the degree
of Na+ ion intercalation in an anhydrous NiFe-PBA [11], in
agreement with experiment.

To date atomistic modeling of hydrated PBA lattices
has focused on particular aspects of cation-water-framework
interactions that largely neglect many-particle correlations
[38,45] due to the challenge of disentangling polyatomic or-
bital overlap from atom-specific interactions. To circumvent
cumbersome analysis of atomic correlations, ligand field sta-
bilization energy (LFSE) and redox center ionization energy
concepts have been applied to PBAs [46], where zeolitic wa-
ter has been shown to switch the redox sequence of metal
centers by increasing LFSE [46]. Lattice stiffness has also
been shown to increase by weakening the interaction between
water molecules and metal-nitrogen bonds [47]. However,
LFSE has limited application to understanding the intersti-
tial interactions of PBAs that contain octahedral low-spin
complexes [48] since only half of metal centers therein are
redox active. Among the broader class of metal organic frame-
works (MOFs) the principles of hard-soft acid-base (HSAB)
theory have been applied to rationalize the interactions of
interstitial cations with MOF ligands [49]. By surveying the
dissociation energies of different metal-ligand bonds, both
hard-base/hard-acid and soft-base/soft-acid framework-cation
interactions were shown to promote MOF stability, while
simultaneously making cation-exchange processes reversible.
However, HSAB theory can only predict qualitative trends in
the reversibility of cation exchange, as its precise application
depends heavily on ligand relaxation energy [50], an empirical
parameter that is material/ion specific.

Theories of many-particle correlations have been devel-
oped based on density functional theory (DFT) calculations
[51], but have not yet been applied to PBAs. Among them, the
theory of many-body expansion (MBE) is often used to in-
vestigate the interactions between molecular clusters [51–53],
where a certain n-body interaction energy is defined as to-
tal cluster energy minus the energies of independent n-atom
components [51]. Such n-body energies can be calculated
using DFT, and each such energy is a characteristic measure
of the atomic/electronic interactions outside of nuclear cores.
Notably, MBE has been applied to investigate many-body
effects in deformed cluster structures [54,55] and in nonco-
valent bonding among charged molecules [56]. Alternatively,
methods other than MBE have used partitioning of DFT
electron density fields to analyze many-body interactions
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[58,59], including a refinement of the Density Derived Elec-
trostatic and Chemical method (DDEC6) [57] that accounts
for both itinerant and localized electrons. Here, the number
of partitioned electrons is used to calculate the electron over-
lap population (OP) and the bond order for distinct pairs of
atoms. Using this approach, bond orders have recently been
calculated on a wide range of organometallic lattices and
have shown that the DDEC6 method reproduces the chemi-
cally expected trend of electron transferability [60]. However,
basis-set superposition effects in MBE [61] and partitioning of
each electron to a single nucleus with DDEC6 [57] limit the
effective application of both methods to understanding three-
body interactions. Therefore, other methods are needed to
analyze the many-particle correlations between the structures
of and interactions between interstitial cations, H2O, and PBA
frameworks.

In the current study, we investigate the many-particle corre-
lations in the hydrated NiFe-PBA framework using a method
that combines DFT calculation, overlap population analysis,
and a machine-learning (ML) model. We first perform lattice
relaxation calculations of NiFe-PBA unit cells by varying the
type of intercalated cation, the oxidation state of the PBA, and
the number of zeolitic water molecules within the PBA. Based
on the atomic configurations obtained from DFT calculations,
we prepare atomic feature vectors to train an ensemble of
regression trees using the Xgboost method [62]. We introduce
an importance index (IMP) that enables us to rank the sensitiv-
ity of total energy to many-body arrangements. This analysis
reveals that the type of intercalated cation, small/hydrophilic
or large/hydrophobic, is a critical factor that affects the vari-
ation of many-body structural correlations with the degree
of hydration. We then use overlap population analysis to
link structural correlations between the PBA framework and
interstitial species to the extent of dative bonding between
(1) intercalated cations and framework ligands and (2) in-
tercalated cations and oxygen in H2O. Inspection of the
lowest-energy structures for a certain cation type, hydration
number, and oxidation state enables us to categorize cations of
interest into three groups based on their bare ionic radius and
hydrophilicity. In particular, we show that bare ionic radius
determines the degree of cation-water coordination and that
cation hydrophilicity dictates bonding within clusters formed
by multiple water molecules. Identification of the most im-
portant features from analysis of ML results subsequently
enables us to investigate the corresponding DFT-calculated
energy landscape of PBAs in subspaces defined by many-body
structural features. The downhill traces therein illustrate how
atoms in two different clusters move collectively and how
the orientation of zeolitic water molecules is affected by its
surrounding atoms.

II. METHODOLOGY

In this section we first summarize the challenges of
simulating hydrated PBA materials using DFT, while also
highlighting certain details of ML model training that relate
to DFT. Subsequently, we present details of our DFT calcu-
lations and ML modeling methods. We focus our analysis on
the NiFe-PBA that exhibits reversible intercalation of alkali

cations from aqueous solution [63,64]. DFT calculations for
hydrated PBA lattices are particularly challenging for two
reasons: (1) they require knowledge of positions for interstitial
H2O that are unknown prior to structural relaxation, and (2)
nonlocal dispersion interaction energy functionals that cap-
ture hydrogen bonding converge slowly during self-consistent
iteration sequences [65,66]. We address the first challenge
by sampling H2O positions over Voronoi tessellation points
within the pristine PBA and by sampling different random
orientations for each water molecule at those points, as de-
scribed in Sec. II A. However, the second challenge stems
from the nonlocal nature of H-bonding interactions. Because
such bonding depends on electron densities and their gradi-
ents in a complex fashion [67], DFT simulation of lattices
filled with water molecules using dispersion-corrected func-
tionals is computationally expensive. As a result, relatively
permissive termination criteria have sometimes been used to
relax such structures with reduced computational time. As
an alternative, ML models trained using DFT-calculated data
have been coupled to global minimizers to relax structures.
Once adequately trained, such ML models are used to pre-
dict energies rapidly. The artificial neural network (ANN)
has been used widely in simulating crystalline materials [68],
biological molecules [69], and amorphous materials [70]. The
versatility of ANNs can be attributed to their network struc-
ture that maps high-dimensional atomic features to target data,
and little-to-no prior knowledge is needed during the model
training process. We argue, however, that other ML models
are better suited to learning the energy landscape of hydrated
PBAs for which DFT’s computational expense prohibits col-
lection of data sets large enough to train ANNs. Also, the
descriptors that prepare input vectors (i.e., feature vectors)
for ANNs use kernel functions to normalize vector elements
[71,72] that can cause nonunique mapping between feature
vectors and atomic configurations [73]. With small training
data sets and inaccurate descriptors, ANN-based models are
likely to suffer from overfitting [74], which is a problem
that cannot be fixed easily by network regularization methods
[75]. Compared to ANN-based models, we show here that
training of an Xgboost-based model requires much smaller
data sets (see Table V) with fewer hyperparameters that need
to be fine-tuned [62]. In the following sections, we exploit
the unique qualities of the Xgboost method to develop a
simple, yet efficient, descriptor using physically interpretable
many-particle features to represent atomic configurations in
hydrated, cation-intercalated PBAs.

A. DFT calculations for a hydrated NiFe-PBA

The unit-cell configurations that we adopt in all DFT cal-
culations here have a formula of AxNiFe(CN)6 · nH2O, where
A is an intercalated alkali cation (A = Li+, Na+, K+, Rb+,

or Cs+). When electrochemically oxidized the NiFe-PBA unit
cell is half intercalated with cations (x = 1) and when reduced
it is fully intercalated (x = 2), as shown in Fig. 1(a). All DFT
calculations were performed using the GGA + U approach
implemented in the Quantum ESPRESSO (QE) package [76].
The strong on-site Coulombic interactions on Fe and Ni atoms
were corrected by setting their respective U parameters to
1 and 3 eV to reproduce Na-intercalated lattice constants
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FIG. 1. The three-step scheme used to generate initial configurations for DFT calculations. The first step in (a) determines the number
of A cations in the anhydrous unit cell. A collection of potential locations for oxygen atoms shown in (b) is found by performing Voronoi
tessellation based on the nuclear coordinates of the relaxed anhydrous lattice. In the last step (c), the locations for oxygen atoms are randomly
chosen from candidate locations obtained in (b), and two hydrogen atoms are subsequently attached to each oxygen atom.

reported in previous experiments [77] and to maintain the
low-spin state of the Fe redox center [11,18]. The kinetic
cutoff energy for wave functions was set to 600 eV, and
self-consistent iterations were required to converge within
0.136 μeV. Vanderbilt ultrasoft pseudopotentials [78] were
adopted for all atoms except for Cs, for which we used a
norm-conserving pseudopotential [79] to avoid the negative
charge density caused by the Ultrasoft density interpolation
scheme [78]. For all calculations we use the PBEsol+rVV10
functional to approximate exchange-correlation effects and
van der Waals interactions to make the calculations of both
anhydrous and hydrated configurations consistent. We note
that, unlike local dispersion functionals [80], the nonlocal
functional rVV10 provides a better correction to molecu-
lar binding energy while keeping computational cost modest
[81].

