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Density functional theory calculations using well-established semilocal and hybrid functionals are typically
accurate for structural properties of semiconductors, but they often fail to quantitatively describe electronic-
structure and optical properties of these materials. An improvement to conventional hybrid functionals is the
class of screened range-separated hybrid (SRSH) functionals. In the SRSH approach, the range-separation
parameter is used to empirically fit the band gap of the semiconductor, which was shown to lead to highly
accurate predictions of electronic-structure and optical properties. Here we assess the accuracy of the SRSH
approach for computing other important bulk properties of seven prototypical semiconductors, including lattice
constants and phonon dispersion relations. Our SRSH results are compared to data from semilocal (PBE) and
hybrid (HSE) functional calculations as well as to experimental data from the literature. We find that SRSH can
compete with the high accuracy provided by the two well-established functionals PBE and HSE for computing
bulk properties of semiconductors. Furthermore, similarly to the case of the HSE functional, the SRSH method
yields phonon dispersion relations of semiconductors that tend to be more accurate than those calculated with
PBE. The SRSH approach thus provides a consistently accurate framework for calculations of semiconductor
bulk properties.

DOI: 10.1103/PhysRevMaterials.5.034602

I. INTRODUCTION

Theoretical calculations of static and dynamic bulk proper-
ties are key to a microscopic understanding of semiconductors
and their properties. For example, theoretical predictions re-
lated to static quantities, such as the lattice constant, are
required when new semiconductors and their properties are
explored in the absence of experimental data and guidance.
In regard to dynamic properties, calculations of vibrational
spectroscopy (e.g., infrared or Raman activities), of heat-
as well as electrical transport, need computations of lattice
dynamics as an input. The most common approach to com-
pute static and dynamic bulk properties for semiconductors is
density functional theory (DFT) using (semi-) local exchange-
correlation (XC) functionals, such as LDA [1] or PBE [2].
Hybrid functionals that include a fraction of Fock exchange
have been popular in quantum chemistry for decades, and their
application to computing properties of bulk semiconductors is
well established too.

Of particular relevance for semiconductors are DFT cal-
culations with so-called screened hybrid functionals [3], in
which a range separation of the Coulomb operator is used to
screen long-range interactions in the bulk material. Popular
screened hybrids, such as the HSE functional [4,5], have been
extensively tested for semiconductors [6–9]. Indeed, screened
hybrid functionals do improve some of the well-known defi-
ciencies of (semi-) local DFT, e.g., the HSE functional often
provides more realistic electronic band structures and gaps
than PBE [5,10]. At the same time, screened hybrids cannot
be expected to perform accurately in all cases, which for semi-
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conducting systems has been shown by, e.g., Jain et al. [11].
Still, an appealing aspect of screened hybrid functionals is
that in addition to improved electronic-structure predictions,
they were shown to provide accurate descriptions of lattice
dynamics as well [12,13]. For example, it was demonstrated
that HSE yields phonon dispersion relations of semiconduc-
tors that tend to be more accurate than those calculated with
PBE [12].

A relatively recent development for solid-state calculations
of semiconductors are so-called screened range-separated
hybrid functionals (SRSH), in which a range separation is per-
formed akin to the conventional screened hybrid functionals
[14]. As in conventional screened hybrid functionals, in SRSH
the mixing of Fock and semilocal exchange is varied depend-
ing on the distance of electrons in the system [14]. Importantly
however, with its functional form SRSH can be tuned so that
the correctly screened exchange interaction for a bulk material
is retrieved asymptotically, i.e., 1

εr for r −→ ∞, where ε is the
dielectric constant of the system [14,15]. A recent study has
proposed to tune the range-separation parameter in the SRSH
approach to the GW band gap at the � point [16]. It has been
shown that the SRSH functional tuned in this way allows
for highly accurate predictions of electronic structure and
optical-absorption properties of semiconductors within DFT
and linear response time-dependent DFT (TD-DFT) [16,17],
respectively. Furthermore, once the SRSH parameter is tuned
for a given material, it can be used to reliably predict other
properties. Recent examples include charge-transition levels
[18] that are often challenging for DFT [19] and optical-
absorption spectra of semiconductors [16,20].

In this work our main focus is on the applicability of
SRSH to predict structural and lattice-dynamical properties
of inorganic semiconductors. The motivation for our study
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is that from a formal perspective, it would be appealing if
SRSH not only delivered accurate quantities related to the
electronic structure of a given semiconductor, but also quanti-
ties related to total energies and respective derivatives. From a
practical perspective, it is interesting to assess whether the su-
perior performance of SRSH for electronic-structure and opti-
cal properties comes at a cost of reduced accuracy for other
bulk properties of semiconductors. Previous work in the con-
text of gas-phase molecules has indeed shown that the related
class of optimally tuned RSH functionals not only yields
highly accurate electronic properties [21,22], but also ground-
state molecular geometries and vibrational frequencies [23]
in addition to excited-state potential energy surfaces [24].
Indeed, a consistently accurate approach for both electronic-
structure and total-energy quantities of semiconductors will
be particularly appealing for calculations that inherently re-
quire both, such as the computation of electron-phonon
couplings that are key in theories of electrical transport in
semiconductors.

