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Atomistic simulations of the magnetic properties of IrxMn1−x alloys
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Iridium manganese (IrMn) is arguably the most important antiferromagnetic material for device applications
due to its metallic nature, high Néel temperature, and exceptionally high magnetocrystalline anisotropy. Despite
its importance, its magnetic properties are poorly understood due to its intrinsic complexity and the interplay
between structural and magnetic properties. Here we present a unifying atomistic model of IrxMn(1−x) alloys
which reproduces the key experimental facts of the material, while providing unprecedented understanding of
the compositional and structural origins of its magnetic ground state and thermodynamic properties. We find that
the Néel temperature is strongly dependent on the nature of the ground-state magnetic order which varies with x
from a triangular to tetrahedral spin structure, leading to different levels of geometric spin frustration. The Néel
temperature increases linearly with manganese concentration for the disordered phase, while the ordered phases
show a peak for Ir50Mn50 followed by a decrease due to increased spin frustration. The ground-state tetrahedral
spin structure of the disordered phase is composition independent for manganese concentrations in the 50–95%
range, while the degree of spin order varies strongly in the same range. For low manganese concentrations,
we find antiferromagnetic spin-glass and ferromagnetic ground-state spin structures. The magnetic anisotropy
energy exhibits a complex dependence on the lattice symmetry, presenting easy-plane, cubic, and unconventional
symmetries for the principal phases, and a similarly complex variation of magnitude. The complexity of behavior
represents a dual blessing and a curse in that the properties of a particular sample depend strongly on the degree
of order and composition, while also providing a large state space to engineer an antiferromagnet with optimal
symmetry, magnetic anisotropy, and thermal stability. Such effects are important for the future development of
nanoscale sensor devices and antiferromagnetic spintronics.
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I. INTRODUCTION

In his 1970 Nobel lecture, Louis Néel stated, “Anti-
ferromagnetic materials are extremely interesting from the
theoretical viewpoint, but do not seem to have any practical
application” [1]. Since then, antiferromagnetic (AFM) materi-
als have become a key feature in nearly all magnetic recording
technologies and more recently have become an area of great
research interest due to the development of AFM spintronic
devices. AFM spintronics uses the AFM as the active element
to store, read, or write information, in contrast to conven-
tional spintronic devices which use ferromagnets (FMs) as
the active element. AFM spintronics has the potential for
very high data density as the elements can be tightly packed
due to the lack of stray fields eliminating cross talk between
neighboring devices [2]. The write times could be 1000 times
faster [3] than conventional spintronic devices due to the THz
timescales of the AFM spin dynamics. The magnetization is
also exceptionally robust, as they are impervious to external
magnetic fields. Their robust nature, however, comes at a
price: their magnetization is notoriously difficult to manipu-
late. One possibility comes from coupling the AFM to a FM,
as is done in giant magnetoresistive (GMR) sensors. Usually,
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in these sensors the AFM is assumed to be approximately
fixed. However if the AFM has a weak anisotropy, when the
external magnetic field reorients the FM the AFM can be
reoriented as well, controlling the motion of the AFM [4,5].
The current challenge in the development of AFM spintronic
devices is a full understanding of the AFM properties such as
basic characterization, the exact spin structures, and the size
and symmetry of the magnetic anisotropies [6].

FM materials have been extensively investigated both
experimentally and theoretically. AFM materials, though nat-
urally much more abundant, were only discovered in the
1930s due to their lack of macroscopic stray fields. AFM
materials lack macroscopic stray fields due to the exchange
interactions (Hex), defined between pairs of neighboring
spins,

Hex = −Ji j (Si · S j ) = −Ji j cos(θ ), (1)

where Ji j is the exchange constant and S is the spin vector of
two spins i and j. In FM materials, the minimum energy oc-
curs when the spins (Si and S j) align parallel, whereas in AFM
materials the minimum energy occurs when the spins align an-
tiparallel, causing the magnetizations to cancel out, giving no
stray fields. Ideally, the magnetization of atoms in neighboring
sublattices would lie 180◦ apart. In collinear AFMs, this is
the case and there is no frustration of the spin structure. This
is the case for a two-sublattice AFM, where the sublattices
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(a) (b)

FIG. 1. Magnetic spin structures for antiferromagnetic materials
with (a) two sublattices and (b) three sublattices. (a) The anti-
ferromagnetic with two sublattices has a collinear magnetic structure
(b) three sublattices has a noncollinear three sublattice magnetic
structure.

are oriented antiparallel as shown in Fig. 1(a). However, for
AFMs with more than two sublattices, the situation is much
more subtle as the sublattices cannot all orient antiparallel.
Instead, a much more complex frustrated spin structure is
found. For three sublattices, the magnetization often forms a
triangular spin structure known as the 3Q spin structure with
the three sublattices making an angle of 120◦ with each other,
as shown in Fig. 1(b). Although this is a minimum energy
state, there is a degree of frustration in the spin structure as
the atomic spins are oriented at 120◦ rather than 180◦. As the
number of sublattices increases, the complexity of the spin
structures increases leading to increased frustration.

In AFM materials, the internal magnetic moments exhibit
flux closure, producing minimal detectable fields around the
bulk material [7]. The lack of a bulk magnetization means
that some of the magnetic properties such as Néel temperature
or magnetic ground states are much harder to determine ex-
perimentally, especially in more complex noncollinear AFMs
or in thin-film devices. The recent interest in AFMs for
spintronic applications has led to many experimental devel-
opments in an attempt to probe the spin structures, such as
using optical approaches [8] and investigating spin transport
effects [9,10]. However, our knowledge of AFMs still lacks
basic understanding and remains a complex and interesting
challenge [2]. The AFM most widely used in spintronic de-
vices is iridium manganese (IrMn) due to its high magnetic
ordering temperature and high magnetic anisotropy. Iridium
manganese has a very complex structure as, depending on
the order and composition of the Ir and Mn concentrations,
the number of sublattices and magnetic ground state changes.
This means that previously there has been a lot of confu-
sion around the magnetic spin structures of IrMn. Due to the
problems in experimentally probing the magnetic structure of
an AFM material, very few measurements exist. Experimen-
tal measurements of IrMn were done in 1973 by Yamaoka
et al. [11]. They used neutron diffraction to look at the γ

phases of Ir1−xMnx alloys with x = 0.128, 0.17, 0.204, and
0.256. They found that increasing the Ir concentration slightly
increased the Néel temperature. In 1999, Tomeno et al. [12]
used neutron diffraction to study a single crystal of L12-
ordered IrMn3. They found an exceptionally high magnetic
ordering temperature of 960 K and a triangular (T1) spin
structure. In 2013, Kohn et al. [13] determined the magnetic
structures of single-crystal thin films of IrMn3 in both the

fully ordered L12 phase and the fully disordered γ phase.
They found a high Néel temperature for IrMn3 of around
730 K for the γ phase and 1000 K for the L12 phase, respec-
tively. They also determined the ground-state spin structure
for both species using crystal neutron diffraction. For chem-
ically ordered L12-IrMn3 epitaxial thin films, they found the
T1 magnetic structure with threefold symmetry that was pre-
viously reported for bulk IrMn3. In the case of chemically
disordered γ -IrMn3, they found a cubic symmetry in which
moments are tilted away by 45◦ from crystal diagonals toward
the cube faces. Due to the complex anisotropy of IrMn, atom-
istic models have previously proved impossible and the spin
structures have previously only been found using ab initio
methods. Sakuma et al. [14] used the tight-binding linear
muffin tin orbital method based on the local spin density
functional approximation to calculate the magnetic structure
of disordered Mn100−xIrx alloys and ordered IrMn3 alloy.
The disordered γ -IrMn3 phase showed the 3Q structure as
observed by Kohn et al. They found that the 3Q structure
remained until x was less than 13, then the structure became
the 2Q structure. For the ordered L12 system, they found
the T1 ground state as found by Tomeno et al. [12]. Szun-
yogh et al. [15] calculated the magnetic properties of ordered
IrMn and IrMn3. They found that both IrMn phases had ex-
tremely high magnetic ordering temperatures of 1360 K and
1005 K, respectively. They found that for the ground state of
ordered IrMn, the Mn atoms align along the [110] directions,
indicating a collinear two-sublattice AFM with easy plane
anisotropy. For the ordered L12 system, they again found the
T1 ground state.

Due to the complexity of the material, incorrect assump-
tions have often been made in the literature. The biggest
assumption is that IrMn has a collinear AFM order in any
phase, most notably by O’Grady et al. [16] and others [17,18].
Another common problem comes from the ordered L12 IrMn3

phase, where it is assumed that the spin ordering is indepen-
dent of the crystal ordering or even completely ignored [19].
In some cases, experimental samples exhibit a structure with
an ordering parameter of less than 1 while assuming a 100%
ordered structure [13,20]. The magnetic characteristics of
IrMn are particularly important when considering the dynam-
ics of devices [21,22], exchange bias [23,24], and electrical
effects [17,25,26].

Here we present atomistic simulations of the equilibrium
thermodynamic magnetic properties of IrxMn1−x alloys as a
function of their chemical composition and crystallographic
ordering. Specifically, we study the composition dependence
of the AFM ordering (Néel) temperature, ground-state spin
structure, and magnetic anisotropies of the main ordered and
disordered phases of IrMn.