We use a sequential scheme to add water molecules within
each unit cell with certain degree of intercalation x and cation
type A. We first assume body-center occupancy of intercalated
cations and subsequently perform variable-cell relaxation cal-
culations on anhydrous unit cells of AxNiFe(CN)6 (i.e., n = 0)
in the limit of vanishing solid pressure. We then add water
molecules to the relaxed anhydrous configurations to simulate
hydrated configurations, as described later. The resulting lat-
tice constants of the anhydrous systems with different kinds
of cations and oxidation states are shown in Table I. The
NiFe-PBA lattice undergoes isotropic expansion when the
bare ionic radius of the cation increases from that of Li+ to
Cs+. For the Na+-intercalated configurations, switching from
half to fully intercalated unit cells has no effect on lattice
constant, consistent with previous experiments [21,77]. For
cations other than Na+, fully intercalated configurations have
lattice constants that are slightly smaller than that of half inter-
calated configurations due to cation-framework interactions.
Recent experiments have shown that the lattice constant of
a hydrated NiFe-PBA slightly increases or unaffected during
K+ intercalation [77,82,83]. Thus, the results in Table I in-
dicate that the cation-framework interaction is mitigated by
interstitial water molecules.

TABLE I. Predicted lattice constant a (in Å) of anhydrous
AxNiFe(CN)6.

A = Li+ A = Na+ A = K+ A = Rb+ A = Cs+

x = 1 5.128 5.100 5.125 5.133 5.139
x = 2 5.110 5.100 5.105 5.120 5.133

After performing such variable-cell calculations, we use
Voronoi tessellation based on the coordinates of atoms in
relaxed anhydrous configurations to define the candidate lo-
cations for the oxygen atom of each water molecule to be
added to create hydrated initial configurations [red spheres in
Fig. 1(b)]. In practice, among all such candidate locations we
use those that are at least 0.8 Å away from anhydrous nuclei to
limit the number of potential locations for oxygen atoms. For
a given configuration we randomly choose n locations among
all candidate locations, and we placed a corresponding oxygen
atom there. We then attach two hydrogen atoms to each oxy-
gen by setting O-H distances and H-O-H angle to 0.9572 Å
and 104.5◦, respectively. To do so we sample the orientations
of H2O about each oxygen using random quaternions [see
Fig. 1(c)].

Using such initial hydrated configurations we conducted
fixed-cell relaxation calculations to obtain relaxed coordinates
and associated DFT energies for subsequent Xgboost model
training. We constrained unit cell shape and volume during
such calculations for two reasons. For the initial configura-
tions that have H2O molecules in close proximity to atoms
on the NiFe-PBA lattice, variable-cell optimization can in-
duce excessive lattice distortion during relaxation sequences.
When initial configurations are assembled using the approach
already described, we find that such lattice distortion can
produce configurations that are potentially far away from
equilibrium. Also, fixed-cell calculations constrain the motion
of metal centers, enabling the translation of interstitial cations
and H2O and the rotation of cyanide ligands.

We use the nomenclature Aδn to denote unit cells based on
the type of intercalated cation A, the extent of cation interca-
lation δ (either δ = h for half intercalated or δ = f for fully
intercalated), and the number of water molecules per formula
unit or hydration degree n. For example, Naf4 and Csh2 de-
note unit cells for Na2NiFe(CN)6 · 4H2O and CsNiFe(CN)6 ·
2H2O, respectively. DFT calculations were performed with
as many as four water molecules, resulting in 40 different
types of hydrated NiFe-PBA configurations among the five
different intercalated cations tested. For each such config-
uration type, we sampled 50 random realizations of water
molecules on Voronoi sites, each of which was subjected
to fixed-cell relaxation using the methods already described.
The resulting atomic coordinates and self-consistent field
energies obtained during the course of each fixed-cell re-
laxation sequence were subsequently used to train the ML
model (i.e., not only those of the terminal relaxed structure
itself).
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TABLE II. Meta-algorithm of the gradient boosting training method.

Input: {(�xi, yi )} and a differentiable loss function L[yi, F (�xi )].
Step 1: Initialize the model with the average energy value F0(�xi ).

Step 2: for m = 1 to N :

a. Compute residual rim = ∂Lm
∂F (�xi ) |Fm−1(�xi ) ∀�xi ∈ {(�xi, yi )}.

b. Fit a regression tree to rim values and create leaf regions Rjm.

c. For j = 1, . . . , Jm, compute γ jm = argmin
γ

∑
�xi∈R jm

Lm[yi, Fm−1(�xi ) + γ ].

d. Update Fm(�xi ) = Fm−1(�xi ) + ν
∑

j γ jmδ�xi (Rjm ).

Output: F (�xi ).

B. Xgboost model

We now summarize the gradient boosting ML method
used and subsequently introduce the descriptor that we use
to generate the feature vectors that serve as input to our Xg-
boost ML model. In general, gradient-boosting ML methods
train many independent weak regressors (or weak learners)
using the same feature vectors, but using different target data
from those feature vectors. Such methods subsequently com-
bine such weaker learners to yield an ensemble of learners
that spans all feature-vector elements. Table II shows the
meta-algorithm of a gradient boosting method used to train
an ML model. The algorithm starts with a training data set
that is comprised of a set of pairs of feature vectors �xi and
corresponding target data yi [i.e., (�xi, yi ) at the first line of
Table II]. In the context of energy-landscape learning, each
feature vector �xi represents the atomic structure of a certain
unit-cell configuration, while yi is its corresponding energy.
The algorithm then trains the first weak learner F0 that predicts
energies using the average of yi [i.e., F0(�xi ) = ȳ in Table II].
Gradient boosting is accomplished by using the gradient of an
associated loss function to reduce error by training new weak
learners on gradient values after performing training on its
output predictions. Accordingly for the mth iteration at step
2 in the algorithm (see Table II), the gradient rim of a loss
function L is calculated with respect to its prediction of the
ith configuration’s output value Fm−1(�xi ) obtained during the
previous iteration: rim = ∂L

∂F (�xi )
|Fm−1(�xi ). Presently, we use a loss

function defined by the sum of squared errors (SSEs). At the
mth iteration we have

Lm =
∑

i

1

2
[yi − Fm−1(�xi )]

2, (1)

with an associated gradient rim that is readily expressed ana-
lytically:

rim = yi − Fm−1(�xi ). (2)

From Eq. (2), we observe that rim is equal to the error that
results from use of the ensemble of trained weak learners
obtained at the (m − 1)th iteration.