Therefore, in this article SRSH is used to calculate lattice-
dynamical as well as other closely related bulk properties of
semiconductors. Specifically, we compute equilibrium lattice
constants, bulk moduli, atomization energies, and phonon dis-
persion relations for a set of seven semiconductors, for which
the tuning of the range-separation parameter has been reported
recently [16]. Our SRSH results are compared to experimental
data as well as to calculations of the often used PBE and
HSE functional. We find that SRSH agrees similarly well to
experiments as the well-established and fairly accurate HSE
and PBE functionals for the obtained bulk and phonon proper-
ties, and conclude that the superior performance of SRSH for
electronic-structure and optical properties does not impede its
accuracy for other bulk properties of semiconductors.

II. METHODOLOGY

A. Benchmark systems

To assess the accuracy of the SRSH functional for bulk
semiconductors, we performed calculations on the following
prototypical systems: AlAs, AlP, AlSb, GaAs, GaP, InP, and
Si. The reasons for choosing these materials are that reference
data from DFT calculations as well as experiments are readily
available in the literature, and that furthermore high-level GW
data were reported for them recently [16,25].

B. DFT calculations

We performed our DFT calculations using the Vienna
ab initio simulation package (VASP) [26] applying a plane-
wave basis set and the projector-augmented wave (PAW)
method [27]. Apart from the valence electrons, we included
semicore d states for Ga and In in our calculations.

Plane-wave energy cutoffs and k-point grids were con-
verged separately for each system using the experimental
lattice constant, until the change in the total energy was below
2 meV per atom using the PBE functional [2]. The resulting
cut-off energies subsequently used for our calculations are
reported in Table I. For the sampling of k points, we employed
�-centered Monkhorst-Pack grids with either 8 × 8 × 8 k
points (AlAs, AlP, AlSb, InP) or 9 × 9 × 9 k points (GaAs,

TABLE I. Plane-wave energy cutoffs used to calculate equilib-
rium lattice constants, bulk moduli, as well as atomization energies
(Ecut) and phonon band structures (E ph

cut).

Name Ecut (eV) E ph
cut (eV)

AlAs 220 220
AlP 245 245
AlSb 190 240
GaAs 280 380
GaP 300 350
InP 255 355
Si 270 270

GaP, Si). For the supercell calculations (see Sec. II F), we
reduced the k points to a grid of 2 × 2 × 2.

C. The SRSH functional

In the SRSH functional, the Coulomb potential is split in
the following way [22,28,29]:

1

r
= α + β erf(γ r)

r
+ 1 − [α + β erf(γ r)]

r
. (1)

The first term on the right-hand side is treated with Fock
exchange (EXX), and the second term with exchange from
the generalized gradient approximation (GGA). With this, one
obtains the following for the exchange-correlation energy:

ESRSH
XC = αEEXX

X,SR + (1 − α)EGGA
X,SR + (α + β )EEXX

X,LR

+ [1 − (α + β )]EGGA
X,LR + EGGA

C . (2)

The subscript X indicates exchange and C correlation, SR de-
notes short range, and LR denotes long range. The parameters
α and β determine the amount of Fock exchange in the short
and long range, and γ is the range-separation parameter.

Here we apply SRSH parameters reported in previous work
[16]. Specifically, we use α = 0.25 for all materials, and
set α + β = 1

ε
, with ε being the dielectric constant of the

material, which ensures the correct asymptotic decay of the
exchange-correlation potential. The dielectric constants have
been obtained in previous work with HSE calculations [16].
Finally, the range-separation parameter γ was also chosen for
each semiconductor according to Ref. [16], which fitted γ

so that the GW band gap at the � point was reproduced by
SRSH. Band gaps calculated with SRSH, HSE as well as PBE
can be found in the Supplemental Material (SM) [30]. The
SRSH parameters used in our calculations are summarized in
Table II.

We compare the SRSH results to data from experiment and
from calculations using two popular functionals for semicon-
ductors, namely the GGA functional PBE [2] and the screened
hybrid HSE [4,5]. While the two hybrid functionals have been
obtained in an empirical fashion (see Refs. [4,5] for HSE and
above for SRSH), the PBE functional has been parametrized
nonempirically to reproduce certain properties of the exact
density functional [2]. Note that PBE as well as HSE can
be obtained from the SRSH functional by setting α and β

to zero for the former, and β to −α and γ to 0.20 Å−1 for
the latter, in Eq. (2). For a comparison of the computational
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TABLE II. SRSH parameters used in this work for the seven
studied semiconductors, see text for details.