II. METHOD

The starting point for modeling an AFM model at the atom-
istic level is a classical spin model, where each magnetic site is
approximated as having a fixed length local magnetic moment
μs. The direction of each spin i is described by a classical unit
vector Si. The energetics of the IrMn system are described a
spin Hamiltonian neglecting nonmagnetic contributions and
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given by

H = −
∑
i< j

Ji jSi · S j − kN

2

z∑
i �= j

(Si · ei j )
2, (2)

where Si is a unit vector describing spin direction on Mn site i,
kN is the Néel anisotropy constant, and ei j is a unit vector from
site i to site j, z is the number of nearest neighbors (NNs) and
Ji j are pairwise exchange interactions. The specific numerical
values and assumptions for the range of exchange interactions
and use of the Néel pair anisotropy model are described in
detail in the following sections.

The equilibrium thermodynamic properties of the sys-
tem of spins is simulated using the metropolis Monte Carlo
method [27,28] with an adaptive step size [29] for optimal
efficiency and rapid convergence to a thermodynamic equilib-
rium state. In this paper, the simulations were performed with
the VAMPIRE software package [27,30].

The Néel temperature is central to our investigations. For
computational efficiency, we use two approaches: direct cal-
culation from the temperature dependence of the sublattice
magnetization and from the temperature dependence of the
susceptibility. The former is computationally efficient for
the calculation of bulk properties but cannot be used to eval-
uate the order parameter of finite-size systems. In this case,
the Néel temperature is calculated as the peak in the sublattice
longitudinal susceptibility.

The sublattice magnetization nα is the sum of the normal-
ized magnetization of every atom in that sublattice:

nα = |nα| =
∣∣∣∣∣

1

Nα

Nα∑
i

Si

∣∣∣∣∣, (3)

where Nα is the number of atoms in a sublattice (α) and Si is
the spin direction of atom i. The Néel temperature was deter-
mined from the sublattice magnetization against temperature
data by fitting the sublattice magnetization to

n = 〈nα〉 =
(

1 − T

TN

)β

. (4)

To calculate the temperature dependence of the sublattice
magnetization, we simulated a 6 nm × 6 nm × 6 nm system
initialized at zero Kelvin. The temperature was slowly in-
creased to 1200 K (above the predicted Néel temperature of
the material) in 10 K steps. At each temperature step, the
system was integrated for 100 000 Monte Carlo steps. The
resulting mean sublattice magnetizations at each temperature
step are plotted in Fig. 2 for each of the three sublattices. The
mean sublattice magnetization is slightly above zero after the
Néel temperature because of the finite size of the system.

The Néel temperature for each sublattice was calculated
as 980 ± 15 K with an exponent β = 0.32 ± 0.03, where the
error is that in the fitting. The β exponent computed here
is the same as seen for FMs [31] (where β = 0.34 ± 0.02),
suggesting that the shape of the (sublattice) magnetization in
the vicinity of the ordering temperature has some characteris-
tics of universality for 3D classical spin models, at least in
the case of highly ordered alloys. The three sublattices all
have the same Néel temperature and so the total sublattice

FIG. 2. The variation of sublattice magnetizations with temper-
ature in ordered L12-IrMn3. The curve was fit to the simulated data
using Eq. (4). The Néel temperature for each sublattice was (980
± 15) K with the error determined from the curve fit. The order of
an antiferromagnet can therefore be characterized by looking at the
individual sublattice magnetization.

magnetization of the material is equal to the average sublattice
magnetization. In some cases where different degrees of order
are present, one or more of the sublattices may have a different
Néel temperature, and so a mean value for the sublattice
magnetization or Néel temperature is not meaningful.

For finite system sizes, a more rigorous way of calculat-
ing the Néel temperature is from the magnetic susceptibility.
We calculate the isotropic longitudinal susceptibility for each
sublattice from the standard fluctuation formula [32] as

χα =
∑Nα

i=0 μi

kBT
(〈|nα|2〉 − 〈|nα|〉2), (5)

where i are indices of atoms within the same sublattice α.
We note that the usual directionality in the susceptibility
is removed here, and we only consider fluctuations in the
length of the sublattice magnetization, hence the terminol-
ogy of isotropic susceptibility. Furthermore, the susceptibility
scales with the number of moments considered, while the
strength of the sublattice magnetization fluctuations scales
with the inverse number of spins, leading to a largely size-
independent susceptibility, though small differences appear
due to finite-size effects [33]. Figure 3 shows the simulated
temperature-dependent average sublattice susceptibility χ =
(χ1 + χ2 + χ3)/3 for a (10 nm)3 cube of L12-IrMn3 showing
the usual decrease in sublattice spin order with increasing
temperature due to spin fluctuations. The sublattice suscep-
tibility diverges at the Néel temperature with a well-defined
peak from which we extract TN. The isotropic susceptibility
has the same form for AFMs as for FMs, and quite different
from the form for isotropic 1D and 2D AFMs [32] due to the
presence of large magnetocrystalline anisotropy in the IrMn
system [34].

In the following, for reasons of computational efficiency,
we use the fitting method to calculate the Néel temperature of
bulk systems and the susceptibility for finite-size systems.
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FIG. 3. The average sublattice magnetization n and isotropic lon-
gitudinal susceptibility χ as a function of temperature for the L12

phase of IrMn3. The Néel temperature TN is extracted from the peak
in the susceptibility and is close to the bulk value [13] of 950 K. The
susceptibility follows the usual shape seen for ferromagnets, with a
single well-defined peak near the Néel temperature.

III. ATOMISTIC SPIN MODEL OF IRIDIUM MANGANESE

The complicated behavior of AFM materials in gen-
eral, but specifically complex AFMs such as IrMn, limits
the applicability of simple modeling approaches such as
two-sublattice AFM or micromagnetic models. Previous
ab initio simulations of IrMn alloys have determined ground-
state spin structures and effective exchange constants and
magnetic anisotropies for the pure ordered L12 and L10

phases [14,15,35], and effective exchange constants for the
disordered γ phase [14]. While such calculations are essen-
tial for understanding the underlying electronic properties of
IrMn3, they are limited to idealistic cases, very small numbers
of atoms, and static properties only. In disordered IrMn alloys,
each atom has a different local environment, with different
numbers of Mn and Ir neighbors in different crystallographic
positions. First-principles ab initio simulations of alloys typ-
ically use the coherent potential approximation [14], which
uses an ordered lattice of averaged potentials to replace the
spatially varying potential. While this enables the determi-
nation of fundamental properties such as ground-state spin
structures, exchange constants, and anisotropies, it neglects
the fundamental disordered nature of the crystal, where the lo-
cal spin structure will have distortions based on the exact local
crystallographic structure. This is particularly important when
introducing defects into the system [33] or at interfaces when
considering exchange bias effects [23] where the specific
details of the atomic structure dominate the physical behav-
ior. In nanoscale devices, the details of the atomic structure,
crystallographic ordering, grain boundaries, interfaces, de-
fects, elevated temperatures, and dynamics each play a critical
role in determining the overall properties and dynamic re-
sponse. Here we present a minimal but detailed atomistic spin
model that encapsulates the essential physics of IrxMn1−x al-
loys allowing simulations of time and temperature-dependent
properties of nanoscale devices.

(a) (b)

FIG. 4. Visualizations of the unit cell structure of iridium man-
ganese. (a) The fcc unit cell structure of iridium manganese in the
[001] plane orientation. a is the unit cell length. The (111) planes
are shaded in grey. (b) The (111) oriented fcc crystal structure.
The colors represent the four magnetic sublattices present in iridium
manganese.

A. Crystallography

The first step is to create an accurate lattice structure for
iridium manganese alloys. Iridium manganese has previously
been observed in many crystallographic phases. Most notably,
the L10, L12, and γ phases. These phases all appear quite
distinct as the Ir and Mn atoms are in different positions
within the unit cell, leading to different crystallographic and
magnetic structures. However, the majority of these struc-
tures have an underlying face-centered cubic (fcc) lattice, or
in the case of L12 with a small distortion along the (001)
crystal direction to give a face-centered tetragonal (fct) struc-
ture [14,15]. The fcc lattice occurs because the iridium atoms
are larger than the Mn atoms, increasing the lattice spacing.
For all compositions with Mn concentrations less than 95%,
the structure can be said to be based on a base fcc structure.
For concentrations of Mn greater than 95%, the magnetic
structure changes to α-Mn that has a complex allotropic struc-
ture with 58 atoms in the unit cell [36]. As the compositions
used in spintronic devices have approximately 17–25% Ir,
we can generally assume that the IrMn will have a base fcc
structure.

The fcc unit cell of iridium manganese is comprised of
four atoms—with a (001) out-of-plane orientation this forms
the structure shown in Fig. 4(a). The unit cell length (a) for
IrMn3 is approximately 0.375 nm but this depends on the
composition and order of the crystal [13]. Iridium manganese
can be grown in many different crystallographic orientations
depending on the seed layer used in the sputtering process. Al-
though these all give an observable exchange bias, the largest
exchange bias occurs in samples grown with a (111) structure.
To maximize the exchange bias and reproduce the thin films
used in spintronic devices, the crystal structure needs to be
reoriented to lie so the (111) direction points out of plane,
shown in Fig. 4(b).

Iridium manganese has a complex magnetic structure
containing up to four magnetic sublattices. The moments
of the atoms in different sublattices prefer energetically to
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align antiparallel due to the AFM nature of the exchange
interactions. Instead, the ground states form complex frus-
trated spin structures when more than two sublattices are
present due to symmetry. An analogous effect occurs in the
structure of molecules, where atoms are bonded together but
repel each other due to electronic charges. Thus, diatomic
molecules form θ = 180◦ bonds, homonuclear triatomic
molecules such as H3 form planar molecules θ = 120◦, and
tetranuclear molecules such as As4 or CH4 from a tetrahedral
structure θ = 109.5◦. The structure of AFMs follows the same
principle, with the structure defined by the strength of the
interactions and symmetry. In Fig. 4, the magnetic sublattices
are highlighted by the different colors and the tetrahedron
contains one atom from each AFM sublattice, containing all
the magnetic information of the crystal.

