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Machine learning approach for the prediction of electron inelastic mean free paths
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The prediction of electron inelastic mean free paths (IMFPs) from simple material parameters is a challenging
problem in studies using electron spectroscopy and microscopy. Herein, we propose a machine learning (ML)
approach to predict IMFPs from some basic material property data. The ML model showed excellent perfor-
mance based on the calculated IMFPs for a group of 41 elemental materials [Li, Be, C (graphite), C (diamond),
C (glassy), Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Cs, Gd,
Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi] from a previous paper [Shinotsuka et al., Surf. Interface Anal. 47,
871 (2015); 47, 1132 (2015)]. which was comparable with that of the robust Tanuma-Powell-Penn (TPP-2M)
formula. The developed ML model was then extended to materials that do not have reported IMFPs in the
database. The IMFPs for 18 transition and lanthanide metals (Mn, Zn, Zr, Tc, Cd, La, Ce, Pr, Nd, Pm, Sm, Eu, Ho,
Er, Tm, Yb, Lu, and Hg) were predicted by the ML model. In the comparison with full-Penn algorithm-calculated
IMFPs through two newly found experimental energy loss functions (ELFs), i.e., Mn and Zr, the Gaussian
process regression-predicted IMFPs not only agreed well with those calculated using the TPP-2M formula in
the energy range >50 eV but were also consistent with the trend of IMFPs calculated through experimental
ELFs in the range of 2.7-50 eV, where the TPP-2M formula cannot be used. Our findings suggest that ML is
very powerful and efficient and has great potential to complete a database of IMFPs for materials that can prove
solutions closer to reality than empirical models on materials with similar physical and chemical properties and

can be applied to other different situations for correlated information prediction.
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I. INTRODUCTION

The inelastic mean free path (IMFP), which describes the
mean distance an electron travels through a solid before losing
energy [1], is an essential parameter in determinations of
surface sensitivity for surface electron spectroscopies, such as
x-ray photoelectron spectroscopy (XPS) [2—4], Auger electron
spectroscopy (AES) [2,5-7], reflection electron energy loss
spectroscopy (REELS) [8,9], and for quantitative analyses
with these techniques. Additionally, IMFP is one of the most
important constants in the Monte Carlo method [10], and
some other important parameters can be successively obtained
by the simulation of the physical process of the incident-
electron scattering in materials to observe electron transport
behaviors, represented by theoretically determined parameters
of materials, including the mean escape depth [11], backscat-
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tering factor [12,13], surface excitation parameters [14-16],
and so on. Since the IMFP is fundamentally important for both
experimental and theoretical studies, several methods, e.g.,
full-Penn algorithm (FPA) [17], Mermin algorithm [18], and
ex-Mermin algorithm [19], have been established to calculate
IMFPs at electron energies >50 eV. As the most popular and
reliable theoretical algorithms for the calculation of IMFPs,
the difference between them is the usage of the dielectric
function. Firstly, the most well-accepted algorithm is the FPA,
which was proposed by Penn [17]. In the calculation of FPA,
Penn used the Lindhard dielectric function to represent the
probability for inelastic scattering; however, the finite life-
time broadening of the plasmon is neglected. Tanuma et al.
frequently calculated IMFPs with FPA: 27 elemental mate-
rials [20,21], 15 inorganic compounds [22], and 14 organic
compounds [23] in the energy range from 50 to 2000 eV;
and Shinotsuka et al. calculated 41 elemental materials [24]
and 42 inorganic compounds [25] in the energy range from
50 to 200 keV. Secondly, for higher accuracy, Mermin de-
veloped the Mermin model [18], which considered the finite