Name ε
theory
∞ α β γ (Å−1)

AlAs 8.2 0.25 −0.13 1.25
AlP 7.3 0.25 −0.11 0.80
AlSb 9.8 0.25 −0.15 0.63
GaAs 10.5 0.25 −0.15 2.50
GaP 8.9 0.25 −0.14 1.15
InP 8.9 0.25 −0.14 1.30
Si 11.3 0.25 −0.16 0.62

times associated with the three functionals see Table IX in the
SM [30].

D. Lattice constant and bulk modulus

We computed the equilibrium lattice constant of each ma-
terial with the different functionals. For this purpose, the total
energy E for unit-cell volumes V between 91% and 109% (in
steps of 3%) of the experimental volume was calculated. We
then used the Birch-Murnaghan equation of state [31–33] to
fit E (V ) as

E (V ) = E0 + B0V

B′
0

(
(V0/V )B′

0

B′
0 − 1

+ 1

)
− V0B0

B′
0 − 1

. (3)

In this equation E0 is the free energy at equilibrium volume
V0, and B0 and B′

0 are the bulk modulus and its derivative with
respect to pressure, respectively.

E. Atomization energy

We calculated the atomization energies, EAE, for the differ-
ent materials according to

EAE(M ) = 1

N

[∑
atoms

E0(X ) − E0(M )

]
. (4)

Here E0(M ) is the total energy of the semiconductor M, E0(X )
is the energy of a single constituent atom X in the supercell of
a given material (see Sec. II F), and N the number of atoms in
the supercell.

F. Phonon dispersion relations

The finite-difference method as implemented in Phonopy
[34] was employed to compute phonon band structures using
4 × 4 × 4 supercells. For certain materials, the plane-wave
cut-off energy had to be notably increased (see Table I) in
order to avoid numerical issues in the calculations, such as
imaginary frequencies at the � point. Nonanalytical term cor-
rections as developed by Pick et al. [35] with an interpolation
to finite q points as described in Refs. [36,37] were included
for all systems except Si.

III. RESULTS

A. Lattice constants and bulk moduli

The lattice constants of the seven semiconductors com-
puted with PBE, HSE, and SRSH are shown together with

experimental data in Table III. Generally, we find that all three
functionals provide lattice constants in very good agreement
with room temperature experimental values. But note that
despite the fact that they were computed at 0 K, they still
somewhat overestimate the finite-temperature experimental
results. For the SRSH functional, the mean absolute devia-
tion (MAD) from the experimental lattice constants across all
materials is 0.04 Å and the maximum deviation (MD) is 0.07
Å. Thus, it lies between the accuracy of HSE (MAD 0.02 Å,
MD 0.03 Å) and PBE (MAD 0.07 Å, MD 0.10 Å). The HSE
lattice constants are generally shorter than the PBE ones, a
trend which also has been found in previous studies [49–51].
It is important to note that SRSH-computed lattice constants
do not deviate by more than 0.04 Å from the HSE values,
indicating that the former can maintain the accuracy of the
latter for calculating lattice constants of semiconductors.

Table IV shows the bulk moduli for the different semicon-
ductors calculated with the three functionals as well as a range
of experimental values from literature. The MADs and MDs
compared to the arithmetic mean of experiment are 10 (MAD)
and 16 GPa (MD) for PBE, 4 (MAD) and 10 GPa (MD)
for SRSH, and 1 (MAD) and 4 GPa (MD) for HSE. Thus,
as is the case for the lattice constants, the SRSH functional
can compete with the accuracy of HSE also for calculations
of bulk moduli. In agreement with previous work [7], we
find here that the overestimation of lattice constants by PBE
correlates with an underestimation of bulk moduli. A similar
but significantly weaker trend can be observed for the SRSH
functional, which slightly underestimates the bulk moduli of
all materials except AlP. For most of the semiconductors,
the accurate lattice constants provided by HSE coincide with
deviations of HSE bulk moduli to experimental data that are
smaller than the range of experimental values.

B. Atomization energies

We calculated the atomization energies for the seven semi-
conductors with the three functionals, see Table V. Among
the three functionals, PBE gives atomization energies closest
to experimental data, while HSE and SRSH values are slightly
farther away. Specifically, the MADs compared to experiment
are 0.10 (PBE), 0.11 (HSE), and 0.14 eV (SRSH). Hence,
while the calculations with the three functionals underesti-
mate experimental atomization energies, they all still perform
reasonably well. It is, however, noteworthy that zero-point
corrections, which are not considered here, would lower DFT
atomization energies further [7]. Moreover, the accuracy of
all three functionals for this quantity strongly depends on the
material under investigation, leading to deviations of our DFT
atomization energies with respect to experiments between
−0.4% and −9.0%.