The ordering of iridium manganese depends on the place-
ment of the Ir atoms within the Mn lattice. In ordered iridium
manganese, the Ir atoms are all in the same sublattice and in
disordered iridium manganese the Ir atoms are equally spread
throughout the four sublattices. In disordered iridium man-
ganese, the random removal of atoms means the crystal has
no repeating structure and cannot be simplified to the 24-atom
unit cell. In the IrMn3 composition, 75% of the atoms are Mn
and 25% of the atoms are Ir. In ordered IrMn3 this means one
sublattice is completely Ir and three sublattices are completely
Mn, while in disordered γ -IrMn3 25% of the atoms in each
sublattice are Ir and 75% of the atoms in each sublattice are
Mn.

B. Magnetic moments

As the starting point for our atomistic model description,
we assume that each atom possesses a magnetic moment
located on the lattice site. For strong magnetic moments such
as Fe, Co, and Mn, this is generally a good approximation,
where the local spin density is strongly localized around
the nucleus. Ab initio calculations [15,37] found local Mn
moments of μs = 2.6 ± 0.02 μB for the ordered phases and
μs ∼ 2.48 ± 0.03 μB for the disordered γ -IrMn3 phase, 5%
lower than the ordered phase. As the moments do not strongly
depend on the ordering or composition, we have assumed a
fixed moment of μs = 2.6 μB commensurate with the ordered
phases.

C. Exchange interactions

Ab initio calculations by Szunyogh et al. calculated the
exchange interactions for ordered IrMn and IrMn3 phases
and found an oscillatory dependence on the interatomic spac-
ing (Ri j). The variation is shown in Fig. 5 with data taken
from Ref. [15] and shows the exchange coupling switches
from positive (FM) to negative (AFM) with each incremen-
tal neighbor shell. The NN interactions are strongly AFM
and the next nearest neighbor (NNN) interactions are weaker
and FM in nature. Importantly, the NN interactions occur
between atoms in different magnetic sublattices whereas the
NNN interactions occur between atoms in the same sublattice.
The FM NNN interactions are therefore important because
they tend to stabilize the magnetic structure and long-range
AFM ordering of IrMn. The exchange interactions are only

FIG. 5. Ab initio data from Ref. [15] showing the variation of the
exchange constants in IrMn and IrMn3 vary with interatomic spacing
(Ri j). The data was calculated using the relativistic torque method.
The exchange constants periodically vary between positive (FM)
and negative (AFM) with interatomic spacing. The first set of points
represents the nearest neighbor (NN) interaction and the second set
of points represents the next nearest neighbor (NNN) interaction; this
pattern continues.

significant for the first four NN shells, listed for the L12 phase
in Table I. The interactions can all be summarized by AFM
(negative) interactions between atoms in different sublattices
and FM (positive) interactions between atoms in the same
sublattice. If all these exchange interactions are included,
there will be over 50 terms per atom, making simulations
computationally expensive and therefore limiting the length
and timescales accessible. This is particularly important when
considering large scale or long simulations such as those used
for exchange bias [23]. To decrease the computational power
required, we therefore approximate the exchange interactions
including only NN and NNN interactions.

Deleting the longer ranged exchange interactions natu-
rally decreases the Néel temperature, and so the reduction in
complexity was achieved by changing the JNNN

i j interaction
strength to account for the third and fourth NN interactions
while keeping JNN

i j constant at the calculated ab initio value
of −6.4 ×10−21 J. This reduces the number of terms in the
Hamiltonian to only 18 and 12 NN interactions and 6 NNN
interactions. To calculate the new JNNN

i j , magnetization ver-
sus temperature, curves were simulated for varying values of
JNNN

i j for the L12 ordered phase until TN matched the value
of TN = 950 K calculated using all the nonzero interactions,
previously shown in Fig. 3. For each value of JNNN

i j , TN was
calculated from the sublattice magnetization. The simulated

TABLE I. The nonzero exchange interactions in IrMn calcu-
lated by Szunyogh et al. [15] and the number of neighbors at each
distance.

Neighbor Energy (J/link) Number of neighbors

First −6.4 × 10−21 12
Second +1.12 × 10−21 6
Third −1.6 × 10−21 24
Fourth +0.9 × 10−21 12
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FIG. 6. The simulated Néel temperature for different values of
JNNN

i j for L12-IrMn3. To find the value of JNNN
i j for IrMn, the Néel tem-

perature was calculated for different values of JNNN
i j for L12-IrMn3.

This was compared to the known value (≈1000 K) which has been
measured via neutron scattering [13]. The value was varied around
that found by Szunyogh et al. [15]. The TN was calculated by cool-
ing a sample from T >TN and calculating the magnetization of the
sample at each point when the magnetization is zero, this is TN. The
simulated curves were fit using Eq. (4) as shown. (b) The variation
of TN with JNNN

i j , the points are the calculated TN values, these were
fit using a linear function.

sample was 8 nm × 8 nm × 8 nm with periodic boundary con-
ditions with the same simulation parameters. The simulated
data and the fit curves are shown in Fig. 6. The simulated
TN matches the known value when JNNN

i j = +5.61 × 10−21 J,
which is the value we adopt for the remainder of this paper.

An important characteristic of the long-range exchange
interactions is that the exchange interactions are approxi-
mately the same magnitude for both ordered L10-IrMn and
ordered L12-IrMn3 phases. These alloys both have very differ-
ent compositions and crystal symmetry but this has not greatly
affected the exchange interactions. As a first approximation,
we therefore assume that the pairwise exchange interactions
are identical for all compositions and orders studied in this
paper.

D. Magnetic anisotropy

In disordered IrMn alloys, determination of the anisotropy
term in the spin Hamiltonian presents a significant challenge,
as each atom has a different local crystalline environment,
leading to a unique anisotropy value at each site. It has
been suggested that a loss of crystal symmetry could re-
sult in a reduction in the local anisotropy [38]. Ideally, the
loss of anisotropy would be modeled using a completely ab
initio approach, but this is only feasible for up to a few
100 atoms and, consequently, is an unrealistic approach to
model a realistic size AFM system of millions of atoms.
Instead, the Néel pair anisotropy model is used, a model
first proposed by Néel in 1954 [38] to model the surface
of a crystal. The model assumes that the lack of bonds at
surfaces causes an anisotropy. We have extended the Néel
pair anisotropy model to model the nonmagnetic Ir atoms as
nonmagnetic impurities. The magnetocrystalline anisotropy
arises from a complex interaction between the spin-orbit
coupling and the local atomic environment represented by

the crystal field. Akhiezer et al. [39] proposed a formula-
tion of the spin-orbit coupling suitable for spin models. This
has a form similar to a dipolar coupling, specifically Hc =
−∑

i, j f (ri j )[(Si · r̂i j )(S j · r̂i j ) − 1
3 Si · S j]. f (ri j) determines

the degree of localization, and the second, exchangelike, term
is included to preserve the Curie temperature of the system
and to ensure no net anisotropy when the atoms form a
symmetric cubic lattice. This form of coupling is currently
finding application in models of spin lattice dynamics [40].
Anisotropy arises when there is some symmetry breaking, for
example, in the case of an applied stress. Here, the symme-
try breaking arises from the presence of the nonmagnetic Ir
atoms, leading to a single-site anisotropy which we express
in the form of a Néel anisotropy, which removes the neces-
sity for an exchange-like term present in the pseudodipolar
anisotropy. We also assume that the anisotropy is highly lo-
calized, requiring only a summation over NNs.

The physical justification for this approach comes from
the competition of the quenching from the crystal field and
the unquenching from spin-orbit coupling. Quenched waves
naturally have a standing wave character and therefore adapt
more easily to the crystal field and induce a lower magne-
tocrystalline anisotropy. The size of the crystal field is caused
by the symmetry in the crystal and the Ir atoms in the system
naturally break this symmetry, meaning that the Mn orbitals
will be more quenched in some directions (pointing toward
Mn atoms) than in others (pointing toward Ir atoms) [41].
The Ir atoms have a very large spin-orbit coupling, which
reduces the quenching of the electron density for nearby Mn
atoms. Therefore, it is lower energy for a spin to point in some
directions (near the Mn atoms) than in others (near other Ir
atoms).

In our model, the iridium atoms are considered as non-
magnetic bulk impurities, generating an effective magnetic
anisotropy that is equivalent to the missing bonds at the sur-
face in the Néel pair anisotropy model [42]. The minimum
energy is found when the moments point away from the
iridium atoms. The pair anisotropy can be described by the
following contribution to the spin Hamiltonian:

H i
N = −kN

2

zi∑
i j

(Si · ei j )
2, (6)

where ei j is a unit vector connecting spin i with its z nearest
Ir neighbors j and kN is the Néel pair anisotropy constant
between Ir and Mn atoms. The form of Eq. (6) naturally leads
to a configurational magnetic anisotropy that depends on the
local crystal symmetry around each Mn site. The anisotropy
surfaces for three different environments are shown in Fig. 7.
Each configuration shows the Mn atom sitting in a completely
different anisotropy environment based on the local crystal
symmetry. If each atom in the crystal has a unique anisotropy,
the local anisotropy cannot be simply expressed as an aver-
age anisotropy at each site. The sitewise differences in the
local anisotropy are particularly important in determining spin
frustration in exchange-biased systems [23]. In the disordered
and of-stochiometric phases of IrMn, the effective anisotropy
will always be a superposition of the local anisotropies of
individual Mn sites, with the addition of local spin devia-
tions from the average magnetic structure caused by local Mn
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Local atomic configurations and anisotropic energy surfaces for different IrMn compositions calculated with the Néel pair
anisotropy model. The form and anisotropy energy in IrMn is strongly dependent on the local atomic ordering. In disordered crystal structures,
this leads to a complex energy surface with highly localized variations of the magnetic anisotropy. (a) Spin configuration for ordered L10-IrMn,
which has (d) an easy plane anisotropy. (b) Spin configuration for ordered L12 which (e) has a complex energy surface. (c) Spin configuration
for an off-stochiometric composition (f) which has a complex energy surface.

symmetries. Ideally, one would calculate the anisotropy of
each individual lattice site using ab initio methods but, unfor-
tunately, using current methods, the computational resources
necessary would be too large, needing to consider thousands
of spins.