After the values of rim are computed, a new weak learner
is trained by taking those rim values as the targeted training
data set. Specifically, a regression tree is trained as a new
weak learner based on residual errors rim from the previously
trained trees in steps 2b and 2c of the algorithm (Table II).
To illustrate, Fig. 2 shows an example regression tree for
the particular instance in which the mth learner feeds on

three features, a, b, and c. In this example we choose the
tree to have Jm = 5 different predicted output values γ jm for
the feature vectors that fall into the associated leaf regions,
shown as green blocks denoted by Rjm, where j = 1, 2, . . . Jm

enumerates each such leaf. Each node on such a tree subdi-
vides the associated target rim values into two groups based
on certain conditions that are feature-specific (blue blocks).
In this example, the targets that belong to R2m have corre-
sponding feature vector values that satisfy a < 1, b � 3, and
c � 7. The morphology of each regression tree is defined by
its maximum allowable tree depth Dmax, its upper limit of
leaf-region size nR, and its leaf algebra �. During the training
process, a tree is allowed to grow Dmax nodes at most before
it reaches a leaf region. The tree in Fig. 2 has a depth of
3, which would be produced for Dmax � 3. The number of
target rim values that feed into a given leaf region defines its
leaf region size. Thus, a small nR value reduces leaf region
size and forces the training algorithm to create more leaf
regions. The leaf algebra is the particular formula used for
calculating the outputs γ jm based on the target rim values.
We presently use an average of target rim values to determine
γ jm: γ jm = ∑

i rimδ�xi (Rjm)/
∑

i δ�xi (Rjm). Here, the Kronecker
delta δ�xi (Rjm) is unity when the vector �xi belongs to the leaf
region Rjm and is otherwise zero. Training such a regression
tree is accomplished by changing the threshold values at each
node, splitting new branches and pruning redundant branches,
so as to minimize the loss function. We will not discuss the
numerical details of tree fitting here as they can readily be
found elsewhere [62,84]. In practice, we use the open-source
Scikit-learn package [85] to train our Xgboost model.

FIG. 2. Illustrative example of a regression tree.
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FIG. 3. Schematic of descriptor used for preparing (a) base and (b) modified feature vectors and of the training process for the present
Xgboost-based model (c).

The gradient boosting method updates the tree ensemble
for the mth iteration by appending the new leaf outcomes to
the ensemble for the (m − 1)th iteration. Accordingly at step
2d of the meta-algorithm, the values of γ jm are weighted by a
learning rate parameter ν and the Kronecker delta δ�xi (Rjm) in
updating leaf outcomes. A small ν value increases the accu-
racy of the ML model by reducing the importance of each tree
relative to the entire ensemble of regression trees. The final
outcome of the algorithm is an ensemble of N regression trees
that yields predicted output values F (�x) for a given feature
vector �x.

The Xgboost method uses the gradient-boosting steps de-
scribed above by adopting the approximate greedy method
[86] and a parallel learning scheme [87,88] to build regression
trees efficiently. Here, the approximate greedy method grows
a regression tree iteratively by evaluating the accuracy gain
of subdividing leaf regions at each split-finding step [62]. A
new leaf region is only created when it improves the accuracy
of the regression tree. Therefore, trees with a larger number
of leaf regions provide more accurate predictions of the as-
sociated target values. Parallel learning schemes assemble all
feature vectors for training into a feature matrix with each
row being a feature vector and each column containing the
values of the same feature among all feature vectors [see the
top matrix in the right subplot of Fig. 3(c)]. The scheme then
reproduces N submatrices by randomly sampling C% distinct
columns from the feature matrix [e.g., the matrix at the middle
right of Fig. 3(c)]. Each submatrix and its associated targeted
output values are later used to train a separate regression
tree, while the highly parallelized Xgboost method trains all
the trees simultaneously. The final model is an ensemble of
regression trees with different structures because they are
trained on different features.

1. Descriptor for atomic configurations

We now introduce the descriptor that we use to generate
atomic feature vector values on the basis of atomic numbers

and polyatomic arrangements. Figures 3(a) and 3(b) show the
workflow for assembling feature vectors using the descriptor
that we adopt here. For the ith atom in an atomic configu-
ration, the descriptor builds a neighbor list by including the
atomic number of each neighbor Zi

l and its corresponding
distance di

l , where the integer l ranges from 1 to a prespecifed
value k [e.g., the two neighbor lists shown at the top of
Fig. 3(a)]. These Zi

l -d
i
l pairs are subsequently sorted in as-

cending sequence of di
l , where di

1 is the distance from the
ith atom to its nearest neighbor. The descriptor then sorts the
neighbor lists for the same atom type in an element list based
on the values of di

1. In Fig. 3(a), the neighbor list of the ith
atom is appended behind that of the (i + 1)th atom because
of the condition di+1

1 < di
1. The descriptor then assembles

element lists to prepare a base vector based on each element’s
type. For the NiFe-PBA unit-cell configuration in Fig. 3(a),
the lists for Fe and Ni (brown block) are followed by the lists
for N (navy), C (grey), O (red), H (white), and intercalated
cations (pink).

The use of such base vectors has a number of beneficial
attributes. Such base vectors contain the single-particle (i.e.,
atomic numbers) and two-particle (i.e., atomic distance) in-
formation around each atom in an atomic configuration. The
size of each neighbor list, 2k, determines the length of the
base vector. The computational cost of preparing base vec-
tors grows linearly with k, which is much cheaper scaling
than that produced by the neighboring matrix method that is
widely used in ANN-based models [89,90]. The descriptor
used here introduces different sorting algorithms for neigh-
bor lists, element lists, and the whole base vector to avoid
nonunique mapping between feature vectors and atomic con-
figurations. The preparation of both base and modified vectors
does not require normalization, such that finding a suitable
set of kernel functions to make each feature differentiable is
unnecessary. This convenience is attributed to the fact that we
can train a regression tree on both discrete and continuous
features.
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To prepare modified feature vectors we prepend certain
many-particle features to base vectors, as shown in Fig. 3(b).
Specifically, we consider modified feature vectors here that
include three-particle and four-particle polyatomic structural
features, in addition to base vector features. We define three-
particle features for a cluster comprised of atoms X, Y, and
Z, F (XY Z ), in two different ways: (1) the cosine of the
bond angle ∠XY Z formed at atom Y or (2) the product

dXY dY Z [1 − cos(∠XY Z )] where dXY is the distance between
atoms X and Y. We ultimately use the particular three-
particle feature definition that leads to a lower MAE among
our Xgboost-based models, as described in the Results and
Discussion section. We define a four-particle feature for a
G-X-Y-Z cluster, F (GXY Z ), using the tangent of half of the
solid angle subtended by an X-Y-Z cluster that emanates
from atom G:

F (GXY Z ) = tan(�GXY Z/2) =
∣∣∣∣∣

−→
GX · (

−→
GY × −→

GZ )

|−→GX | · |−→GY | · |−→GZ| + (
−→
GX · −→

GY )|−→GZ| + (
−→
GX · −→

GZ )|−→GY | + (
−→
GY · −→

GZ )|−→GX |

∣∣∣∣∣. (3)

In our subsequent analysis of four-particle features, we
only consider Ni and intercalated cations as the G atoms of
interest in Eq. (3), and almost exclusively we consider HOH
as XYZ in GXYZ clusters. These choices for G atoms are made
with inspiration from hard-soft acid-base (HSAB) theory [49],
since Ni2+ and A+ are Lewis acids that exhibit different affini-
ties to basic oxygen in H2O. For this reason, H2O plays a role
of electron donor in such clusters and causes the formation
of dative bonds [91,92] among interstitial species. Indeed,
our charge distribution analysis in the Results and Discussion
section shows that cations and zeolitic H2O share electrons
in interstitial space. For each such polyatomic cluster of the
same kind in a given configuration, the associated ML descrip-
tor calculates a separate many-particle feature and sorts the
corresponding values of all such features in a many-particle
feature list [e.g., the feature list at the middle of Fig. 3(b)]. If
a modified feature vector contains multiple many-particle fea-
ture lists, the descriptor assembles them alphabetically based
on their associated polyatomic clusters’ atomic symbols. In
Fig. 3(b), the descriptor appends feature lists of ABC and
ABCD clusters before the list of XYZ cluster to yield ascending
alphabetical order. By considering different polyatomic ar-
rangements, we use the descriptor to prepare different feature
matrices that contain different many-particle feature columns,
while fixing the total number of feature vectors [i.e., the row
number of feature matrices shown in Fig. 3(c)].