C. Phonon dispersion relations

Phonon band structures of all semiconductors were calcu-
lated in two ways: First, with the equilibrium lattice constant
computed with the respective functional for each material as
reported above, and second following another common prac-
tice (see, e.g., Ref. [59]), that is to use the experimental lattice
constant reported in the literature. Generally, we find that the
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TABLE III. Comparison of the lattice constant a obtained with the PBE, HSE, and SRSH functional to room temperature experimental
data for all studied systems [38].

PBE HSE SRSH Expt.

Name a (Å) Deviation (%) a (Å) Deviation (%) a (Å) Deviation (%) a (Å)

AlAs 5.74 1.4 5.68 0.4 5.70 0.7 5.66
AlP 5.51 0.9 5.47 0.2 5.48 0.4 5.46
AlSb 6.24 1.6 6.15 0.2 6.18 0.7 6.14
GaAs 5.75 1.8 5.68 0.5 5.72 1.2 5.65
GaP 5.51 1.1 5.46 0.2 5.48 0.6 5.45
InP 5.96 1.5 5.90 0.5 5.93 1.0 5.87
Si 5.47 0.7 5.44 0.2 5.45 0.4 5.43
MAD(%) 1.3 0.3 0.7

accuracy of the different functionals for phonon calculations
depends on how accurate the respective theoretical lattice
constants are. Specifically, PBE generally underestimates the
phonon frequencies compared to experiment and compared
to HSE and SRSH, in line with our finding that PBE also
underestimates the lattice constants (cf. Table III). Between
HSE and SRSH, no clear trend regarding the accuracy of
the phonon frequencies can be observed. When, on the other
hand, the experimental lattice constant is used for phonon
calculations, the three functionals give similar phonon fre-
quencies. This assessment about the accuracy of the calculated
phonon frequencies is supported when their specific values
are compared to experimental data that is available for high-
symmetry points (see Tables II to VIII of the SM [30]).

We now report further details and show the phonon disper-
sion relations for GaAs and Si in Figs. 1 and 2. We choose
to show results for these two systems because deviations in
their theoretical lattice constant with respect to experiment are
largest and smallest, respectively. Thus, we expect the spread
of the phonon frequencies computed with the three functionals
for these two systems to be largest and smallest as well. The
phonon dispersion relations for the remaining semiconductors
can be found in the SM [30].

In the case of the GaAs phonon frequencies calculated
with the theoretical lattice constant (see left panel of Fig. 1),
we observe the following trend: a more accurate theoretical
lattice constant leads to phonon frequencies that are closer
to experiment, which holds for acoustic and optical phonon

branches. Therefore, HSE provides the most accurate phonon
frequencies in this case, followed by SRSH and PBE. Fur-
thermore, since the calculations with the three functionals
overestimate the lattice constant, the phonon frequencies are
generally underestimated.

When we use the experimental lattice constant to compute
the phonon dispersion relation (see right panel of Fig. 1), we
see that the spread among results from the three functionals
is reduced: for the LO phonon energy at � the spread is
lowered from 0.7 to 0.2 THz when the experimental instead
of theoretical lattice constant is used, i.e., all functionals pro-
vide relatively similar and very accurate phonon frequencies.
A more detailed analysis shows that the accuracy depends
on whether acoustic or optical phonons are considered. For
acoustic branches, HSE results appear closest to experimental
data, but especially SRSH and also the PBE results are quite
close as well. For optical branches we find that all three func-
tionals give similarly accurate results, except around the �

point, where HSE slightly overestimates, PBE slightly under-
estimates, and SRSH provides the most accurate frequencies.

For Si phonon dispersions calculated with the theoretical
lattice constant (see left panel of Fig. 2), all three function-
als give similarly accurate results for the acoustic phonon
frequencies. For optical phonons, SRSH provides the most
accurate frequencies compared to experiment, while PBE
slightly under- and HSE slightly overestimates them. Thus,
trends in the accuracy of the Si phonon dispersion relation do
not follow the one found for lattice constants, since the spread

TABLE IV. Comparison of the bulk modulus B obtained with the PBE, HSE, and SRSH functional to room temperature experimental data
for all studied systems.

PBE HSE SRSH Expt.