The value of the anisotropy constant in IrMn is a
widely disputed problem with experimental and theoreti-
cal calculations varying by over two orders of magnitude.
Szunyogh et al. performed self-consistent calculations us-
ing the fully relativistic screened Korringa-Kohn-Rostoker
method [15]. They found an extremely large second-order
magnetic anisotropy for IrMn3, leading to energy barriers of
the order of 300 ×105 J/m3 [43]. Vallejo-Fernandez et al.
inferred the anisotropy constant of the IrMn experimentally
by measuring the mean blocking temperature (TB) of an
IrMn/CoFe bilayer. They inferred a value of the anisotropy
constant of (5.5 ± 0.5) ×105 J/m3 [43] almost two orders of
magnitude lower than the theoretical calculation. The sym-
metry of the anisotropy in IrMn3 is also debated. Szunyogh
et al. [15] calculated the anisotropy to be cubic in symmetry
and Vallejo-Fernandez et al. [43] inferred the temperature
dependence of the anisotropy energy to have a uniaxial sym-
metry from the Callen-Callen laws [44]. Later we demonstrate
that this difference comes from the problem in defining the
bulk anisotropy of an AFM, and so we adopt the value of
kN = −4.2 × 10−22 J/link from the ab initio calculations.

To verify the correctness of our model, we made a direct
comparison of the calculated rotational anisotropy determined
from ab initio calculations of Szunyogh et al. [15]. Our model

was tested by rotating the moment of a Mn atom around the
(111) plane of ordered L12-IrMn3. The change in energy cal-
culated using Eq. (6) exactly matches the ab initio result both
in symmetry and magnitude, confirming the equivalence of
the Néel pair anisotropy model and the full ab initio approach
in the case of ordered L12-IrMn3 as shown in Fig. 8. From

FIG. 8. Simulation to calculate the change in energy when a spin
is rotated around the 111 plane and compared to the ab initio result
by Szunyogh et al. [15]. The points are the ab initio data and the
line is the data simulated using Eq. (6). The simulated result and
ab initio data both have a sin2(α) energy dependence. The sin2(α)
energy dependence is due to the spin having a high anisotropy energy
when it rotates toward the large orbitals of the Ir atoms.
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TABLE II. Final parameters used in the atomistic spin model of
IrxMn1−x alloys.

Quantity Symbol Value Unit

Nearest-neighbor exchange JNN
i j −6.4 × 10−21 J/link

Next-nearest-neighbor exchange JNNN
i j +5.1 × 10−21 J/link

Néel pair anisotropy kN −4.2 × 10−22 J/link

Magnetic moment μs 2.60 μB

here we assume that the Néel pair anisotropy constant is pri-
marily a function of spin-orbit coupling and lattice symmetry
and we neglect second-order effects arising due to lattice dis-
tortions. The final model parameters for moments, exchange
interactions, and anisotropy used in this paper are summarized
in Table II.

IV. GROUND-STATE SPIN STRUCTURES

To verify our model, we have studied the AFM properties
of the ordered and disordered IrMn3 alloys for a single crystal
bulklike 8 nm × 8 nm × 8 nm sample with periodic boundary
conditions applied. The temperature-dependent magnetization
was investigated from 0 K to T > TN to verify agreement with
the experimental and ab initio data for the Néel temperatures
and 0 K magnetic structure. The system is first equilibrated
for 10 000 Monte Carlo steps at each temperature (taking the
final configuration from the previous temperature as a starting
point) and then 100 000 averaging Monte Carlo steps are
performed to evaluate statistical averages. Figure 9(a) shows
the simulated 0 K ground-state magnetic structures where
the ordered alloy forms a triangular (T1) spin structure with
an angle of 120◦ between adjacent spins and the disordered
alloy forms a tetrahedral (3Q) spin structure with 109.5◦ be-
tween spins in agreement with previous neutron scattering
experiments [12,13] and theoretical calculations [15]. The
simulations predict different Néel ordering temperatures for
the ordered and disordered phases of 1005 K and 688 K,
respectively, shown in Fig. 9(b). This is in close agreement
with experimental values of 730 K [11] and 960 K [12] for
γ and L12 phases, respectively. The stark difference in the
ordering temperature for the different phases of IrMn3 is
surprising given the same composition and the same number
of exchange bonds per Mn atom. The explanation lies in the
different degrees of frustration for the different compositions.

As an AFM, IrMn prefers a perfect antiparallel 180◦ align-
ment of Mn moments. Due to the lattice symmetry in the L12

and γ phases, perfect 180◦ alignment of spins is not possible,
leading to a frustrated spin state with reduced symmetry. This
intrinsic frustration leads to a natural reduction in the effective
exchange energy due to the increased angle between spins
in the ground state and commensurate reduction in the Néel
temperature. Quantitatively, this can be expressed in terms an
effective exchange coupling as a function of the angle between
sublattices θ from Eq. (1). For an AFM, the minimum energy
occurs for θ = 180◦, giving an energy difference between the
AFM and FM states as 2Ji j . However, in the paramagnetic
state (above the Néel temperature), the θ = 0◦ state is still
extremely high energy due to local spin correlations and so a

(a)

(c)

(b)

FIG. 9. Simulated ground-state magnetic structures and
temperature-dependent ordering for the ordered and disordered
phases of IrMn3 showing triangular and tetrahedral order,
respectively. (a) The ground-state structures are obtained by
simulated zero-field cooling for the ordered L12 and disordered
γ -IrMn3 phases showing triangular (T1) and tetrahedral (3Q) spin
order, respectively. (b) Simulated temperature-dependent sublattice
magnetizations for the different phases of IrMn3. Lines show fits
to the sublattice magnetization n(T) given by n(T ) = (1 − T

TN
)β ,

where T is the temperature, TN is the Néel (ordering) temperature,
and β ≈ 1

3 is the magnetization critical exponent. The ordered phase
has a Néel temperature of 1005 K, while the disordered phase has
a significantly reduced Néel temperature of 688 K arising from
increased magnetic frustration in the disordered phase. The spin
ordering in the disordered phase is only partial at low temperatures,
indicating the presence of intrinsic spin disorder.

more realistic value of the mean angle for the paramagnetic
state is 〈θ〉 ∼ 0◦. On this basis, the Néel temperature can
be correlated with the exchange energy difference between
the ordered θ = 180◦, E = −Ji j , and θ = 0◦, E = 0 param-
agnetic state. For the L12 phase with θ = 120◦, this gives
an exchange energy difference of |Ji j cos(120◦)| = 1

2 Ji j . For
the γ phase with θ = 109.5◦, this gives an exchange energy
difference of |Ji j cos(109.5◦)| = 1

3 Ji j . Thus, one would ex-
pect a fractional change in the Néel temperature of 1

3/ 1
2 = 2

3
which agrees almost perfectly with the observed decrease
from 1005 K for the L12 phase to 688 K for the γ phase.

Now that we have validated our model of IrMn against
previous experimental and theoretical results, we proceed
to investigate different orders and compositions. Due to the
theoretical complexity of modeling a disordered structure,
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TABLE III. The percentage of each sublattice that is made up of
Mn atoms depending on the order and composition of the structure.

Order Sublattice Sublattice Sublattice Sublattice D/

parameter 1 2 3 4 Dd

1.0 100% 100% 100% 0% 0.0
0.8 95% 95% 95% 15% 0.2
0.6 90% 90% 90% 30% 0.4
0.4 85% 85% 85% 45% 0.6
0.2 70% 70% 70% 60% 0.8
0.0 75% 75% 75% 75% 1.0

previously only the properties of the ordered states of IrMn
and disordered IrMn3 have been extensively investigated.
However, using our estimates of the exchange and the Néel
pair anisotropy model, we can study any order or composi-
tion. In the next section, a full study of the properties with
composition and order will be made. Initially, IrMn3 will be
investigated with a full phase study between the ordered and
disordered states. Subsequently, a full phase study will be
undertaken for all compositions of the completely ordered and
completely disordered alloys.

V. PARTIALLY ORDERED IrMn3 ALLOYS

In this section, the Néel temperature of the partially ordered
phases of IrMn3 are investigated. Fully ordered, the probabil-
ity of finding Mn in sublattices 1, 2, and 3 is unity. In the
disordered state, Mn is replaced uniformly by Ir, leading to a
probability of 0.75 to find the sublattice-4 sites occupied by
Mn. Thus, we define an order parameter O given by

O = 1 − D

Dd
, (7)

which is a function of D/Dd , where (D) is the percentage
of Mn in sublattice 4, and (Dd ) is the percentage of Mn in
sublattice 4 in the fully disordered system (75%). The Néel
temperature was simulated for the six compositions outlined
in Table III. The system was 8 nm× 8 nm × 8 nm and the Néel
temperature was calculated by fitting to the magnetization.