2. Fine-tuning hyperparameters of Xgboost-based models

Compared to ANN-based models, the present Xgboost
model requires only a small set of hyperparameters whose
values must be chosen in order to perform training: (1) the
total number of regression trees in the Xgboost ensemble N ,
(2) the maximum depth of each regression tree Dmax, (3) the
percentage of sampled columns from the total feature matrix
for training each regression tree C%, (4) the learning rate
ν, (5) the size of neighbor lists k, and (6) the maximum
allowable size of each leaf region nR. However, different
choices of hyperparameters also affect the minimum level of
error that can be achieved. Thus, we fine-tune hyperparam-
eters to optimize the accuracy of our Xgboost-based model
by using a grid search method [85] to find the combination
of hyperparameters that minimizes the mean absolute error
(MAE) of a separately trained model for a given configuration
type. Starting from a coordinate grid in the space spanned
by all hyperparameters, the grid search method optimizes a

certain hyperparameter by applying the steepest descent algo-
rithm while keeping other hyperparameters fixed. Presently,
we optimize hyperparameters in the sequence of k, ν, N , C%,
Dmax, and nR because we find that the sensitivity of MAE
to each such parameter decreases in the same sequence. At
each iteration step, the method follows an 80-20 rule [84] to
split base vectors and their associated targets into two data
sets for training and testing, respectively. After training a
different Xgboost ensemble for each configuration type, we
evaluate MAE based on the testing data set. We terminate
the search and confirm the best hyperparameter combination
when the MAE difference between two consecutive iteration
steps is less than 0.001 eV/atom. The optimal values for
N, Dmax, C%, ν, and nR found for all configuration types
are the same (Table III), but their optimal k values are specific
to each configuration type (Table IV).

Two factors affect the magnitude of k values in Table IV.
For half intercalated configurations, the optimal k value gen-
erally increases with increasing number of water molecules n.
For example, compare the variation of k values from Lih1 to
Lih4 with their variation from Nah1 to Nah4. Such correlation
of k with n is not observed for fully intercalated configu-
rations, however. The number of base vectors in different
training data sets also affects the k values determined by
finite-tuning. For Af1 configurations, the fine-tuned k value
decreases from 11 for Naf1 to 6 for Rbf1, while the total
number of base vectors decreases from 1538 to 836. The
descriptor used here prepares modified vectors by appending
many-particle features to their corresponding base vectors that
have their lengths defined by the k values listed in Table IV.

We now briefly compare and contrast the use of Xgboost
for learning energy landscapes with other kernel regression
and ANN methods. Table V shows the results of a qualitative
survey of the typical MAE levels that have been demonstrated
in the past using such methods, revealing that Xgboost is able
to achieve similar MAE to such methods while using a smaller
data set to train without overfitting or underfitting. However,
we acknowledge that such methods were used in the past for a
variety of atomic systems that are different from the focus of

TABLE III. Fine-tuned values of hyperparameters.

C% ν N Dmax nR

60% 0.05 900 6 2
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TABLE IV. Fine-tuned k values for all kinds of unit-cell
configurations.

A = Li+ A = Na+ A = K+ A = Rb+ A = Cs+

Ah1 9 8 9 9 8
Ah2 7 6 10 10 12
Ah3 11 9 10 9 9
Ah4 11 9 9 12 8
Af1 9 11 9 6 7
Af2 10 8 9 6 10
Af3 8 10 7 9 7
Af4 9 11 9 6 7

the present study, namely hydrated PBAs. Kernel regression
methods, such as kernel ridge regression and support vector
regression (SVR), have been applied to learn the energy land-
scapes of organic molecules [93] and amorphous alloys [94].
To achieve sufficient accuracy using kernel regression, atomic
features have been constructed in the past using smoothed
basis functions [95], which is a practice that can lead to
nonunique mapping between feature parameters and atomic
configurations. On the other hand, the intricate networks of
ANN-based models have yielded accurate energy predictions
for small organic molecules [97], metal oxide lattices [72],
and amorphous glassy systems [70], but in general a large
pool of feature vectors or feature matrices is required to train
ANNs properly relative to other methods. Recent work has
also shown that supplementation of certain potentials with
ANNs has yielded improved accuracy of energy prediction for
systems with nonlocal interactions [100]. To directly bench-
mark the performance of Xgboost against SVR and ANN
models we also trained such models using data from each of
the 40 different hydrated PBA unit cells investigated here by
incorporating the same base features as in our Xgboost mod-
els. To do so the hyperparameters of each SVR model were
fined-tuned using the grid search method, while we adopted
the structure of each ANN based on its recent application
to heterogeneous crystalline materials [101,102]. Among all
unit cells for which ML models were created, the MAEs of
SVR and ANN models on average were respectively 0.174
and 0.132 eV/atom, while Xgboost achieved 0.016 eV/atom
on average. Thus, we contend that Xgboost is highly suitable

for learning the energy landscapes of hydrated PBAs and other
condensed-matter systems, though its past use was limited to
organic molecules [87].

III. RESULTS AND DISCUSSION

The aim of this work is to discover and elucidate the
electronic and atomic interactions that affect the energetics
and interstitial structures formed within hydrated NiFe-PBAs
that are intercalated with alkali cations. To that end we have
sampled the configurational space for NiFe-PBAs with vary-
ing degrees of hydration, oxidation state, and intercalated
cation type. We then trained a gradient-boosted ML model
to identify the particular many-body structural features with
highest correlation to DFT-predicted energy using that model.
Descent paths in the corresponding DFT-energy landscapes
are subsequently analyzed using such many-body structural
feature parameters. We use overlap population analysis in
tandem to characterize the competition for dative bonding
between intercalated cations and framework ligands and be-
tween intercalated cations and H2O.

We also note that, subsequently, we use the nomenclature
Aδn to denote unit cells using a certain intercalated alkali
cation A, a certain extent of cation intercalation δ (either
δ = h for half or δ = f for fully intercalated), and a certain
number of water molecules per formula unit or hydration
degree n.

A. Correlating DFT energy with three-particle features

We now analyze the correlation between the many-
body structural features of different polyatomic arrangements
within a hydrated PBA and DFT-predicted energy by introduc-
ing an importance index (IMP), defined as the relative change
in mean absolute error (MAE) of an Xgboost model trained
on modified feature vectors incorporating a base vector and
certain many-body features from that of an Xgboost model
solely trained on a base feature vector:

IMPm = MAE0 − MAEm

MAE0
. (4)

Here, MAEm and MAE0 respectively correspond to Xgboost
models trained using modified feature vectors with many-
body feature m appended and using a base feature vector.

TABLE V. Qualitative survey of attributes for different ML models used for energy landscape regression.

Number of feature
Type of atomic Typical MAE vectors or matrices

Model type systems (eV/atom) for training Input format

Kernel regression Organic molecules
[89,93] and alloys

[94,95]

0.006 [95] ∼ 0.043 [89] 1000 [89] ∼ 26500 [95] vectors/matrices

Artificial neural
network

Molecules [96,97],
crystals [96,98] and

interfaces [99]

0.02 [99] ∼ 0.075 [98] 10000 [96] ∼ 5500000 [97] vectors/matrices

Xgboost Molecules [87] and
PBAs [present]

0.016 [present] 1300 [present] vectors
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FIG. 4. (a)–(c) Importance index values using three-body feature parameters for Ni-N-C and Ni-A-O clusters to train Xgboost models for
half intercalated systems. (d)–(f) Results of overlap population analysis for A-O, A-CN, and Ni-N.

Subsequently, we rank the correlation between energy and
certain many-body feature parameters based on the magnitude
of their corresponding IMPm values, where the polyatomic
arrangements of certain m clusters are important if IMPm is
positive.

We select candidate three-particle clusters that could be
important in either half or fully intercalated configurations
as pairs of Lewis acid cations (Ni2+ > A+ = Li+, Na+ K+,
Rb+, or Cs+) and Lewis base atoms (O > N > C) that
have varying degrees of chemical hardness. These clusters can
contain either two basic atoms and one acidic atom or one
basic atom and two acidic atoms: Ni-N-C, Ni-A-O, A-O-A,
N-A-N, and O-A-O. This approach enables us to later interpret
the structural correlations observed on the basis of HSAB
theory [49]. We analyze the polyatomic arrangements of half
and fully intercalated configurations separately in the next two
subsections because the many-body feature parameters that
correlate with energy mostly depend on the degree of cation
intercalation, as we now show.