©2021 American Physical Society
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lifetime broadening of the plasmon, using the so-called Mer-
min dielectric function in IMFPs calculation. Abril et al. also
brought out a series of IMFPs calculations [26] with the Mer-
min method. Recently, the latest brand-new extended Mermin
method [19] was proposed by Da e al.; they further improve
the calculation accuracy of the Mermin method. However, all
these methods rely on accurate determination of the energy
loss function (ELF) because they are built in the framework of
the dielectric theory. Therefore, these theoretical approaches
can only be applied to materials that have experimental optical
constants available to provide the ELF:s for fitting [27]. Unfor-
tunately, until now, IMFPs for numerous materials, even for
elemental materials, still cannot be calculated through these
algorithms due to the lack of reliable experimental data for
their optical constants over a sufficiently wide energy range.
Specifically, the preparation of a lanthanide metal sample
with a sufficiently clean surface requires quite a high level
of facilities and skills. In detail, in the polishing process of
lanthanide metal sample, the surface is very susceptible to
contamination. However, in recent years, many groups includ-
ing our group successfully obtained ELFs from experimental
REELS spectra [28-32] and successfully obtained ELFs of
multiple materials [33-37], except for lanthanide metals. Un-
til now, there are still numerous materials that lack reliable
experimental data for their optical constants over a sufficiently
wide energy range because of the lack of sufficiently accu-
rate REELS spectra. Therefore, it is critical to develop an
alternative way to determine the unknown IMFPs based on
lessons learned from those materials with well-established
optical data.

Recently, several methods have been proposed to charac-
terize parameters for electron scattering, which is the history
of effective attenuation lengths (EALs) and IMFPs, based on
those well-established material features. Details of some of
the well-known empirical formulas for them are provided as
follows.

(i) The universal formula is

AgaL = AE™% + BE'?, )]

where A and B are coefficients that are fitted according to
the kinds of material being investigated, including element,
inorganic compounds, and organic compounds.

Our starting point for the development of a predictive EAL
formula is the paper by Seah and Dench [38]. It must be stated
that, at the time that the review was published, it was believed
that IMFPs and attenuation lengths (now known as EALs)
were the same quantity. More detailed information of IMFPs
and EALs can be found in Refs. [39,40]. The universal for-
mula developed in the Seah and Dench review [38] was based
on an analysis of what are now known as EALs, not IMFPs.
Their universal formula results from a least squares analysis
of the attenuation lengths in solids for energies <10000 eV
above the Fermi level. They considered solid materials includ-
ing elements, inorganic compounds, organic compounds, and
gas adsorbates. Their paper initiated an idea in attenuation
lengths description, namely, to seek a universal approach to
describe the attenuation lengths by a simple formula suitable
for all materials. However, the individual EAL measurements
had large uncertainties [40].

(i) The Bethe equation is

E
A=,
E2[fIn(yE)]

where E,, is the free-electron plasmon energy, and 8 and y are
coefficients.

A basic equation to calculate IMFPs is the Bethe equation,
which is the starting point of the robust Tanuma-Powell-
Penn (TPP-2M) equation [24]. The parameters used in the
original Bethe equation [41] are microscopic quantities.
Tanuma et al. [21] transformed the parameters used in the
Bethe equation into macroscopic quantities, in other words,
material-dependent parameters, and expanded the Bethe equa-
tion to low energies (<200 eV), thus making it an empirical
formula. However, the Bethe equation is only valid for ener-
gies >200 eV. Thus, the TPP-2M equation was developed [23]
based on the Bethe equation and later expressed for relativistic
electron energies [24].

(iii) The TPP-2M equation [24] is
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where m,c? is the electron rest energy (510998.9 eV), E, is
the free-electron plasmon energy (in electronvolts), E, is the
bandgap energy for nonconductors (in electronvolts), p is the
bulk density (in grams per cubic centimeter), and N, is the
number of valence electrons per atom or molecule.

(iv) The TPP-LASSO-S formula is [42]
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where m,.c? is the electron rest energy (510998.9 eV), E,
is the free-electron plasmon energy (in electronvolts), E; is
the starting-point energy (in electronvolts), E, is the bandgap
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energy for nonconductors (in electronvolts), p is the bulk
density (in grams per cubic centimeter) and N, is the number
of valence electrons per atom or molecule.

Additionally, an empirical formula that includes an energy
region <50 eV is also proposed in Ref. [43]. Although the
formula can describe electron IMFPs of a low energy re-
gion (<50 eV), according to Ref. [43], the fitting coefficients
cannot be related to material-dependent parameters. In other
words, for now, the formula needs fitting according to IMFP
curves for every certain material. The formula is different for
each material, not to mention the predictive power it will have.