The temperature-dependent magnetization was investi-
gated from 0 K to T > TN. The system is first equilibrated for
10 000 Monte Carlo steps at each temperature (taking the final
configuration from the previous temperature point) and then
100 000 averaging Monte Carlo steps are performed where
statistical averages are calculated. Between the ordered and
disordered phases of IrMn3, the Néel temperature decreases
linearly from 1005 K for L12-ordered IrMn3 to 690 K for the
disordered phase.

We have calculated the Néel temperature as a function of
the order parameter, the results being shown in Fig. 10(a). It
can be seen that TN increases linearly with order parameter.
To understand the origin of the linear variation, we look at
the underlying spin structure. The ordered L12 phase has a tri-
angular structure with the sublattice magnetizations oriented
at 120◦ whereas the disordered γ phases forms a tetragonal
spin structure with 109.5◦ between the sublattices. The an-
gle relates directly to the level of frustration in the system:
the increased angle between spins reducing the strength of

(a)

(b)

FIG. 10. (a) The calculated Néel temperatures for different or-
der parameters in IrMn3. (b) The angle between the sublattices for
different order parameters. The blue dots represent the average angle
between sublattices 1, 2, and 3. The yellow dots represent the average
angle from sublattice 4 to the other three sublattices. The error bars
are the standard deviation of the angles. 109.5◦ and 120◦ are shown
as dotted lines on the diagram as these are the angles of the fully
ordered and fully disordered phases.

the effective exchange coupling. The average angles between
each sublattice pair are plotted in Fig. 10(b). For the phases
between complete order and disorder, there is a large differ-
ence between the angles between sublattices 1, 2, and 3 and
the angles of these three sublattices with sublattice 4. The
difference occurs because sublattices 1, 2, and 3 all contain the
same percentage of Mn atoms whereas sublattice 4 contains a
different percentage. To clarify this, two angles are calculated:
the average angle between sublattices 1, 2, and 3 (θ1,2,3), and
the average angle from sublattice 4 to the other three sublat-
tices (θ4). θ1,2,3 is almost exactly 120◦ for all phases apart
from the completely disordered phase. This suggests that the
ground state has tended toward the triangular ground state of
the ordered phase. θ4 varies a larger amount and is not between
109.5 and 120, suggesting a large amount of frustration in the
structure. In all but the fully disordered phase, the temperature
dependence of the sublattice magnetization for sublattice 4 is
significantly stronger than the others, with a much lower Néel
temperature. Therefore, the linear reduction in the Néel tem-
perature for the main three sublattices is mainly due to the loss
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TABLE IV. The percentage of manganese was increased by
maintaining as many filled sublattices as possible; these values will
be used to see how increasing the percentage of manganese changes
the Néel temperature.

Composition Sublattice 1 Sublattice 2 Sublattice 3 Sublattice 4

Ir75Mn25 100 0 0 0
Ir70Mn30 100 20 0 0
Ir65Mn35 100 40 0 0
... : : : :
Ir50Mn50 100 100 0 0
Ir45Mn55 100 100 20 0
Ir40Mn60 100 100 40 0
... : : : :
Ir25Mn75 100 100 100 0
Ir20Mn80 100 100 100 20
Ir15Mn85 100 100 100 40
... : : : :
Mn 100 100 100 100

of exchange bonds as sublattice 4 becomes more magnetic.
This has a negligible impact on the ground-state spin structure
of the partially ordered IrMn3 alloy and suggests that the
assumption of Kohn et al. that the ground state is largely the
same for partial ordering [13] is a good one. Now that we have
looked into partially ordered states, the completely ordered
and completely disordered states with different compositions
will be investigated.

A. Néel temperatures of ordered IrxMn1−x alloys

In the following section, the Néel temperature and low
temperature ground-state magnetic structure of IrxMn1−x al-
loys will be calculated for compositions in the range Ir75Mn25

to Mn100. The compositions investigated are outlined in Ta-
ble IV, showing the percentage of Mn in each sublattice. As
the percentage of Mn is increased, the sublattices fill up se-
quentially so each sublattice is filled with Mn atoms before the
next sublattice contains any Mn atoms to preserve the ordered
nature of the alloys. In these alloys, one sublattice typically
contains a mixture of Ir/Mn atoms. Table IV shows that
there are three fully ordered IrMn compositions: Ir75Mn25,
Ir50Mn50, and Ir25Mn75. In these states, every sublattice is
either Ir or Mn and there is no partial Ir/Mn sublattice. The
properties of Ir25Mn75 (IrMn3) have already been studied in
depth in the previous section, however, so far Ir75Mn25 and
Ir50Mn50 (Ir3Mn and IrMn, respectively) have not been con-
sidered.

Figure 11(a) shows sublattice magnetization versus tem-
perature curves for IrMn and Ir3Mn. The ground-state
structures of Ir3Mn and IrMn are shown in Figs. 11(b)
and 11(c), respectively. Ir50Mn50 has a Néel temperature of
1200 K and Ir3Mn has a Curie temperature of 590 K. The
Néel temperature of Ir50Mn50 is very high, even higher than
IrMn3, due to the absence of frustration in the spin struc-
ture, despite the loss of 1

3 of the exchange bonds. Ir50Mn50

has the ground-state structure of a collinear AFM with no
frustration as the sublattice magnetizations of the two Mn
sublattices point 180◦ apart. The ground-state structure there-

(a)

(b) (c)

FIG. 11. Magnetization versus temperature curves and visual-
izations of the simulated ground-state spin structures for ordered
IrMn and Ir3Mn obtained from zero-field cooling. (a) Magnetization
versus temperature curves show a Néel temperature of 584 K and
1209 K for IrMn and Ir3Mn, respectively. Ground-state magnetic
structures of (b) ordered Ir75Mn and (c) ordered Ir50Mn50. The spins
show an average spin of each magnetic sublattice direction over the
whole sample. IrMn has a classic AFM structure with the sublattices
pointing 180◦ apart whereas Ir3Mn the magnetic structure is FM.

fore explains the very high Néel temperature. The result
matches the in-plane anisotropy observed experimentally [45]
and the ground-state spin structure matches that calculated via
ab initio methods [15].

The ground state of Ir3Mn is FM, which is perhaps sur-
prising. The FM ground state occurs because in Ir3Mn only
one sublattice contains Mn atoms and the exchange coupling
between atoms in the same sublattice is FM. The unfrustrated
FM ground state explains the high Curie temperature even
though the system is very diluted. Our prediction of a FM
phase correlates well with the Pt3Mn system which has a rea-
sonably high Curie temperature of ∼453 K [46]. Importantly,
the Curie temperature of the ordered Ir3Mn phase provides
an experimental way to evaluate the strength of the NNN
coupling in the IrxMn1−x system.

Now that the properties of the completely ordered alloys
have been investigated, we want to know what happens to
the Néel temperature and ground-state spin structure between
these compositions. An example sublattice magnetization ver-
sus temperature curve is shown in Fig. 12(a), where the curves
have been plotted separately for all three sublattices. We no-
tice that the Néel temperature of the diluted sublattice is much
lower than the other three sublattices although it does still
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(a)

(b)

FIG. 12. An example magnetization versus temperature curve
for a partially ordered IrMn alloy and the simulated Néel temper-
atures against percentage of manganese. (a) Magnetization versus
temperature curve for an Mn concentration of 65%. The partially
filled sublattice has a much lower Néel temperature than the full
sublattices but the magnetization length at zero Kelvin is still one.
(b) The Néel temperature with percentage of Mn. The partially filled
sublattices have been plotted separately as they have a much lower
Néel temperature.

reach a saturation state at zero temperature. This is true for all
of the compositions simulated. The lower Néel temperature
for the diluted sublattice means it is hard to quantify the
Néel temperature of the bulk material to a single value. The
simulated Néel temperatures for all the compositions studied
are shown in Fig. 12(b). The Néel temperatures have been
plotted separately for the average of the full sublattices and for
the diluted sublattice. These values are different for Mn values
above 50%, however, below 50% the partially full sublattice
has the same Néel temperature as the full sublattice. Below
50%, there is only one full sublattice, when the atoms are
added in the next sublattice are added there is therefore no
frustration between competing sublattices—they are just anti-
ferromagnetically coupled to the first sublattice. This means
even if only a few atoms are added, they are all strongly
magnetized along the same direction. The Néel temperature
of the full sublattices decreases almost linearly between the
fully ordered states. The Néel temperature of the partially
full sublattices increases as the percentage of Mn increases

TABLE V. The percentage of magnetic Mn atoms in each sublat-
tice for disordered IrMn as the percentage of Mn was increased from
25% to 100%.

Composition Subblatice 1 Sublattice 2 Sublattice 3 Sublattice 4

Ir75Mn25 25 25 25 25
Ir70Mn30 30 30 30 30
Ir65Mn35 35 35 35 35
Ir60Mn40 40 40 40 40
... : : : :
Ir15Mn85 85 85 85 85
Ir10Mn90 90 90 90 90
Ir5Mn95 95 95 95 95
Mn100 100 100 100 100

until completely full. Unlike for a fixed composition, the
change in Néel temperature for intermediate ordered phases
is caused by an increase in the angle between the sublattices
as (E ∝ cos(θ )), increasing the ground-state exchange energy
due to geometric frustration. In the only partially ordered
states, the angle between the sublattices (θ ) must be smaller
and therefore the Néel temperature decreases.

B. Néel temperatures of disordered IrxMnx−1 alloys

IrMn3 is the most widely theoretically studied composition
of IrMn. However, in most spintronic devices, the composition
of IrMn used is not IrMn3 but closer to IrMn4 or IrMn5 [47].
In the next section, the composition dependence of disordered
iridium manganese is investigated, especially in the compo-
sitions between IrMn5 to IrMn3. The percentage of Mn was
varied from 25% to 100% as outlined in Table V.