1. Half intercalated configurations

Figures 4(a)–4(c) show the IMP values for different
cation types, arranged in ascending order of the number
of water molecules used. Among the three-body feature
parameters tested (NiNC, NiAO, NAN, AOA, and OAO),
most half intercalated configurations only showed positive
IMPm values for NiNC and NiAO [Figs. 4(a) and 4(b)],
indicating high sensitivity of DFT-calculated energy to three-
body features of F (NiNC) = cos∠NiNC and F (NiAO) =
dNiAdAO cos∠NiAO. In the configurations with the same
hydration degree n [i.e., bars with the same color in Figs. 4(a)–
4(c)], the influence of cation type on the importance of NiNC
and NiAO cluster features is not evident, as IMPNiNC and
IMPNiAO fluctuate between negative and positive values when
the intercalated cation type changes from Li+ to Cs+. While
Rb-intercalated configurations show IMPNiNC that increases
monotonically with increasing hydration degree n, no other
intercalated cations show monotonic trends of IMPNiNC or of
IMPNiAO with n. The lack of clear trends for IMPNiNC and
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IMPNiAO with n and cation type suggests that the correlation
between the corresponding three-particle features and DFT
energy is affected not only by lattice hydration degree and
cation types, but also by other polyatomic features. In order
to study the correlation between DFT energy and multiple
many-particle features simultaneously, we use the present ML
approach to incorporate feature parameters for NiNC and
NiAO clusters in a single model.

Figure 4(c) shows the difference between the correspond-
ing IMP values obtained using both three-body features
IMPNiNC+NiAO and IMPNiNC, where IMPNiNC+NiAO values
were obtained from training and testing of an Xgboost model
using three-particle features for NiNC and NiAO clusters. We
argue here and later demonstrate by examining DFT energy
landscapes that a positive value of IMPNiNC+NiAO − IMPNiNC

implies that combining the features of both such clusters
improves ML accuracy to a greater extent than including
only the feature of NiNC clusters. A positive IMPNiNC+NiAO −
IMPNiNC value also indicates possible correlation between the
polyatomic arrangements of NiNC and NiAO clusters.

The value of IMPNiNC+NiAO − IMPNiNC increases with
hydration degree for Na- and Li-intercalated PBA lattices
[Fig. 4(c)], suggesting increasing correlation between the ar-
rangements of NiNC clusters and the NiAO clusters with
increasing n. For K- and Rb-intercalated lattices, however,
such correlation is only significant with intermediate water
content, i.e., n = 2 and 3. Cs-intercalated PBA lattices show
no apparent trend of IMPNiNC+NiAO − IMPNiNC with n, fluctu-
ating between positive and negative values with increasing n.
On the basis of these observations we group these five cations
into three distinct categories: light cations Li+ and Na+, in-
termediate cations K+ and Rb+, and heavy cations Cs+. We
show later that such behavior is caused by two qualities that
vary between these categories: cation hydrophilicity and bare
ionic radius.

The cation-dependent correlation between the feature pa-
rameters for NiNC and NiAO clusters suggests that cation type
affects lattice distortion (e.g., tilting of metal-ligand octahe-
dra [103]) and cation-water arrangement in half intercalated
configurations. On this basis we assert that the dominant
physiochemical interactions within both clusters are cation
specific. Accordingly, we now investigate the relationships
between cation type and dative bonding (i.e., coordinate co-
valent bonding) between Lewis acid and base atoms in PBAs
by calculating electronic overlap population (OP), which is a
measure of the shared electronic density between two kinds of
atoms [57] and is defined for a pair of atoms or clusters, P and
Q:

OPP,Q =
∑

i∈P, j∈Q

∫
ρ(�ri )ρ(�r j )

ρ(�r)
d�r. (5)

Here, ρ(�r) and ρ(�ri ) are respectively the total charge den-
sity and the charge density assigned to the ith P atom at
�r using the DDEC6 charge density partition method [60].
For example, dative bonding between intercalated cations
and oxygen atoms in H2O is quantified by OPA,O and be-
tween intercalated cations and cyanide ligands is quantified
by OPA,CN. Figures 4(d) and 4(e) show the corresponding
results of OPA,O and OPA,CN for the lowest-energy con-

figurations for each half intercalated unit cell with certain
hydration degree n. In the anhydrous configuration (i.e.,
n = 0), the values of OPA,CN follow a sequence of OPLi,CN ≈
OPNa,CN < OPK,CN ≈ OPRb,CN < OPCs,CN, which groups the
cations into three distinct categories that coincide with the
results of our more exhaustive IMP analysis. From n = 0
to n = 1, the values of OPLi,CN, OPNa,CN, and OPK,CN in-
crease while OPRb,CN and OPCs,CN remain nearly unchanged.
This observation implies that zeolitic H2O in less hydrated
framework intensifies cation-framework interaction for Li-,
Na-, and K-intercalated lattices, but it has a negligible effect
on heavy ions. Compared with results with n � 1, OPK,CN,
OPRb,CN, OPK,O, and OPRb,O rise to larger values at higher
hydration degrees. We thus conclude that adding zeolitic
water molecules to a PBA intercalated with either K+ or
Rb+—in contrast with Li+ and Na+ as we subsequently
show—enhances dative bonding between intercalated cations
and framework ligands. In contrast, OPLi,CN and OPNa,CN

either decrease or are practically constant with increasing n
[Fig. 4(e)], while OPLi,O and OPNa,O increase with increasing
hydration degree n [Fig. 4(d)]. These results indicate that
the ascending NiNC-NiAO correlation observed in Fig. 4(c)
for Li- and Na-intercalated configurations therefore results
both from enhanced cation-water interactions and from di-
minishing cation-octahedron ligand interactions as zeolitic
water content increases. For Cs-intercalated configurations,
however, the trends of OPCs,O and OPCs,CN are not correlated
with the variations of IMPNiNC+NiCsO − IMPNiNC with n.

To understand such anomalous behavior for Cs-
intercalated configurations, we also calculated OPNi,N values
to reveal changes in Ni-N bonding in the PBA lattice as
a function of hydration degree n [Fig. 4(f)]. When n � 1,
OPNi,N reduces with hydration degree noticeably for all the
cases except for Cs-intercalated lattice. Starting from n = 1,
OPNi,N varies synchronously with IMPNiNC+NiAO − IMPNiNC

in Fig. 4(c) for Cs-intercalated configurations, both of which
are linked to Ni-N bonding that stretches and contracts in
an alternating manner depending on hydration degree. For
K- and Rb-intercalated configurations, in contrast, the single
local minimum observed for OPNi,N varies opposite to the
variations of IMPNiNC+NiAO − IMPNiNC in Fig. 4(c), where
the minimum value of OPNi,N coincides with positive values
of IMPNiNC+NiAO − IMPNiNC. For light cations, however,
OPNi,N varies weakly for n � 3, while for n = 4 OPNi,N

decreases. Because the correlations between NiNC and
NiAO clusters are most significant at n = 4 for both Li- and
Na-intercalated configurations [see Fig. 4(c)], the drop in
OPNi,N at n = 4 implies that sufficiently large cation-water
clusters act to stretch Ni-N bonds and cause lattice distortion
in half intercalated configurations.

To explain the different variations of OPNi,N for different
cation types at high water content, we now analyze the struc-
tures of lowest-energy configurations for Lih3, Lih4, Kh3,
Kh4, Csh3, and Csh4 unit-cell types in Fig. 5. Observation
of the arrangement of interstitial cations and water in Fig. 5
enables us to reconcile the contrasting results deduced for
different intercalation cations from variations OPNi,N with
n by considering a competition between two factors: cation
bare ionic radius and hydrophilicity. Because light cations
are relatively small and hydrophilic, Li+ and Na+ ions are
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FIG. 5. Lowest-energy structures for Lih3, Lih4, Kh3, Kh4,
Csh3, and Csh4 configurations.