Recently, Shinotsuka et al. [24] developed a relativistic
version of the TPP-2M equation based on the modified Bethe
equation by introducing a data-driven concept. In the equa-
tion, the formulas for 8 and y were confirmed in Ref. [23].
Through application of the TPP-2M equation to a variety
of materials, the two correction terms C and D were also
introduced into the denominator to adjust the prediction re-
sults for energies <200 eV in Ref. [23]. Lastly, a relativistic
modification was added, which gave g,, y,, C,, D,, and the
modification term «(E), to provide the complete form of
the TPP-2M equation, thus representing another step toward
an accurate description of electron IMFPs using material-
dependent parameters. Using the TPP-2M equation, IMFPs
can be estimated for any material.

The TPP-2M formula [24], which is a modified form of
the Bethe equation [41], shows a robust fitting of calculated
IMFPs and can predict IMFPs using material properties, such
as density and the number of electrons per atom, in the
electron energy range >50 eV. Tanuma et al. have worked
on the TPP-2M formula from the initial paper [20] to the
most recent by Shinotsuka et al. [24] and expanded their
original IMFP calculations (additional materials, expanded
energy range, and improved calculation accuracy). In the
development process of the TPP-2M, Tanuma ef al. were
using FPA-calculated IMFP data as a target. However, the
FPA-calculated IMFPs have a relatively poorer accuracy for
energies <50 eV and >200 keV due to the uncertainty of
the exchange-correlation potential [21] and the neglect of
the transverse differential cross-section for inelastic scattering
[24], respectively. Although the main motivation for the IMFP
calculations of Tanuma et al. was to provide needed IMFP
data for practical applications of AES and XPS, and there
are few such applications in the very low energy (<50 eV)
range, the fact that the TPP-2M formula cannot be used in
the very low energy (<50 eV) range is still a shortcoming in
some special applications. The TPP-LASSO-S formula [42]
is a modified TPP-like formula derived by our team by ma-
chine learning (ML). Compared with the TPP-2M formula,
the TPP-LASSO-S formula has increased accuracy with the
introduction of Z and the power of ML but still has not
overcome the inability of the empirical formula for IMFPs in
the very low energy (<50 eV) range.

In contemporary materials science, ML is playing an in-
creasingly important role because it can provide promising
models for problems when a reliable empirical formula is not
available [44]. Recently, many studies using ML on datasets
or spectra [45,46] have shown the advantages of ML in ma-
terials science, thus guiding the methodology for application
of ML. Therefore, in this paper, to overcome the unavail-

ability of traditional empirical formulae on lower energies
(<50 eV) and for ease of application, we consider using
ML to provide a convenient way to calculate IMFPs. We
established a robust database for IMFP and predicted un-
known IMFPs of 18 transition and lanthanide metals. We
show that the proposed ML scheme fits known IMFP data
with an accuracy like or even better than that of the TPP-2M
formula. Although the FPA-calculated IMFP values are not
very accurate in the very low energy (<50 eV) regime due
to the FPA calculational model, the trained ML model of
IMFPs can be extended to the range even <10 eV, which
can at least show illustrative trends. Moreover, we provide
suitable descriptors for the training of the ML model over a
broad energy range of the IMFP calculations, and the pre-
diction ability of our algorithm is systematically discussed
through leave-one-out cross-validation (LOOCV) and com-
parison with FPA-calculated IMFPs and experimental IMFPs
that is not included in the training database. We also analyze
the advantages and disadvantages of the used ML method
and empirical formulae, since the ML method here shows
good prediction power on materials with similar physical and
chemical properties, while the empirical formulae, e.g., the
TPP-2M formula, are effective on the prediction of unfamiliar
material IMFPs. Finally, we discuss the possibility to directly
extend the ML-predicted elemental IMFPs to compounds,
thus revealing the future direction for ML methods used on
IMFP prediction.