The Néel temperatures for the simulated disordered com-
positions are shown in Fig. 13. The simulations give a TN

of 1000 K for Mn. Neutron scattering measurements [12]
calculate the TN of Ir0Mn100 to be much lower. The

FIG. 13. The simulated and predicted Néel temperatures for dis-
ordered IrMn with different percentages of Mn. The simulated Néel
temperatures increase linearly with Mn concentration but the predic-
tion from previous experimental results is for the Néel temperature
to decrease as the Mn concentration approaches 100%.
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(a)

(b) (c)

FIG. 14. Average sublattice magnetization lengths (n) for disor-
dered IrMn with different Mn compositions and interface magnetic
structure for disordered Ir3Mn and IrMn at T = 0 K. (a) The average
sublattice magnetization length for different Mn compositions. The
magnetization length is nearly one for all Mn percentages higher than
50% but for low concentrations the average sublattice magnetiza-
tion is less than 30%. The magnetization structures for disordered
(b) Ir3Mn and (c) IrMn. Both compositions have almost zero net
magnetization and form spin-glass structures.

discrepancy is due to the simulations, assuming the unit cell
size and magnetic structure is constant for all compositions
and orderings of IrMn whereas, in reality, for compositions
greater than 95% Mn the system has a complex anisotropic
structure [36]. At compositions greater than 95%, there is
therefore a breakdown in the assumptions of the model and
the results of our simulations are no longer accurate. The
ordered compositions of IrMn have a higher Néel temperature
than the disordered structures because of the increased frus-
tration in the disordered systems. The frustration decreases
the anisotropy causing the structures to be less stable. In fact,
the simulations with a percentage of Mn atoms <25% have a
low Néel temperature—almost zero.

To investigate why the Néel temperatures are so low for
low percentages of Mn, the magnetization length was plot-
ted for the different simulations and is shown in Fig. 14(a).
For percentages of Mn above 75%, the average sublattice
magnetization length is above 95%. For very high percent-
ages of Mn > 0.8, the average sublattice magnetization length
is above 99%, suggesting every atom in every sublattice is
nearly perfectly aligned. The compositions used in hard drives
(∼18–24% Mn) have a higher degree of magnetic ordering
than IrMn3. For low percentages of Mn (less than 50%),

the average sublattice magnetization length is very low as
the structure forms a spin glass because the concentration of
Mn atoms is too low for a regular spin network to form. A
cross section of the ground-state structure of IrMn and Ir3Mn
are shown in Fig 14(b). These show that the system has no
long-range magnetic ordering explaining the low values of
the Néel temperature for compositions with a low percentage
of Mn atoms. Due to the spin-glass nature, the exact values
of the local Néel ordering temperature will be inaccurate for
compositions less than 60%, but naturally reflect the loss
of long-range AFM order. An interesting application of the
IrMn spin-glass system may be as a high temperature AFM
spin glass [48–50] with ordering temperatures much closer
to room temperature. This could enable new applications in
brain-inspired computing and complex networks, with readout
possible using the exchange bias effect.

In disordered IrMn3, the ground-state spin structure is the
3Q tetragonal structure, characterized by an angle of 109.5◦
between the four magnetic sublattices. The ground-state struc-
tures of other compositions has so far never been theoretically
studied even though in most hard drives compositions of 18–
24% Ir are used. Usually, it is assumed that the magnetization
structure is the same as IrMn3 for all these compositions. By
calculating the angle between the sublattices, we can see if
this assumption is true. The angles between the sublattices
are shown for Mn concentrations from 55–95% in Fig. 15(a).
For all concentrations, the average angle between sublattices
is 109.5◦. The error in the angle is around 1% for all composi-
tions between 18–24% Ir. From the angles, we can confirm
that the compositions used in spintronic devices will also
exhibit the 3Q structure shown in Fig. 15(b).

VI. MAGNETIC ANISOTROPY OF IrMn ALLOYS

The magnetic anisotropy of AFMs plays a key role in
the stability of many spintronic devices, ensuring the thermal
stability of AFM grains responsible for the exchange bias
effect. The anisotropy of IrMn has previously been studied
both experimentally and theoretically. The ordered phase of
IrMn3 was studied theoretically by Szunyogh et al. [15] us-
ing ab initio methods. They found an extremely large value
for the second-order magnetic anisotropy, leading to energy
barriers of the order of 3 × 107 J/m3 at T = 0 K. This is an
extraordinarily large value for the anisotropy. For comparison,
neodymium iron boron is the strongest permanent magnet
available today and has an anisotropy of 1.33 ×106 J/m3:
more than an order of magnitude smaller.

Vallejo-Fernandez et al. experimentally determined the
anisotropy constant of disordered IrMn3 by measuring the
mean blocking temperature of a IrMn/CoFe bilayer [43,51].
The blocking temperature was measured using a training-
free measurement procedure in which hysteresis loops were
repeatedly measured at the same (thermal activation free) low-
temperature after raising the sample to a different activation
temperature. The activation reverses part of the AFM layer
due to the exchange field from the FM. As the AFM reverses,
the exchange bias field decreases and the blocking tempera-
ture (TB) is the point where the exchange bias field is reduced
to zero and was measured to be TB = 236K. The blocking
temperature is low because of the thin films they used (3 nm)
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(a) (b)

FIG. 15. Average angle between sublattices for disordered IrMn compositions and the ground-state magnetic structure of all the compo-
sitions. (a) The average angle between magnetic sublattices is 109.5◦ for all percentages of Mn higher than 50%. The error is the standard
deviation in the angles. (b) All the compositions higher than 50% Mn concentration have therefore formed the same magnetic structure as
IrMn3.

and, using this value, the anisotropy can be determined given
the measured grain volume using the equation

τ−1 = f0 exp

(
− �E

kBT

)
, (8)

where τ is the relaxation time, �E is the energy barrier,
kB is the Boltzmann constant, and T is the temperature. At
the blocking temperature �E = KAFMV , where KAFM is the
anisotropy constant of the AFM and V is the mean grain
volume. The anisotropy constant is therefore given by

KAFM(TB) = ln(τ f0)

V
kBTB. (9)

Using Eq. (10), the temperature variation can be calculated.
The assumption is made that l = 3, which is only valid for a
uniaxial magnetocrystalline anisotropy [44]. In combination
with the Curie-Bloch equation in the classical limit [31], the
temperature variation of the anisotropy can be described by
the equation

KAFM(T ) = KAFM(0)

[(
1 − T

TN

)0.34]3

≈ KAFM(0)

(
1− T

TN

)
.

(10)

At T = 300 K KAFM = 6.2 × 105 J/m3 and by extrapo-
lation at T = 0 K KAFM = 14.8 × 105 J/m3, where the zero
Kelvin value is almost two orders of magnitude lower than
the theoretical calculations for ordered IrMn3 [15]. The ex-
perimental measurement of the anisotropy constant is also
dependent on the value of the switching attempt frequency
( f0). Originally, Vallejo-Fernandez et al. used a value of f0 =
109 s−1 [43] but more recent estimates suggest values closer
to f0 = (2.1 ± 0.4) × 1012 s−1 [52].

The symmetry of the anisotropy is also an unresolved prob-
lem. Vallejo-Fernandez [43] and Craig et al. [53] investigated
the form of the anisotropy energy surface by fitting to the
temperature dependence of the magnetization using a Callen-
Callen [44] power law,

KAFM(T )

KAFM(0)
=

[
nAFM(T )

nAFM(0)

]l

, (11)

where nAFM is the AFM sublattice magnetization and l is an
exponent which reflects the symmetry of the anisotropy. In
materials with a uniaxial anisotropy, l ∼ 3 and, for a cubic
anisotropy, l ∼ 10. The symmetry of the anisotropy generally
reflects that of the lattice. While the Callen-Callen theory [44]
holds for most FM materials because the anisotropy of AFM
materials is so difficult to measure, it has previously been
difficult to say if it will also hold for AFM materials. The
theory will be tested for a AFM with a known symmetry to see
if the temperature dependence is consistent with the Callen-
Callen theory. Szunyogh et al. [15] calculated the energy
surface for ordered IrMn3 by rotating the triangular ground
state around the (111) direction and calculating the change
in energy. The same calculation was done using our IrMn
model with the Néel pair anisotropy, in Fig. 8, finding an exact
match to the ab initio results. Both experiment and theory
agree that the anisotropy has a uniaxial form contradicting
the predicted relationship between crystallographic symmetry
and the temperature dependence of the anisotropy from the
Callen-Callen [44] and Zener [54] relations. As IrMn has
a cubic crystal structure, the anisotropy would normally be
expected to have a cubic symmetry.