Name B (GPa) Deviation (%) B (GPa) Deviation (%) B (GPa) Deviation (%) B (GPa)

AlAs 67 −11 76 +1 72 −5 74–77 [39,40]
AlP 81 −7 89 +2 90 +3 86–88 [41,42]
AlSb 49 −13 58 +3 55 −3 55–58 [42–44]
GaAs 60 −21 72 −5 66 −13 75–76 [45,46]
GaP 78 −11 88 +1 84 −4 87–88 [40,47]
InP 62 −14 71 −1 67 −7 71–73 [40,48]
Si 89 −10 98 −1 95 −4 98–99 [40,45]
MAD(%) 12 2 5
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TABLE V. Comparison of the atomization energy EAE obtained with the PBE, HSE, and SRSH functional to experimental data for all
studied systems.

PBE HSE SRSH Expt.

Name EAE (eV/atom) Deviation (%) EAE (eV/atom) Deviation (%) EAE (eV/atom) Deviation (%) EAE (eV/atom)

AlAs 3.73 −1.3 3.70 −2.1 3.68 −2.6 3.78 [52]
AlP 4.13 −3.1 4.10 −3.8 4.08 −4.2 4.26 [52]
AlSb 3.28 −0.9 3.28 −0.9 3.27 −1.2 3.31 [53]
GaAs 3.18 −3.9 3.16 −4.5 3.13 −5.4 3.31 [6]
GaP 3.52 −1.1 3.51 −1.4 3.47 −2.5 3.56 [52]
InP 3.16 −7.9 3.15 −8.2 3.12 −9.0 3.43 [54]
Si 4.60 −0.4 4.58 −0.9 4.56 −1.3 4.62 [55]
MAD(%) 2.7 3.1 3.8

of the calculated lattice constants is small for Si (cf. Table III).
The phonon dispersion relation calculated with experimental
lattice constant (see right panel of Fig. 2) is slightly overesti-
mated by both hybrid functionals, which give almost identical
phonon frequencies. For optical branches, PBE is closest to
experiment, while for acoustic branches the hybrid functionals
yield more accurate frequencies. Overall, differences among
PBE, HSE, and SRSH are minor in this case.

IV. DISCUSSION

For static bulk properties we found that the HSE and SRSH
functional provided more accurate lattice constants and bulk
moduli, while the PBE functional described atomization ener-
gies somewhat better than the two hybrid functionals. This
finding is reminiscent of the known impact of the reduced
density gradient in GGA functionals. Specifically, it has been
shown that the strength of the reduced density gradient in
GGA determines whether lattice constants or atomization
energies are described more accurately by a given GGA
functional [60]. A manifestation of this can be seen when
comparing the accuracy of the PBE and PBEsol functional
for those quantities [60]: the main difference between those
two functionals is that the influence of the density gradient
is weakened in PBEsol compared to PBE, leading to an im-
proved description of lattice constants while deteriorating the
accuracy for atomization energies [60]. Since in HSE and

SRSH 75% PBE exchange is used in the short range, one
could argue that this may impact the influence of the PBE
reduced density gradient, leading to more accurate lattice
constants and less accurate atomization energies. In passing
we note that for SRSH atomization energies, one could in
principle tune the range-separation parameter γ for bulk and
isolated atom separately. However, total energies obtained
with different γ values cannot be compared and, thus, the
atomization energy cannot be calculated this way [61].

For dynamic bulk properties we found that all three func-
tionals appear to be accurate in comparison to experiment,
but also that HSE and SRSH frequencies often lie somewhat
closer to experiment than those obtained with PBE. In this
context we note that key ingredients in phonon calculations
are forces acting on displaced nuclei. Our findings suggest
that the influence of the amount of exact exchange and the
density gradient in the short range on these forces, and thus
on the phonon frequencies, is rather small. This leads to very
similar phonon dispersion relations for the three functionals,
especially when these are calculated with the experimental
lattice constant.

Taken together, this leaves us with an important insight:
previous work showed that SRSH-calculated band-structure
and optical properties are very close to GW -BSE, when a
single empirical parameter was fitted such that the SRSH gap
reproduces the GW gap at the � point [16]. We showed here
that at the same time the SRSH approach can compete with

FIG. 1. Phonon dispersion relation of GaAs calculated with theoretical (left panel) and experimental (right panel) lattice constants.
Experimental data have been extracted from Ref. [56].
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FIG. 2. Phonon dispersion relation of Si calculated with theoretical (left panel) and experimental (right panel) lattice constants. Experi-
mental data have been extracted from Refs. [57,58].

the accuracy provided by PBE and HSE for computation of
other important bulk properties of semiconductors. Moreover,
especially for phonon frequencies the SRSH method outper-
forms the PBE functional and provides similar accuracy as
the HSE functional. This means that the SRSH approach pro-
vides a consistent framework for computing bulk properties of
semiconductors with high accuracy.