II. THEORETICAL METHOD AND RESULTS

The performance of ML models strongly depends on the
database and training algorithm [47]. Through decades of
study, researchers have accumulated numerous IMFP results
that can serve as a reliable database to build a ML model.
Shinotsuka et al. [24] theoretically computed IMFPs for 41
different elements with complete optical constant data over a
wide energy range with the FPA. Here, these IMFP data were
used as an initial database for the ML model. In this paper, the
energy range and mesh are basically the same as in Ref. [24]
because we used these data as a training and testing set. The
detailed energy mesh is now listed in the Appendix, together
with the prediction results of transition and lanthanide metals.
It must be stated that Shinotsuka et al. did not publish their
FPA-calculated IMFP values at very high (>200 keV) and
very low (<50 eV) energies due to the limited accuracy in
these energy regimes, as mentioned above, so data for these
regions were communicated privately. That is, the information
for 41 common elements were included in the ML model
to quantitatively investigate the relationship between material
parameters (Table I) and IMFPs [24]. For the consideration of
both material and energy dependence of IMFP values, in the
regression, there are 129 points dependent on electron ener-
gies for each material, so totally there are 129 x 41 = 5289
data instances in the dataset. We noted that all the electron
energy values are above Fermi energy in the database, as well
as the calculations, tables, and figures in this paper.

Another part of building the database for ML is to select
proper input parameters, namely, the descriptors of the mate-
rial parameters. Because the TPP-2M formula has achieved a
good description of the IMFP, the parameters in the TPP-2M
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TABLE I. Parameters used in ML, including atomic number (Z), atomic mass (M), density (p), number of valence electrons per atom (N,),
free-electron plasmon energy (E,), bandgap energy (E,), Fermi energy (Er), and atomic radius (R).

Element Z M p(g/cm?) N, E, (eV) E, (eV) Er (eV) R (pm)
Li 3 6.94 0.534 1 7.99 0 4.74 145
Be 4 9.01 1.848 2 18.44 0 14.3 105
C (graphite) 6 12.01 2.25 4 24.93 0 20.4 70
C (diamond) 6 12.01 3.515 4 31.16 5.5 20.4 70
C (glassy) 6 12.01 1.8 4 22.3 0 20.4 70
Na 11 22.99 0.971 1 5.92 0 3.24 180
Mg 12 24.31 1.738 2 10.89 0 7.1 150
Al 13 26.98 2.7 3 15.78 0 11.2 125
Si 14 28.09 2.33 4 16.59 1.1 12.5 110
K 19 39.10 0.862 1 4.28 0 2.12 220
Sc 21 44.96 2.989 3 12.86 0 5.8 160
Ti 22 47.87 4.51 4 17.68 0 6 140
\" 23 50.94 6.11 5 22.3 0 6.4 135
Cr 24 52.00 7.14 6 26.14 0 7.8 140
Fe 26 55.85 7.874 8 30.59 0 8.9 140
Co 27 58.93 8.9 9 33.58 0 10 135
Ni 28 58.69 8.902 10 35.47 0 9.1 135
Cu 29 63.55 8.96 11 35.87 0 8.7 135
Ge 32 72.59 5.32 4 15.59 0.67 12.6 125
Y 39 88.91 4.469 3 11.18 0 4.4 180
Nb 41 9291 8.57 5 19.56 0 5.3 145
Mo 42 95.94 10.28 6 23.09 0 6.5 145
Ru 44 101.07 12.41 8 28.54 0 6.9 130
Rh 45 102.91 12.41 9 30 0 6.9 135
Pd 46 106.42 12.02 10 30.61 0 6.2 140
Ag 47 107.87 10.5 11 29.8 0 7.2 160
In 49 114.82 7.31 3 12.59 0 4.82 155
Sn 50 118.71 7.31 4 14.29 0 5.51 145
Cs 55 132.91 1.88 1 343 0 1.73 260
Gd 64 157.25 8.23 9 19.77 0 3.5 180
Tb 65 158.93 8.25 9 19.69 0 4 175
Dy 66 162.50 8.78 9 20.08 0 3.5 175
Hf 72 178.49 13.31 4 15.73 0 7.9 155
Ta 73 180.95 16.65 5 19.53 0 8.4 145
w 74 183.85 19.3 6 22.86 0 10.1 135
Re 75 186.21 21.02 7 25.6 0 10.7 135
Os 76 190.23 22.61 8 28.08 0 114 130
Ir 77 192.22 22.65 9 29.66 0 11.2 135
Pt 78 195.08 21.45 10 30.2 0 10.6 135
Au 79 196.97 19.32 11 29.92 0 9 135
Bi 83 208.98 9.79 5 13.94 0 12.6 160