firmly coordinated by zeolitic water molecules (e.g., Lih3
and Lih4 configurations in Fig. 5). As hydration degree in-
creases, a given cation-H2O cluster grows in apparent size,
so as to cause stronger interactions between that cluster and
the surrounding framework’s lattice. For this reason, a mono-
tonically increasing trend of IMPNiNC+NiAO − IMPNiNC with
increasing n is observed for light cations. From Lih3 to Lih4 in
Fig. 5, we observe that water molecules form hydration shells
around Li+, causing the Ni-N bond to stretch from 2.02 to
2.06 Å while the average value of ∠NiNC (i.e., 〈∠NiNC〉)
reduces from 173◦ to 169◦. These observations are consistent
with previous experiments that confirm hydration of Li+ in
the interstitial space of ternary PBA frameworks [104]. In
contrast, K+ and Rb+ are hydrophobic, and Fig. 5 reveals
that these ions are displaced to body centers to adjacent sites
with minimal energic costs. In the Kh3 configuration, water
molecules and nitrogen both closely coordinate to K+ ions
with average values of dKO = 2.44 Å and dKN = 3.09 Å, re-
sulting in enhanced NiNC-NiKO structural correlation. In the
Kh4 configuration, K-O coordination becomes weaker with
dKO = 2.93 Å, while 〈∠NiNC〉 shifts from 170.9◦ in Kh3 to
171.2◦ in Kh4. Therefore, the suppressed NiNC-NiKO struc-
tural correlation for n = 4 in K- and Rb-intercalated lattices
results both from interstitial water molecules detaching from
intercalated cations and from enhanced cation-ligand coordi-
nation. We also note that the Kh4 configuration exhibits K-N
coordination in the same plane as Ni-N coordination (i.e.,
purple plane in Fig. 5), resulting in off body-center occupation
by K+. For Cs-intercalated configurations, both cation-water
and cation-cyanide interactions become stronger as hydration
degree increases. Because Cs+ has a large bare ionic radius
and is hydrophobic, it pushes all zeolitic water molecules into
the vacant body-center site while still retaining coordination
to those molecules. The average distance of dCsO is 2.87 Å in
Csh3 and 2.98 Å in the Csh4 configurations shown in Fig. 5,
both of which are shorter than the distance between Cs-ion
and its first hydration shell in aqueous solution [105]. The
zeolitic water molecules in the Cs-intercalated lattice interact
strongly with each other through hydrogen bonding, indicated
using blue-dashed lines in Fig. 5. Notably, the characteristic

diameter of three-water clusters is significantly smaller than
that of four-water clusters in Cs-intercalated systems (i.e.,
2.61 Å vs 3.19 Å). The concomitant reduction of 〈∠NiNC〉
reduces from 179.3◦ in Csh3 to 173.8◦ in Csh4, which sug-
gests that the fluctuating nature of NiNC-NiCsO correlation
results from the formation of a kind of amorphous phase
transition of water clusters [106] with increasing hydration
degree.

Our analysis of overlap population shows that NiNC-NiAO
structural correlation is linked to the competition for da-
tive bonding between intercalated Lewis-acid cations and the
Lewis-base groups surrounding them (O in H2O and N in CN).
In addition, analysis of the correlation between the associated
three-body feature parameters and DFT energy, quantified
using the accuracy of ML models incorporating such features,
reveals three distinct categories of cations. Further, inspection
of lowest-energy structures reveals that the bare ionic size
and hydrophilicity of different cations determine how cations
are classified. While these results point to the key bonding
interactions that occur among different classes of cations at
equilibrium positions, we next seek to interpret how the con-
certed motions of atoms occur in the vicinity of those local
minima on energy landscapes.

We now attempt to investigate the implicit dynamics
occurring during the collective motions of polyatomic clus-
ters in the vicinity of local minima. To do this we project
high-dimensional DFT-predicted energy landscapes into two-
dimensional (2D) subspaces spanned by the most important
three-particle feature parameters, as determined from our pre-
ceding analysis. In particular, the values of IMPNiNC and
IMPNiAO were found to be positive for most unit-cell types.
Therefore, we project the energy landscapes using the sub-
space spanned by the average values of cos(∠NiNC) and
dANidAO[1 − cos(∠NiAO)] for a given structure. Each such
projected landscape in Fig. 6 is shown with data from the 100
structures with lowest energy for a given unit-cell type. The
hue of each data point represents the energy difference 	E
between a given configuration and the lowest-energy config-
uration in the unit of eV. By following the downhill traces on
these projections, we can infer the collective movements of
the NiNC and NiAO clusters in the quasistatic limit.

Based on the three categories of different cations that we
defined earlier, we group the different DFT energy landscapes,
as shown in Fig. 6. For small, hydrophilic cations (red rect-
angle: Li- and Na-intercalated configurations), the labeled
downhill traces start from an energy with 	E ∼ 0.3 eV and
descend toward certain local minima. By connecting the tail to
the head of each such trace using a straight line, we calculate
the secant slope of each such trace |	y/	x|. We identify
two kinds of traces based on such secant slope values. Steep
traces with |	y/	x| > 0.05 are red, and they indicate sig-
nificant that changes in the degree of Ni octahedron tilting
are accompanied by mild changes in cation-water coordina-
tion along the corresponding trace. In contrast, shallow traces
with |	y/	x| < 0.01 are black, and they indicate that water
molecules rearrange themselves within a given cation-water
cluster without causing significant octahedral tilting. As water
content increases in Li- and Na-intercalated configurations
(i.e., by traversing from the left to the right side of cases in the
red rectangle), we observe that shallow (black) traces vanish at
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FIG. 6. 2D projections of DFT-predicted energy landscapes for half intercalated configurations near local minima. Color bars indicate DFT
energy in eV per formula unit, relative to that of the lowest-energy structure for a given configuration type.

certain n. In contrast, the evolution of octahedral tilting along
steep traces involves virtually no rearrangements of cation-
H2O clusters for a sufficiently large hydration degree (n � 3).

For intermediate-size, hydrophobic cations (green
rectangle: K- and Rb-intercalated configurations), downhill
traces start from energies with 	E ∼ 0.08 eV and follow
more circuitous paths than those on the landscapes for Li-
and Na-intercalated configurations. The mild variations of
〈cos(∠NiNC)〉 along such traces show that interactions
between the framework and interstitial speces in K- and
Rb-intercalated configurations do not cause significant
lattice distortion during relaxation toward local minima. The
shallow (black) traces in the landscapes of K-intercalated
configurations demonstrate that lattice distortion evolves in
concert with K-H2O coordination. The steep (red) traces in
the landscapes of Rb-intercalated configurations indicate that
Rb-H2O coordination remains unaffected during relaxation

toward local minima. At n = 4, the landscapes of Kh4 and
Rbh4 are absent of downhill traces, however. Instead, all
configurations are concentrated near certain local minima,
indicating that the motion of interstitial species is impeded by
crowding of H2O in the PBA framework.

The energy landscapes of large, hydrophobic cations
(blue rectangle: Cs-intercalated configurations) also show
negligible octahedral tilting [i.e., 〈cos(∠NiNC)〉 � −0.98].
However, large changes of cation-water coordination occur
along traces. These changes are consistent with the atomic
structures of Cs-intercalated configurations (Fig. 5), where
cation-water coordination is coupled to the amorphous order-
ing of water clusters in adjacent interstitial sites. These results
therefore confirm that bare ionic radius and the hydrophilicity
of intercalated cations not only affect bonding at local minima,
they also affect the collective movement of interstitial species
in the vicinity of local minima.

035003-12



LINKING THE POLYATOMIC ARRANGEMENTS OF … PHYSICAL REVIEW MATERIALS 5, 035003 (2021)

FIG. 7. (a)–(c) Importance index values using three-body feature parameters for Ni-N-C and A-O-A clusters to train Xgboost models for
fully intercalated systems. (d)–(f) Results of overlap population analysis for A-O, A-CN, and Ni-N.

2. Fully intercalated configurations

As we now show, cations in fully intercalated configura-
tions occupy the two body-center sites of the PBA lattice,
irrespective of intercalated-cation type or the degree of hydra-
tion. This effect occurs because much less space is available
for the occupation of interstitial species when two cations
per formula unit are intercalated. While for half intercalated
configurations we found that the NiNC and NiAO were the
three-body clusters showing most significant correlation to
DFT energy, for fully intercalated configurations we find that
NiNC and AOA clusters show most significant correlation.
This change in correlation for fully intercalated configurations
arises from increased confinement experienced by cations and
zeolitic water molecules that enhances interactions between
the framework and those interstitial species. Accordingly,
we use IMP values for NiNC clusters to analyze the effects
of hydration degree and cation types on octahedral tilting.
Figure 7(a) shows that the IMP value obtained using the
feature F (NiNC) = cos∠NiNC decreases with increasing hy-

dration degree for Li- and Na-intercalated configurations,
whereas it increases with n for K- and Cs-intercalated cells.
The increasing trend of IMPNiNC for Rb-intercalated cells does
not persist for all n, as the value of IMPNiNC for the Rbf1
cell is much larger than those of Rbf2, Rbf3, and Rbf4 cells.
Our earlier findings for the half intercalated configurations
showed that K and Rb ions belong to the same category of
intermediate cations. However, the difference in the trends of
IMPNiNC between K- and Rb-intercalated configurations that
we observe here is inconsistent with such classification.