Besides the influence of the amount of Fock exchange on
various physical quantities that was investigated and discussed
here, we note that there are further effects which may play a
certain role. Examples are the already mentioned zero-point
corrections or the contribution from dispersive interactions,
such as van der Waals interactions. In regard to the latter, it
has been shown that including dispersive corrections in the
XC functional lowers the lattice constant while increasing
the atomization energy of semiconductors [62]. At the same
time, whether including dispersive corrections provided an
improvement of the theory was shown to depend on the used
functional [62]. For this reason, we decided to perform our
calculations without dispersive corrections allowing for an
easier comparison among the three considered functionals.

V. CONCLUSION

In summary, we benchmarked the accuracy of the SRSH
approach for calculating important static and dynamic bulk
properties of seven prototypical semiconductors. To this end
we compared SRSH results for lattice constants, bulk moduli,

atomization energies, and phonon dispersion relations to data
calculated with the often used XC functionals PBE and HSE
and to experimental literature values. Overall, we found that
for these quantities, SRSH can compete with the accuracy pro-
vided by HSE and PBE. Our study has therefore shown that
the already established high accuracy of SRSH for calculating
electronic-structure and optical properties of semiconductors
does not lead to a deteriorated performance for calculating
other important properties of semiconductors. We conclude
that SRSH provides a consistent and accurate framework for
computing properties of bulk semiconductors.

ACKNOWLEDGMENTS

We thank Ashwin Ramasubramaniam (University of Mas-
sachusetts Amherst) and Dahvyd Wing (Weizmann Institute
of Science) for ample support with coding and numerical
aspects of this work. This work has been mostly funded by the
Alexander von Humboldt Foundation within the framework of
the Sofja Kovalevskaja Award, endowed by the German Fed-
eral Ministry of Education and Research, and the Technical
University of Munich - Institute for Advanced Study, funded
by the German Excellence Initiative and the European Union
Seventh Framework Programme under Grant Agreement No.
291763. The authors gratefully acknowledge the Gauss Centre
for Supercomputing e.V. for funding this project by providing
computing time through the John von Neumann Institute for
Computing (NIC) on the GCS Supercomputer JUWELS at
Jülich Supercomputing Centre (JSC).

[1] J. P. Perdew and A. Zunger, Self-interaction correction to
density-functional approximations for many-electron systems,
Phys. Rev. B 23, 5048 (1981).

[2] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[3] B. G. Janesko, T. M. Henderson, and G. E. Scuseria, Screened
hybrid density functionals for solid-state chemistry and physics,
Phys. Chem. Chem. Phys. 11, 443 (2009).

[4] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals
based on a screened Coulomb potential, J. Chem. Phys. 118,
8207 (2003).

[5] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria,
Influence of the exchange screening parameter on the perfor-
mance of screened hybrid functionals, J. Chem. Phys. 125,
224106 (2006).

[6] J. Paier, M. Marsman, and G. Kresse, Why does the B3LYP
hybrid functional fail for metals? J. Chem. Phys. 127, 024103
(2007).

[7] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C.
Gerber, and J. G. Ángyán, Screened hybrid density func-
tionals applied to solids, J. Chem. Phys. 124, 154709
(2006).

034602-6

https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1039/B812838C
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.2404663
https://doi.org/10.1063/1.2747249
https://doi.org/10.1063/1.2187006


ASSESSING THE ACCURACY OF SCREENED … PHYSICAL REVIEW MATERIALS 5, 034602 (2021)

[8] M. Marsman, J. Paier, A. Stroppa, and G. Kresse, Hybrid func-
tionals applied to extended systems, J. Phys.: Condens. Matter
20, 064201 (2008).

[9] Y. Hinuma, A. Grüneis, G. Kresse, and F. Oba, Band alignment
of semiconductors from density-functional theory and many-
body perturbation theory, Phys. Rev. B 90, 155405 (2014).

[10] J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, Energy
band gaps and lattice parameters evaluated with the Heyd-
Scuseria-Ernzerhof screened hybrid functional, J. Chem. Phys.
123, 174101 (2005).

[11] M. Jain, J. R. Chelikowsky, and S. G. Louie, Reliability of
Hybrid Functionals in Predicting Band Gaps, Phys. Rev. Lett.
107, 216806 (2011).

[12] K. Hummer, J. Harl, and G. Kresse, Heyd-Scuseria-Ernzerhof
hybrid functional for calculating the lattice dynamics of semi-
conductors, Phys. Rev. B 80, 115205 (2009).

[13] Q. Cai, D. Scullion, A. Falin, K. Watanabe, T. Taniguchi, Y.
Chen, E. J. G. Santos, and L. H. Li, Raman signature and
phonon dispersion of atomically thin boron nitride, Nanoscale
9, 3059 (2017).