formula [24] were used, as listed in table 1 of Ref. [24]. Fur-
thermore, we found that the inclusion of the atomic number Z
and atomic radius R in the descriptors markedly improved the
accuracy of the ML model, together with the other parameters
listed in Table I. To describe the correlation between these
descriptors, we used the Pearson’s correlation coefficient r,
which is defined as

. ‘ o, 06— X0~ 7)
VY =Xy, (-7

where X; and Y; are two descriptors, and X and Y are the
averaged values over n data points. According to Eq. (5),

&)

r = 1 indicates an exact linear correlation between X and Y,
whereas r = 0 implies no correlation. Using the above param-
eter information and Eq. (5), the applicability of parameters to
IMFP was analyzed as follows.

In this paper, the same descriptors, i.e., material-dependent
physical parameters, were used as those employed in the
TPP-2M equation. In Ref. [24], the TPP-2M equation in-
cluded four material-dependent physical parameters to predict
IMFPs: namely, atomic mass (M), density (p, in grams per
cubic centimeter), number of valence electrons per atom (N,),
and bandgap energy (E,, in electronvolts). Among these pa-
rameters, M and p are basic physical parameters, and E,
as well as the Fermi energy (Ef, in electronvolts), as basic
material-dependent parameters, describe the basic model of
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TABLE II. Detailed RMSD and its variance for different ML between Er and E,. This relationship occurs because Er and
models appearing in Fig. 1(b). E, are dependent on the electron number density for free-
electron-like solids. However, this is not suggesting that Ep
ML algorithms Testing set ratio Average RMSD RMSD variance is not necessary in this paper, even if Er is not appearing in

GLR 10% 37.98% 1.22 % 10~* the TPP-2M formula. In the theoretical model of calculating
SVM 10% 4.90% 2.66 % 10-6 IMFP with optical constants, such as the FPA or Mermin
GPR 10% 0.69% 1.31 x 10-6 method, Er is a very important parameter. In the calculation
GLR 30% 37.92% 4.10 x 10~ of FPA, although Er is not essential for predicting IMFPs
SVM 30% 4.92% 998 x 10~7 at relatively high energies (>50 eV), it is very important in
GPR 30% 0.78% 8.24 x 1077 low energy IMFP calculations [48]. As was mentioned before,
GLR 50% 37.87% 2.34 x 1073 IMFP values are expressed as the energy above the Fermi
SVM 50% 4.97% 5.35 x 1077 energy in this paper, the same as the FPA-calculated database
GPR 50% 0.93% 1.15 x 1076 used here. In other words, electron energy (E') is from the
TPP-2M 4.98% bottom of the conduction band in the FPA calculations for

a conductor, while the upper limit of the integration in FPA
is E' — Ep, not E' [24], which is due to the Pauli exclusion

the energy band. The descriptors E, and N, are responsible princi.ple. Therefore, the IMFP calcu!ation with the' FPA is
for the density of valence electrons in a material. Here, N, ~ associated with Er. In th‘? case of a high energy region of at
is usually associated with valence electrons but may include  16ast >50 eV, Er can be ignored compared with the electron
shallow core electrons in some materials. Also, E,, which ~ CN€Igy, SO Ep does not apparen.tly influence the galculatlon of
is another parameter that is related to the IMFP, is related  the FPA. Inversely, the IMFPs in very low energies (<50 eV)
to N, by E, = 28.8(N,p /M)l/z (eV), which represents the are sensitive to the value of E}?' For the same reasqn, .the
oscillator strength for electrons that strongly contribute to the ~ 1PP-2M fqrmqla does not contain Er because 1ts apphcatlon
inelastic scattering. Figure 1(a) shows an obvious relationship ~ €nergy region is >50 eV, while the ML model in this paper