A. Constrained Monte Carlo

The energy barrier separating two ground states is the
minimum energy path for the spins to rotate from one ground
state to another. At a finite temperature, the anisotropy con-
stant is a free-energy difference arising from spin fluctuations.
To calculate the energy barrier, we use a constrained Monte
Carlo (CMC) algorithm to determine the entire energy sur-
face. From the energy surface, we can find the ground-state
spin structures and calculate the minimum energy required
to rotate between them. The CMC algorithm constrains the
magnetization of one sublattice along a direction (θ, φ), while
the other sublattices are unconstrained and free to evolve
using a standard Monte Carlo sampling algorithm. Due to
this constraint, the system is not in its ground state, causing
a small restoring torque on the system. CMC [28] is an ex-
tension of the metropolis Monte Carlo algorithm where the
steps of the random walk are modified to conserve the average
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(a) (b)

FIG. 16. Simulated anisotropy energy surface for L10-IrMn and the azimuthal angle dependence of the free energy. (a) The simulated
energy surface calculated from the integral of the torque. It has the usual uniaxial symmetry. (b) The minimum energy path for a spin to rotate
from the +z to −z directions. The easy plane anisotropy energy �E is shown.

magnetization direction (M̂) as

M̂ ≡
∑

i(Ŝi )

‖ ∑
i Ŝi ‖ , (12)

where Si is the unit vector of the direction of magnetization of
a spin i. The constraint keeps the system out of equilibrium
in a controlled manner but allows its microscopic degrees
of freedom to thermalize [28]. The energy surface is cal-
culated by constraining the direction of magnetization of a
single sublattice of the AFM along a specific (θ, φ) direction
while allowing all other spins in the system to equilibrate
to a minimum energy state. The constraint used is a weaker
constraint than that used by Szunyogh et al. where all of the
sublattices were rigidly constrained preserving 120◦ between
each sublattice. The constrained sublattice spins are integrated
using using a CMC algorithm while the other sublattice spins
are integrated using a regular Monte Carlo algorithm. For each
value of θ and φ, the system was initially heated to 1500 K to
thermalize the spins and then cooled to 0 K. The simulation
was run over 1 000 000 MC steps to the ground state for each
θ , φ value, using batch parallelization for each unique angle
pair.

The CMC method determines the Helmholtz free energy
(F ) for a given constraint direction. This cannot be computed
directly but is related to the internal energy (E ) as

F = E − T S, (13)

where T is the temperature and S is the entropy. At zero
Kelvin, the internal energy equals the Helmholtz free energy
(F ). The internal energy can be calculated directly as the sum
of all the energies acting on the system (anisotropy, dipolar,
exchange, etc.) but we cannot calculate the entropy S with-
out doing work on the system. Instead F can be indirectly
calculated from the integral of the torque (τ ) acting upon the
system.

The magnetic torque can be defined as

τ = 〈M〉 × 〈B〉, (14)

where M is the average magnetic moment and B is the average
magnetic field acting on this moment. The torque is a measure
of the force that can cause an object to rotate about an axis

and, in this case, causes a precession of the magnetic moment
around the effective field. Our system is comprised of many
atoms all with their own individual moment Si In our system,
the field is defined by Bi = −∂H /μS∂Si and the total torque
is given by

τ = −〈M〉 × ∂F

∂M
, (15)

where M is the magnetization direction and M = ∑
i Si,

where Si is the direction of spin i. The Helmholtz free energy
cannot be computed directly and so instead we can reconstruct
it from the integral of the torque,

�F = F (M0) +
∫ M

M0

(M′ × τ ) · dM′, (16)

where the integral of the torque is taken along the minimum
energy path between two points (M0 and M) on the energy
surface along states M′. From this, the energy barrier to mag-
netic reversal can be calculated. At zero Kelvin, the energy
to rotate between these ground states (F ) equals the internal
energy (E ), but at higher temperatures this is not the case and
the free energy must be calculated from the torque.

B. The anisotropy in ordered L10-IrMn

From the crystal symmetry, L10 ordered IrMn has an easy
plane magnetization, shown in Fig. 11(c). In the following
section, we will calculate the energy barrier to magnetic re-
versal from the torque and then determine the scaling of the
anisotropy compared to the temperature dependence of the
magnetization. As IrMn has uniaxial symmetry, we expect
the temperature dependence to give a uniaxial exponent of
l = 3.0 in the Callen-Callen relation in Eq. (11).

A 8 nm × 8 nm ×8 nm system of L10-ordered IrMn was
simulated and a full energy surface was created by running
a CMC simulation with the magnetization of one of the
sublattices constrained along a θ , φ direction. θ , φ were
incremented in 1◦ steps and at each step a simulation was
run for 3 000 000 Monte Carlo steps. The first 1 000 000
steps of the simulation were equilibration steps, meaning the
calculated energy/torque values did not contribute to the final
average energy/torque values. During the equilibration time
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FIG. 17. The temperature dependence of the anisotropy in
L12-IrMn. The minimum energy path between ground states for
temperatures of 0 K, 10 K, 100 K, and 300 K.

steps, the system should find its minimum energy state so
the output average free energy/torque values only include the
equilibrated free energy.

The energy surface produced is shown in Fig. 16, where
the minimum energies occur when θ = 90◦ and the maximum
energy occurs when θ = 0◦, 180◦. The easy-plane anisotropy
found agrees with the ab initio results of Szunyogh et al. [15]
and Umetsu et al. [55] and experimental measurements [45].
The energy barrier is calculated as the difference between
the maximum and minimum energies. For our simulation,
this gave a large value of 3.49 × 107 J/m3, larger than the
ab initio values calculated by Szunyogh et al. (1.78 × 107

J/m3) and Umetsu et al. (2.07 × 107 J/m3) for the L12 phase
and an order of magnitude larger than the value calculated
by Vallejo-Fernandez et al. for the γ phase. The discrepancy
with the ab initio values arises due to the missing small lattice
relaxation in our simplified model which is parameterized for
the L12 phase.

The temperature dependence of the anisotropy energy bar-
rier is calculated by running the same simulation as described
to create Fig. 16 but at increasing temperatures. Previously,
the simulation was run over all θ , φ angles, however, as we
now know, for the minimum energy path only the θ , φ = 0
values along this path were simulated. The simulation was
run through exactly the same simulation steps but repeated
at increasing temperatures. The temperatures were increased
in 10 K intervals between 0 K and 300 K. The energy barrier
was calculated from the torque again and the energy barriers
at 0 K, 10 K, 100 K, and 300 K are shown in Fig. 17. The total
energy of the system has increased with temperature but the
energy barrier (�E ) has decreased due to thermal fluctuations.

The exponent (l) is calculated by plotting the scaling of the
anisotropy energy barrier with sublattice magnetization length
nAFM on a logarithmic scale. Figure 18 shows the result, giving
a temperature dependence of l = 3.0004 ± 0.0003. The expo-
nent almost exactly matches a uniaxial exponent suggesting
that the Callen-Callen law applies for AFM materials as well
as FM materials provided the lattice has appropriate sym-
metry. Previously, it has been thought that the Callen-Callen

FIG. 18. The scaling of the effective energy barrier with sublat-
tice magnetization length nAFM fitted using EB(nAFM) = E0nl

AFM. l is
calculated to be l = 3.0005 ± 0.0002, suggesting a scaling similar to
uniaxial anisotropy l = 3.

law does not apply to AFMs [44] and that they would have
different scaling laws than FM materials. However, here it has
been proven that an in-plane AFM follows the same scaling
laws as an in-plane FM. In the next section, the anisotropy
of IrMn3 in both its ordered and disordered phases will be
investigated. In these phases, the magnitude and symmetry of
the anisotropy is a more complex question to address.

C. The anisotropy in ordered L12-IrMn3

In ordered L12-IrMn3 the ground state occurs when the
magnetic moments lie in-plane perpendicular to the (111)
crystal direction with the three sublattice magnetizations ori-
ented 120◦ apart. By symmetry, a cube contains eight different
(111) planes, meaning that ordered IrMn3 actually contains
eight different ground states corresponding to the 8 (111)
planes. These ground states are all rotations of each other
and are shown in Fig. 19. The positions of the energy minima
can be predicted from the ground-state structures. For a single
sublattice, the calculated minima are outlined in Table VI.

The simulated system was 8 nm × 8 nm × 8 nm. The
zero Kelvin energy surface is shown in Fig. 20 and has a

FIG. 19. The eight possible ground-state magnetic structures in
ordered IrMn3 corresponding to the eight (111) planes. The (111)
planes are outlined via the pale grey triangles in the image.
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TABLE VI. The eight possible ground-state magnetization direc-
tions for one sublattice of IrMn, each of the other two sublattices will
have their own eight minima.

Direction θ φ

(0.83, 0.39, 0.39) 25 67
(−0.83, 0.39, 0.39) 155 67
(−0.83, −0.39, 0.39) 205 67
(0.83, −0.39, 0.39) 335 67
(0.83, 0.39, −0.39) 25 113
(−0.83, 0.39, −0.39) 155 113
(−0.83, -0.39, −0.39) 205 113
(0.83, -0.39, −0.39) 335 113

complicated structure with eight minima. The figure only
shows four of the eight ground states due to symmetry. The
energy minima lie at φ ∼ 67◦, 113◦, and θ ∼ 155◦, 205◦, cor-
responding to the expected easy directions of the constrained
sublattice in Table VI.

To calculate the energy barrier between two adjacent min-
ima, we compute the minimum energy path between them.
The minimum energy path is outlined as the white line in
Fig. 20 and the energy of this line is shown in Fig. 21. The
calculated 0 K energy barrier is 1.78 × 106 J/m3, and an
order of magnitude lower than that calculated by Szunyogh
et al. [15] for a rigid spin rotation around the (111) plane. This
has massively reduced the disparity between the experiment
and theory, with this result being only 20% more than the
experimental measurement.

The reduction in the energy barrier compared to the previ-
ous theoretical results arises due to a small bobbing motion of
the unconstrained spins. The bobbing results from the compe-
tition between the exchange and anisotropy energies leading
to small deviations from the ground-state spin structure when
the AFM spins are rotated between energy minima. The re-
duction in energy barrier can be observed because our model
has used a weaker constraint than Szunyogh et al. [15].

FIG. 20. Simulated anisotropy energy surface for ordered
L12-IrMn3 at 0 K. This was calculated from the integral of the total
torque. The marked path shows the minimum energy route between
the two energy minima.

FIG. 21. Cross section of the anisotropy surface at T = 0 K
showing the minimum energy path to reversal between two ground
states for L12-ordered IrMn3. The energy barrier �EB to move be-
tween the minima is shown.