[14] S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J. B.
Neaton, and L. Kronik, Gap renormalization of molecular crys-
tals from density-functional theory, Phys. Rev. B 88, 081204(R)
(2013).

[15] L. Kronik and S. Kümmel, Dielectric screening meets optimally
tuned density functionals, Adv. Mater. 30, 1706560 (2018).

[16] D. Wing, J. B. Haber, R. Noff, B. Barker, D. A. Egger,
A. Ramasubramaniam, S. G. Louie, J. B. Neaton, and L.
Kronik, Comparing time-dependent density functional the-
ory with many-body perturbation theory for semiconductors:
Screened range-separated hybrids and the G W plus Bethe-
Salpeter approach, Phys. Rev. Mater. 3, 064603 (2019).

[17] S. Refaely-Abramson, M. Jain, S. Sharifzadeh, J. B. Neaton,
and L. Kronik, Solid-state optical absorption from optimally
tuned time-dependent range-separated hybrid density functional
theory, Phys. Rev. B 92, 081204(R) (2015).

[18] D. Wing, J. Strand, T. Durrant, A. L. Shluger, and L. Kronik,
Role of long-range exact exchange in polaron charge transi-
tion levels: The case of MgO, Phys. Rev. Mater. 4, 083808
(2020).

[19] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G.
Kresse, A. Janotti, and C. G. Van de Walle, First-principles
calculations for point defects in solids, Rev. Mod. Phys. 86, 253
(2014).

[20] D. Wing, J. B. Neaton, and L. Kronik, Time-dependent density
functional theory of narrow band gap semiconductors using
a screened range-separated hybrid functional, Adv. Theory
Simul. 3, 2000220 (2020).

[21] T. Stein, H. Eisenberg, L. Kronik, and R. Baer, Fundamental
Gaps in Finite Systems from Eigenvalues of a Generalized
Kohn-Sham Method, Phys. Rev. Lett. 105, 266802 (2010).

[22] S. Refaely-Abramson, S. Sharifzadeh, N. Govind, J.
Autschbach, J. B. Neaton, R. Baer, and L. Kronik,
Quasiparticle Spectra from a Nonempirical Optimally Tuned
Range-Separated Hybrid Density Functional, Phys. Rev. Lett.
109, 226405 (2012).

[23] I. Tamblyn, S. Refaely-Abramson, J. B. Neaton, and L. Kronik,
Simultaneous determination of structures, vibrations, and
frontier orbital energies from a self-consistent range-separated
hybrid functional, J. Phys. Chem. Lett. 5, 2734 (2014).

[24] B. Kretz and D. A. Egger, Accurate molecular geometries
in complex excited-state potential energy surfaces from time-
dependent density functional theory, J. Chem. Theory Comput.
17, 357 (2021).

[25] B. D. Malone and M. L. Cohen, Quasiparticle semiconduc-
tor band structures including spin-orbit interactions, J. Phys.:
Condens. Matter 25, 105503 (2013).

[26] G. Kresse, and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[27] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[28] T. Yanai, D. P. Tew, and N. C. Handy, A new hybrid exchange-
correlation functional using the Coulomb-attenuating method
(CAM-B3LYP), Chem. Phys. Lett. 393, 51 (2004).

[29] D. Lüftner, S. Refaely-Abramson, M. Pachler, R. Resel, M. G.
Ramsey, L. Kronik, and P. Puschnig, Experimental and theo-
retical electronic structure of quinacridone, Phys. Rev. B 90,
075204 (2014).

[30] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.5.034602 for the remaining phonon
dispersion relations of AlAs, AlP, AlSb, GaP and InP, which
includes Refs. [63–68], as well as specific phonon frequencies
at high-symmetry points for all semiconductors. Furthermore,
the band gaps are listed for all semiconductors, as well as an
example for a comparison of the computation time.

[31] F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71,
809 (1947).

[32] F. D. Murnaghan, The Compressibility of media under extreme
pressures, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

[33] C. L. Fu and K. M. Ho, First-principles calculation of the
equilibrium ground-state properties of transition metals: Appli-
cations to Nb and Mo, Phys. Rev. B 28, 5480 (1983).

[34] A. Togo and I. Tanaka, First principles phonon calculations in
materials science, Scr. Mater. 108, 1 (2015).

[35] R. M. Pick, M. H. Cohen, and R. M. Martin, Microscopic theory
of force constants in the adiabatic approximation, Phys. Rev. B
1, 910 (1970).

[36] Y. Wang, J. J. Wang, W. Y. Wang, Z. G. Mei, S. L. Shang, L. Q.
Chen, and Z. K. Liu, A mixed-space approach to first-principles
calculations of phonon frequencies for polar materials, J. Phys.:
Condens. Matter 22, 202201 (2010).