(a) (b) 45
c Bl GLR
- @ s\
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FIG. 1. (a) Correlations between adopted descriptors: atomic number (Z), atomic mass (M), density (p), number of valence electrons
per atom (N,), free-electron plasmon energy (E,), bandgap energy (E,), Fermi energy (Er), and atomic radius (R). (b) The average root
mean square deviation (RMSD) of different machine learning (ML) models. The models include Gaussian process regression (GPR), support
vector regression (SVR), generalized linear regression (GLR), and the TPP-2M formula >50 eV for comparison. Detailed RMSD values and
variances are shown in Table II. To ensure fair comparison, the calculation of RMSD with the TPP-2M formula also used Eq. (9). (c) Learning
performance of inelastic mean free paths (IMFPs) for all materials. The x axis is the IMFP calculated using the full-Penn algorithm (FPA)
in Ref. [24], and the y axis is the IMFP predicted using GPR. The energy range covers all IMFPs in the dataset. The blue line is a diagonal,
which means agreement between predicted and calculated IMFPs, and the red triangles are predicted results. (d) Comparison between the GPR
model, TPP-2M formula, and calculations with optical data. The blue solid line is IMFPs predicted by the GPR model, the red dashed line
is IMFPs predicted by the TPP-2M formula, and the black dots are IMFPs calculated with optical data. The results for three typical carbon
allotropes are shown. The electron energies are expressed with respect to the Fermi level. (e) The average RMSD and variance of the trained
GPR model. The model for each testing set ratio is trained 100 times separately by changing the random partition of training and testing sets.
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estimates IMFPs at very low energies (<50 eV). Therefore,
in the ML model, we must adopt Er as a basic parameter.
Figure 1(a) also reveals that the correlations among Z, M,
and p are the highest: these descriptors are the most basic
physical parameters when predicting IMFPs, which means
that they cannot be considered as repeated features and must
be retained. In addition, N, changes periodically with increas-
ing atomic number and has a weak correlation with the basic
physical parameters R (in picometers), Z, M, and p. Here, E,
is correlated with N,, p, and M. As for Er and E,, because
they are parameters in band theory, they have no direct cor-
relation with the other descriptors. These physical quantities
have already been included in the TPP-2M formula or FPA
and thus must also be included here. As shown in Fig. 1(a),
the descriptors used in this paper show weak correlations with
each other. Therefore, because they are almost independent of
each other, all are necessary for the ML model.

There are various training algorithms for the ML model
with the ability to recognize patterns from a dataset and then
use these patterns to make predictions for new data [49]. Here,
we compare the performance of three regression algorithms
for the ML model of IMFPs: generalized linear regression
(GLR), Gaussian process regression (GPR) [50], and support
vector regression (SVR) [51].

(i) GLR

Linear regression is often performed using the least-
squares method, producing a linear relationship between
descriptors and a target. GLR is not like simple linear regres-
sion, which gives a response with a certain distribution, e.g.,
a Poisson distribution. The distribution is a function added
between a simple linear regression and the final regression
results.

(i) GPR

The GPR model is a probabilistic model belonging to a
generic supervised learning method. The GPR model provides
a probabilistic distribution of a new output value by the de-
scriptors P(Vnew |Virain» Xtrain, Xnew) based on the training result
for each step. In the step-by-step optimization, the joint distri-
butions of the regressed function follow a Gaussian process:

F(x) o< GP[O, k(x, x")], 6)

where k(x, x") is the kernel function. This kernel function
is related to the shape of the target, which is a radial basis
function in this paper:

I\ 2
k(x, ') = exp [—%d(’l-“, )%) } )

where [ is the length scale parameter, and d(a, b)? is the mean
square derivative of a and b. For available distributions of the
function and targets, the posterior distribution of the adjusted
function is calculated through a Gaussian process.

(iii) SVR

The essential thought of SVR is to transform a regres-
sion into a linear regression. SVR involves reflecting the
descriptors into a high-dimensional feature space in which
a high-dimensional linear regression can be performed. The
kind of SVR used in this paper is e-SVR, which allows a
tolerance gap ¢ between the true target and the learning target.
Within the gap, the result will be an acceptable result. The

actual optimization uses quadratic programing algorithms.
The decision function is

N
f) =) (@ —ak(x, x') + b, ®)

i=1

where o;, o;* are Lagrange multipliers, and k(x, x’) is a kernel
function, as shown in Eq. (7).