This result is particularly relevant to macroscopic approx-
imations of AFM materials with Néel vectors where the
sublattices are always assumed to have a fixed local spin struc-
ture. The remaining difference in the values of the effective
magnetic anisotropy could be due to different ordering or
defects in the experimental samples, but our results finally
resolve the large disparity between the theoretically calcu-
lated and experimentally measured magnetic anisotropy of
IrMn3 [34]. We note that, although the energy surface illus-
trated in Fig. 20 has an unusually complex form, the minima
themselves exhibit a fourfold symmetry, characteristic of cu-
bic rather than uniaxial anisotropy. The question remains how
to resolve the apparent contradiction with the experimental
data of Vallejo-Fernandez et al. [43] and its requirement of a
magnetization scaling exponent l = 3 consistent with uniaxial
symmetry.

To resolve this discrepancy, we now investigate the temper-
ature dependence of the anisotropy constant to calculate the
scaling exponent. The energy surfaces and minimum energy
path were calculated for temperatures between 0 K and 350 K
as shown in Fig. 22. The absolute free energy increases with
temperature due to spin fluctuations but the free energy barrier
between neighboring ground-state minima, i.e., the magnetic
anisotropy, decreases. In Fig. 22, we plot the power-law de-
pendence of the effective energy barrier as a function of the
magnetization and find an unusual exponent of l = 3.92 ±
0.14. The exponent is closer to a uniaxial exponent of l = 3,
matching the experimental observations, but deviates from
this ideal value due to the complex symmetry of the anisotropy
energy surface. We also note that the specific scaling exponent
is dependent on the strength of the anisotropy, and for weaker
anisotropy tends toward an exponent of l = 3, which may be
seen in similar noncollinear magnets such as PtMn3. We con-
clude that the magnetic anisotropy of L12- IrMn3 possesses
a close to uniaxial temperature dependence in direct contra-
diction with the usual Callen-Callen power laws and cubic
nature of the crystal [44]. However, the uniaxial symmetry
is consistent with the symmetry of the local energy surface
of individual atoms in the crystal as the spin fluctuations are
taking place in a uniaxial environment.

034406-16



ATOMISTIC SIMULATIONS OF THE MAGNETIC … PHYSICAL REVIEW MATERIALS 5, 034406 (2021)

FIG. 22. The scaling of the effective energy barrier with sublat-
tice magnetization length nAFM fitted using EB(nAFM) = E0nl

AFM. l is
calculated to be 3.92 ± 0.14 suggesting a scaling similar to uniaxial
anisotropy l = 3.

D. Calculation of the anisotropy in disordered γ-IrMn3

In the previous section, we calculated the symmetry and
magnitude of the anisotropy in ordered L12-IrMn3 and com-
pared it to the experimental energy barrier. However, the
experimental measurements typically use a disordered alloy
of IrMn close to IrMn3. In the following section, the energy
barrier is calculated for disordered IrMn3 with the aim of
reducing the disparity with experimental results.

In disordered IrMn3, the ground state occurs when the
spins in each sublattice are oriented 109.5◦ apart in a tetrag-
onal structure. As with ordered IrMn3 there are eight ground
states corresponding to the eight (111) planes. These ground
states are all rotations of each other as with ordered IrMn3

shown in Fig. 19.
The energy surface was computed using the same method

as the previous two sections using a 8 nm × 8 nm × 8 nm
system. The zero Kelvin energy surface is shown in Fig. 23.
The energy surface has a remarkably cubic symmetry, which
is a reflection of the lattice. There are four energy minima
in the diagram located at φ ∼ 55◦, 125◦, and θ ∼ 45◦, 135◦.
The disordered IrMn3 energy surface has four clear minima,
however, the maxima show a lot of noise which comes from
the natural disorder in the structure.

The minimum energy path between two adjacent ground
states is outlined in Fig. 23 as a white line. The line shows
more noise fluctuations in comparison to that of ordered
IrMn3 due to the noise in the energy surface. The energy
along the path is shown in Fig. 24. The energy barrier has
a much smoother transition between energy states than would
be expected from the energy surface. The shape of the energy
barrier is very similar to that of ordered IrMn3 but the energy
difference is slightly lower at only 9.96 × 105 J/m3. The value
is 40% lower than the experimentally measured value from
Vallejo-Fernandez et al. but as with ordered IrMn3 the value
has greatly reduced from previous theoretical calculations.
The remaining difference between our value and the exper-
imental value could be due to differences in composition.
We have used IrMn3 however often the composition used

FIG. 23. Simulated anisotropy energy surface for disordered
γ -IrMn3 at 0 K. This was calculated from the integral of the total
torque. The marked path shows the minimum energy route between
the two energy minima.

experimentally is closer to IrMn4, which may alter the total
anisotropy for the material.

The energy surface shows a distinctly cubic symmetry,
and as for the ordered L12-IrMn reflects the cubic nature
of the crystal. The temperature dependence of the sublat-
tice magnetization was calculated for disordered IrMn3 as
in the previous two sections. The result is shown in Fig. 25
and the Callen-Callen exponent was calculated to be 3.12
± 0.03. The temperature dependence is only 4% off the
uniaxial exponent. The result is surprising due to the clear
cubic symmetry in the energy surface. The apparent contra-
diction is again due to the local energy surface felt by each
atom. The energy surface is cubic, however, each individual
spin sits in a uniaxial-like energy surface. The local envi-
ronment for each spin governs the spin fluctuations rather

FIG. 24. Cross section of the anisotropy surface at T = 0 K for
γ − IrMn3 showing the minimum energy path to reversal between
two ground states. The energy barrier �EB to move between the
minima is shown.
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FIG. 25. The scaling of the effective energy barrier with sublat-
tice magnetization length nAFM for γ -IrMn3 fitted using EB(nAFM) =
E0nl

AFM. l is calculated to be 3.12 ± 0.03, suggesting a scaling similar
to uniaxial anisotropy l = 3.

than the symmetry of the energy surface as a whole. The
results go a long way toward understanding the large dif-
ference between the previous experimental and theoretical
results. In particular, comparing our findings with experi-
mental measurements suggests that the exceptionally large
value of the anisotropy calculated by Szunyogh et al. may
well be an underestimate, with experimental measurements
predicting larger values of the anisotropy. A further effect not
considered in our present model is the importance of two-
ion anisotropy from anisotropic exchange interactions [15]
which show a weaker temperature dependence than single-ion
contributions [56]. In addition, quantum effects in the temper-
ature dependence of the magnetization may also be important,
particularly for the ordered phases, which may reduce the
effects of thermal fluctuations [31] and thereby reduce the
temperature dependence of the anisotropy. The combination
of these effects may reduce the need to increase the value of
the anisotropy constant beyond the ab initio value, but will
require more extensive experimental measurements and an
adaptation of the Néel pair anisotropy to include contributions
that are two-ion in nature. Despite the limitations, our model
is able to reproduce the fundamental anisotropies and temper-
ature dependencies of ordered and disordered IrMn alloys in
close agreement with experimental measurement.

Given the differing anisotropy scaling exponents for the
different phases of IrMn, it is useful at this point to consider
the physical origins and if such effects may be seen in other
systems. With the exception of the L10-IrMn phase, the cal-
culated exponents do not agree with the usual Callen-Callen
exponents because of the frustrated exchange interactions
between the different sublattices. In FMs, ferrimagnets, and
collinear AFMs, small thermal spin fluctuations retain a net
average direction that is almost perfectly aligned with the
minimum energy direction defined by the anisotropy, be it
uniaxial or cubic in nature. For noncollinear AFMs with very
large anisotropy, this alignment is broken, as the preferred lo-

cal spin directions are constrained by the frustrated exchange
interactions, and so the local anisotropy energy minimum and
total energy minimum no longer align. Thus, small thermal
deviations of the spin directions leads to an additional contri-
bution to the energy due to exchange but whose symmetry is
different from the local magnetic anisotropy. We expect that
the unusual scaling exponents are therefore a unique property
of noncollinear AFMs, and that the exponent converges to-
ward the Callen-Callen scaling for weaker anisotropy since
the exchange becomes more dominant and so the average
direction of the noncollinear spins aligns more with the global
energy minimum.

VII. CONCLUSION

In conclusion, we have presented a unifying atomistic
model of IrxMn1−x alloys, reproducing the broad physical
characteristics of this fascinating and complex magnetic ma-
terial. In Mn-rich compositions, the material is AFM with
a high magnetic ordering (Néel) temperature and very large
magnetocrystalline anisotropy, with collinear and T1 and 3Q
noncollinear spin structures. In Mn-poor concentrations, it
exhibits FM ordering for the L10-Ir3Mn ordered phase and
spin-glass behavior in the γ phase, both with ordering tem-
peratures at or above room temperature. The Néel temperature
is predicted to increase with Mn concentration within the
approximations of our model, allowing broad tunability based
on composition and crystallographic ordering. In general, the
magnetic anisotropy possesses a symmetry based on the un-
derlying lattice symmetry but with a temperature dependence
close to uniaxial for both ordered and disordered phases.

In some respects, this material system represents a true uni-
versal magnet, enabling fundamental studies of different kinds
of magnetic ordering and dynamics simply by changing its
composition and crystallographic ordering. It may represent
one of the first high-temperature AFM spin-glass systems,
enabling new applications in brain-inspired computing. The
tunability of the effective magnetic properties such as Néel
temperature, anisotropy, and collinearity allow precise en-
gineering of magnetic properties to study the interaction of
electrical currents with different classes of AFMs and develop
functional AFM spintronic devices that work effectively at
and above room temperature. Further experimental and the-
oretical studies will undoubtedly improve our understanding
of IrMn as well as the accuracy of models of its static and
dynamic properties.
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