[37] A. Togo, L. Chaput, and I. Tanaka, Distributions of phonon
lifetimes in Brillouin zones, Phys. Rev. B 91, 094306 (2015).

[38] W. Martienssen and H. Warlimont (Eds.), Springer Handbook
of Condensed Matter and Materials Data, Springer Handbooks
(Springer, Berlin, 2005).

[39] O. Madelung, U. Rössler, and M. Schulz (Eds.), Landolt-
Börnstein Semiconductors (Springer, Berlin, 2002), Vols.
41A1b and 41A1a.

[40] O. Madelung, Semiconductors: Data Handbook, 3rd ed.
(Springer, Berlin, 2004).

[41] P. Rodriguez-Hernandez and A. Munoz, Ab initio calculations
of electronic structure and elastic constants in AlP, Semicond.
Sci. Technol. 7, 1437 (1992).

[42] S. B. Zhang and M. L. Cohen, High-pressure phases of III-V
zinc-blende semiconductors, Phys. Rev. B 35, 7604 (1987).

[43] H. Hirano, S. Uehara, A. Mori, A. Onodera, K. Takemura, O.
Shimomura, Y. Akahama, and H. Kawamura, High-pressure
phase transitions in AlSb, J. Phys. Chem. Solids 62, 941 (2001).

034602-7

https://doi.org/10.1088/0953-8984/20/6/064201
https://doi.org/10.1103/PhysRevB.90.155405
https://doi.org/10.1063/1.2085170
https://doi.org/10.1103/PhysRevLett.107.216806
https://doi.org/10.1103/PhysRevB.80.115205
https://doi.org/10.1039/C6NR09312D
https://doi.org/10.1103/PhysRevB.88.081204
https://doi.org/10.1002/adma.201706560
https://doi.org/10.1103/PhysRevMaterials.3.064603
https://doi.org/10.1103/PhysRevB.92.081204
https://doi.org/10.1103/PhysRevMaterials.4.083808
https://doi.org/10.1103/RevModPhys.86.253
https://doi.org/10.1002/adts.202000220
https://doi.org/10.1103/PhysRevLett.105.266802
https://doi.org/10.1103/PhysRevLett.109.226405
https://doi.org/10.1021/jz5010939
https://doi.org/10.1021/acs.jctc.0c00858
https://doi.org/10.1088/0953-8984/25/10/105503
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1016/j.cplett.2004.06.011
https://doi.org/10.1103/PhysRevB.90.075204
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.5.034602
https://doi.org/10.1103/PhysRev.71.809
https://doi.org/10.1073/pnas.30.9.244
https://doi.org/10.1103/PhysRevB.28.5480
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1103/PhysRevB.1.910
https://doi.org/10.1088/0953-8984/22/20/202201
https://doi.org/10.1103/PhysRevB.91.094306
https://doi.org/10.1088/0268-1242/7/12/002
https://doi.org/10.1103/PhysRevB.35.7604
https://doi.org/10.1016/S0022-3697(00)00260-2


SEIDL, KRETZ, GEHRMANN, AND EGGER PHYSICAL REVIEW MATERIALS 5, 034602 (2021)

[44] S. Ves, K. Strössner, and M. Cardona, Pressure dependence
of the optical phonon frequencies and the transverse effective
charge in AlSb, Solid State Commun. 57, 483 (1986).

[45] V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, Tests
of a ladder of density functionals for bulk solids and surfaces,
Phys. Rev. B 69, 075102 (2004).

[46] H. J. McSkimin, A. Jayaraman, and P. Andreatch, Elastic
moduli of GaAs at moderate pressures and the evaluation of
compression to 250 kbar, J. Appl. Phys. 38, 2362 (1967).

[47] S. Ves, K. Strössner, C. K. Kim, and M. Cardona, Dependence
of the direct energy gap of GaP on hydrostatic pressure, Solid
State Commun. 55, 327 (1985).

[48] R. Trommer, H. Müller, M. Cardona, and P. Vogl, Dependence
of the phonon spectrum of InP on hydrostatic pressure, Phys.
Rev. B 21, 4869 (1980).

[49] L. Schimka, J. Harl, and G. Kresse, Improved hybrid functional
for solids: The HSEsol functional, J. Chem. Phys. 134, 024116
(2011).

[50] Y.-S. Kim, K. Hummer, and G. Kresse, Accurate band struc-
tures and effective masses for InP, InAs, and InSb using hybrid
functionals, Phys. Rev. B 80, 035203 (2009).

[51] M. Schlipf, M. Betzinger, C. Friedrich, M. Ležaić, and S.
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