To examine whether the presence of an additional Rb
ion makes Rb-water-framework interactions patently dif-
ferent from K-water-framework interactions, we calculated
the corresponding values of OPA,O and OPA,CN for the as-
sociated lowest-energy configurations. Comparing between
Rb- and K-intercalated configurations, we observe that both
OPK,O and OPRb,O increase monotonically with increasing n
[Fig. 7(d)]. Also, the values of OPK,CN and OPRb,CN both
decrease significantly for n � 3 [Fig. 7(e)]. The lowest-energy
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FIG. 8. Lowest-energy structures for Kf1, Rbf1, Lif1, Lif4, Csf1,
and Csf4 configurations.

configurations, whose structures are shown in Fig. 8, also
show similar cation-water and cation-nitrogen coordination
among both cation types with similar 〈∠NiNC〉 values of
169.7◦ for Rbf1 and 170.3◦ for Kf1. Therefore, we attribute
the abnormal value of IMPNiNC for the Rbf1 cell to the in-
sufficient data of Rbf1 configurations for ML model training
(690 trajectory images) compared to other configuration types
(approximately 1300 trajectory images), rather than to K- and
Rb-intercalated configurations experiencing patently different
interactions.

The cation-dependent IMPNiNC trends for light, intermedi-
ate, and heavy cations are consistent with the results based on
the values of OPA,CN [Fig. 7(e)]. At n = 0, OPA,CN follows
a sequence of Li+ ≈ Na+ < K+ ≈ Rb+ < Cs+, identical to
the results in half intercalated lattices. From n = 0 to n =
1, OPA,CN is weakened only for the Cs-intercalated lattice.
When either Li+ or Na+ are fully intercalated in a frame-
work, cation-ligand interactions are screened by zeolitic water
molecules, as evidenced by decreases in OPLi,CN and OPNa,CN

with increasing n [Fig. 7(e)]. When heavier cations are
intercalated, large hydration degrees promote cation-ligand
interactions. Further, our analysis shows that the Ni-N bond is
stretched at n = 4 irrespective of which cation is intercalated
[Fig. 7(f)]. In particular, we find that Ni-N bonds are broken in
the lowest-energy configuration of Csf4 cases, resulting in the
Ni atom coordinating only to five nitrogen atoms and to one
oxygen atom (i.e., “O3” in Fig. 8). The results in Figs. 7(e) and
7(f) have important implications regarding cation intercalation
processes in PBAs. On the one hand, the PBA framework, like
other metal-organic frameworks [107], is likely to experience
bond breakage at high degrees of hydration because interca-
lated cations force zeolitic water to attack weak bonds near
metal centers, such as Ni-N bonds here. On the other hand,
to accommodate the large size of heavy ions, such cations are
likely to expel water molecules from the PBA lattice during
cation intercalation, as a result of the energetic cost associated

with extreme confinement of both the interstitial cation and
H2O. This conclusion is consistent with recent neutron pow-
der diffraction and extended x-ray absorption fine-structure
spectroscopy experiments that have revealed that K+ interca-
lation induces the expulsion of zeolitic water molecules from
the CuFe-PBA lattice [15].

By following the same method elaborated in the previous
subsection, we find that atomic arrangements of AOA clusters
are also important for predicting energies of fully intercalated
configurations [Fig. 7(b)]. We also evaluate the differences of
IMPNiNC+AOA − IMPNiNC to investigate correlations between
cation-water coordination and octahedral tilting [Fig. 7(c)].
We observe an increasing trend of IMPNiNC+LiOLi − IMPNiNC

with increasing n, while the value of IMPNiNC+CsOCs −
IMPNiNC decreases monotonically with increasing hydration
degree [Fig. 7(c)]. Similar to our results for half interca-
lated configurations, the increasing trend of IMPNiNC+LiOLi −
IMPNiNC corresponds to the enhanced correlation between
NiNC clusters and Li-water coordination due to the growing
size of Li-water clusters with increasing hydration degree.
In the lowest-energy configurations of fully Li-intercalated
cells, we further find that large Li-water clusters exacerbate
octahedral tilting, as 〈∠NiNC〉 reduces from 177◦ for Lif1 to
167◦ for Lif4 (Fig. 8). Meanwhile, the arrangement of CsOCs
clusters decouples from the NiNC arrangement at large n
[Fig. 7(c)] because Cs+ ions, which persistently occupy body-
center sites, confine water molecules in such a way that they
attack Ni-N bonds. However, we observe no clear trends of
IMPNiNC+AOA − IMPNiNC with n for A = Na+, K+, and Rb+,
indicating that structural correlations in these systems involve
more clusters than NiNC and AOA clusters.

Because the arrangement of AOA clusters is essential to un-
derstanding energetics in most of the present cases [Fig. 7(b)],
we define the energy landscape subspace for fully interca-
lated configurations using 〈dAOdOA′ [1 − cos(∠AOA

′
)]〉 and

〈cos(∠NiNC)〉 as coordinates. We use the same conditions
as for half intercalated configurations to classify steep (red)
and shallow (black) downhill traces. For the landscapes of
configurations intercalated with light cations (red rectangle:
Li- and Na-intercalated configurations), most steep traces are
nearly perpendicular to the horizontal axis, implying that
total energy relaxes by lattice distortion via Ni-octahedron
tilting while maintaining cation-water coordination. Unlike
the results for half-intercalated configurations (see Fig. 6 and
discussion thereof), the downhill traces of fully intercalated
configurations are accompanied by increases in the tilting an-
gle of metal octahedra (i.e., decreases in the angle of ∠NiNC),
indicating that the addition of a light cation destabilizes the
pristine NiFe-PBA lattice to a certain degree.

The landscapes of K- and Rb-intercalated configurations
contain downhill traces similar to those of Li- and Na-
intercalated cells, except in the case of Kf1 (see Fig. 9). The
landscapes of all K-intercalated configurations show down-
hill traces that are concentrated around several distinct local
minima, indicating that atomic movements are confined in
interstitial space. For Rb-intercalated cells, however, extended
downhill traces with |	y| ∼ 0.01 are found even when the
hydration degree is large (n � 3). Furthermore, most steep
traces for Rb-intercalated configurations show an increase
in the angle of ∠NiNC, implying that the addition of Rb+
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FIG. 9. 2D projections of DFT-predicted energy landscapes for fully intercalated configurations near local minima. Color bars indicate
DFT energy in eV per formula unit, relative to that of the lowest-energy structure for a given configuration type.

stabilizes the PBA lattice by decreasing octahedral tilting.
Because Cs+ is especially large and hydrophobic, the fully
Cs-intercalated lattice has limited interstitial space for cations
and zeolitic H2O molecules to move collectively. As a result,
the corresponding landscapes of Cs+ (blue rectangle) are con-
centrated around distinct local minima.

Thus far, our analysis of correlation between energy
and the arrangement of polyatomic clusters has focused on
atoms other than hydrogen atoms. However, we have ob-
served that hydrogen bonding determines the morphology
of cation-water clusters in both half and fully intercalated
configurations (Figs. 5 and 8), as a result of which the
nature of framework-interstitial interactions is affected in-
directly. In the subsequent subsection we explore these
effects in more detail by analyzing the orientation of H2O
molecules in the interstitial space of cation-intercalated
NiFe-PBAs.

B. Correlating DFT energy with four-particle features

We now use certain four-particle feature parameters based
on the solid angles subtended by zeolitic water molecules that
extend either from Ni2+ (�Ni−H2O) or A+ (�A−H2O) cations
to characterize the effect of H2O’s orientation on DFT en-
ergy. We identify downhill traces in the energy landscapes
of Li- and Cs-intercalated configurations with n � 2 using
〈tan(�A−H2O/2)〉 and 〈tan(�Ni−H2O/2)〉 to define an associ-
ated subspace. In the landscapes shown in Fig. 10, shallow
traces (black) have secant slopes with |	y/	x| � 0.01 that
are rendered only if |	x| � 0.1.

The definition of the solid angle [Eq. (5)] shows that its tan-
gent for a G-XYZ cluster can only be zero if

−→
GX⊥(

−→
GY × −→

GZ )
is satisfied, in which case G, X, Y, and Z must be copla-
nar. When water content is low either in small or in large
cation-intercalated configurations (n = 1), shallow traces
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FIG. 10. 2D landscape projections spanned by solid angles for H2O with respect to intercalated cation A+ (y axes) and to lattice cation
Ni2+ (x axes). Such landscapes are shown for eight different Li- and Cs-intercalated configurations.

indicate dramatic changes in H2O’s orientation relative to
an observer at each Ni2+ center. However, along such a
trace H2O’s orientation does not change significantly rela-
tive to an observer at each A+ center. When water content
is high however (n = 4), the associated energy landscapes
are concentrated around certain local minima because con-
fined interstitial space constrains the librational movement of
each water molecule. The local minima that appear in the
landscapes of Cs-intercalated configurations are found with
|〈tan(�Cs−H2O/2)〉| ∼ 0.03, whereas |〈tan(�Li−H2O/2)〉| val-
ues at local minima vary from 0.4 for Lih1 to 0.005 for Lif4
for Li-intercalated configurations. Differences in the values
of |〈tan(�A−H2O/2)〉| are evident from the structures of Lif1,
Lif4, Csf1, and Csf4 (Fig. 8). Cs-O coordination in the lowest-
energy Csf1 configuration forms a 90◦ angle with the lattice
plane on which the corresponding water molecule and Ni atom
reside, indicated by the purple plane for Csf1 in Fig. 8. In the
Lif1 configuration, however, such coordination is frustrated.
Repeating the unit cell of Csf1 in 3D space, we recognize
that an extended cation-water network exists in its interstitial
space, where a water molecule bridges between each pair
of adjacent Cs+ ions. In contrast, due to the small size and
the hydrophilicity of Li+, the formation of a hydration shell
around Li+ prohibits such ordering of cation-water clusters.
Further, when hydration degree is large (n � 3), cation-water
ordering is frustrated for all configuration types.

IV. CONCLUSIONS

The present investigation reveals that the interactions be-
tween PBA lattices and interstitial species significantly affect
lattice stability and the hydration degree of cations in inter-
stitial space. To elucidate the associated correlations between
polyatomic arrangements and atomic interactions in PBA
frameworks, we performed DFT calculations of hydrated
NiFe-PBA lattices with various oxidation states, hydration
degrees, and types of intercalated cations, using Voronoi
tessellation to sample the configurational space of H2O occu-
pation. We used a simple descriptor to extract many-particle

features from polyatomic arrangements in DFT-calculated
configurations. These features were then incorporated into
different data sets to train ML models, resulting in differ-
ent model accuracy levels. Based on the accuracy of ML
models using different features, we ranked the sensitivity of
DFT-calculated energy to various many-particle features. The
correlation between two features is identified when including
both features in training data improves ML accuracy to a
greater extent than including only one of the two features.
Because the many-particle features are generated from their
associated polyatomic arrangements, statistical correlations in
the feature space bijectively map to polyatomic correlations in
configurational space.

Using this technique we found a significant correlation
between NiNC and NiAO clusters for most of the half
intercalated lattices. The variation of these ML model correla-
tions with hydration degree indicates that correlation between
NiNC and NiAO arrangements depends on the type of in-
tercalated cation. Inspired by these results from ML model
training, we analyzed the overlap population between interca-
lated cations and their surrounding atoms in the lowest-energy
configurations to determine which atomic interactions were
responsible for such cation-dependent correlation. This over-
lap population analysis showed that the strong dative bonds
between intercalated cations and water molecules are accom-
panied by weaker dative bonding between cations and cyanide
ligands, and vice versa. This analysis therefore demonstrates
that NiNC-NiAO correlation results from the competition be-
tween two kinds of dative bonds around intercalated cations.
By studying the arrangement of interstitial species within
lowest-energy structures in conjunction with overlap popula-
tion analysis, we deduced that the bias toward dative bonding
of cations with either H2O or cyanide ligands is dependent
on the bare ionic radius and hydrophilicity of intercalated
cations. We thus group Na+, Li+, K+, Rb+, and Cs+ ions
into three categories. When light, hydrophilic cations (Li+ and
Na+) intercalate into PBA lattices, zeolitic water molecules
firmly coordinate to cations and form a hydration shell, albeit
with a hydration shell structure that is confined relative to that
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of cations in bulk liquid water. For K+ and Rb+ ions that
are hydrophobic with intermediate ionic size, zeolitic water
molecules push them off of body-center sites, such that those
ions coordinate to cyanide ligands to an increasing degree. If
intercalated cations are large and hydrophobic, such as Cs+,
they displace zeolitic water molecules into adjacent vacant
sites, where water clusters form an amorphous phase that is
more dense than bulk liquid water.

We used a similar method to analyze polyatomic correla-
tions in fully intercalated lattices and found that the extent
of Ni-octahedron tilting is cation specific, as analyzed us-
ing feature parameters for NiNC clusters. The variation of
IMPNiNC+AOA − IMPNiNC with increasing degree of hydration,
where IMP is an importance index associated with certain
three-body features, further suggests that zeolitic water pro-
motes correlation between NiNC and AOA clusters in Li- and
Na-intercalated lattices. In contrast, such correlation disap-
pears at high hydration degrees in K-, Rb-, and Cs-intercalated
lattices. A corresponding sharp decrease in the overlap pop-
ulation between nickel and cyanide ligands at the highest
hydration degree occurs for all kinds of lattices. This result
suggests that Ni-N bonds stretch due to confinement of inter-
stitial space. We also showed that the dative bonding between
zeolitic water molecules and cyanide ligands is strengthened
at high hydration degree in the lowest-energy structures. At
the highest hydration degree, we even discovered the breakage
of such bonds in Cs-intercalated lattices. We thus conclude
that the NiFe-PBA lattice is likely to expel zeolitic water
molecules during the intercalation of large and hydrophobic
cations.

To explore features of DFT-calculated energy landscapes,
we projected these landscapes onto subspaces spanned using
two different three-particle feature parameters found using
ML analysis to have highest correlation to energy. The down-
hill traces in such landscapes reveal the correlations between
collective movements in interstitial space in the vicinity of
local minima in energy. When PBA lattices are half interca-
lated with Li+ or Na+ ions, such downhill traces indicate two
patterns of collective movement: (1) the tilting of Ni octahedra
accompanied by minimal rearrangement of cation-H2O clus-
ters, and (2) significant rearrangement of cation-H2O clusters
without distorting the PBA lattice. Pattern (1) prevails for
fully intercalated lattices, however. For K- and Rb-intercalated
lattices, downhill traces show that both patterns still coexist on

the landscapes of half intercalated lattices. In lattices that are
intercalated fully with K+ or Rb+ ions, the tilting of metal
octahedra is constrained and even reversed. Intercalation of
Cs+ ions also suppresses lattice distortion in both half and
fully intercalated lattices. For Cs+ intercalated configurations
the collective movements of water clusters are evidenced by
landscapes projected using four-particle feature parameters.
Downhill traces on those landscapes also suggest a copla-
nar arrangement of water molecules with Ni-metal centers
at low hydration degrees. The zeolitic water molecules in
Cs-intercalated lattices bridge between adjacent Cs+ ions to
form a Cs-H2O network in interstitial space. Such a network
is frustrated in Li-intercalated lattices because hydration shells
separate adjacent Li+ cations.

While the present investigation focuses on PBAs, we note
that the ML model and analytical method used in this study
can be applied to other crystalline solids. The descriptor
proposed here effectively maps atomic configurations to fea-
ture space spanned by both discrete and continuous features.
Therefore, the present method does not require normalization
or differentiable features for ML model training and is suitable
for fast prototyping of accurate ML models. Despite these
benefits, we note that the training data used here were obtained
not only from terminal relaxed structures, but also from the
structures obtained along relaxation trajectories. Here, leaf
regions are assigned to the feature values of configurations
near local minima only at the deepest levels of each regression
tree. Along those lines we envision using the present ML
model as an estimator of DFT-calculated energy in the search
for global optima by introducing bias towards near-minimal
structures in training data sets.
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