To prepare the training data, the database was divided into
a training dataset and testing dataset. The ML model was
trained with the training set, and then the accuracy of the
model was calculated with the testing set. The testing set ratio
was used to indicate the size ratio of the testing dataset over
the total database. A larger testing set ratio indicates the model
was trained with a smaller training dataset. Figure 1(b) shows
the performance of three ML algorithms for different datasets
with three testing set ratios and the detailed RMSD values
and variances are shown in Table II. Each ML algorithm
was trained 100 times by changing the random partition
of training and testing sets in the sight of credibility. The
performance of the TPP-2M formula for applicable ener-
gies (>50 eV) is included as a reference. The accuracy of
the model was measured by the root mean square deviation
(RMSD) as

1 & [10g Aprea (E;) — log A(E)]?
RMSD — _Z[Og pred (E;) — log A( )i|’ )
n = log A(E;)

where 7 is the total number of data points in the testing set,
E; is the electron energy, Apeq(E;) is the predicted IMFP,
and A(E;) is the target value calculated by the FPA. The
closer that the RMSD is to zero, the better the prediction.
Figure 1(b) reveals that the GLR has the worst performance
in the different testing set ratios. The results of the GPR and
SVR are much better and are close to the performance of
the TPP-2M formula with the high-energy data. GPR showed
the best performance of the three algorithms. Therefore, we
used this algorithm to train the ML model. For the testing set
ratio, we chose it as 30%, which is widely used in the ML
community [52]. This is also allowed with Fig. 1(e). In this
figure, we expand the ratio of the testing set until 90% for
GPR and trained every model 100 times. For a testing set ratio
>30%, the average RMSD and its variance is rising. Above
all, according to this evidence, our chosen testing set ratio
was 30%.

Figure 1(c) presents the training results of IMFP with the
GPR method determined above. There is good agreement
between the GPR-predicted value and the standard values
calculated by the FPA. Figure 1(d) compares the IMFPs
predicted with the GPR method with those obtained from
the TPP-2M formula using optical data for three carbon al-
lotropes. Our ML approach shows remarkable performance
even if the predictions of carbons are typically poor among all
41 materials, whereas the TPP-2M equation cannot achieve
a balanced description accuracy for three carbon allotropes,
despite the isolated good agreement for glassy carbon. These
results reveal that our ML method is much stronger than the
TPP-2M equation in terms of IMFP data retrieval. Addition-
ally, during this procedure, the critical features mentioned
above were selected. In fact, during the regression of the GPR
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TABLE III. Length scales of parameters (electron energies excluded) used in ML optimized by GPR.

Element 4 M p(g/cm?) N, E, (eV) E, (eV) Er (eV) R (pm)
Maximum value 83 208.98 22.65 11 35.87 5.5 204 260
Length scale 15970 103 1220 8.95 114 6.24 11.8 76.5

algorithm, the optimized value length scale [ for each feature x
appearing in Eq. (7) was also given by the program. According
to Eq. (7), a larger length scale means a smaller deviation of
kernel function, thus leading to a weaker impact to the target
value. In other words, the value of length scale can reflect the
relativity of each feature toward the target value. Through the
different testing set ratio attempts, the features were selected
by checking the value of the optimized length scale. In the
procedure of GPR, many other features including Z and R, for
example, and electrical and thermal conductivity were tried,
but their optimized length scale usually reached the upper
bound of the optimization, in other words, show low impact to
IMFPs. Optimized length scales of the features used in ML are
shown in Table III. In the features used, the length scales are
all comparable with the maximum value of each feature, while
the length scale of Z and p is relatively larger. In fact, this is
caused by the introduction of Z and R. For Z, it has an obvious
linear relationship with M, as shown in Fig. 1(a); for R, it is
related to atomic effective volume (~R?), which is also linear
with M/p. On one hand, M and p appeared in the TPP-2M

formula, which is already being used to describe IMFPs; on
the other hand, the necessity of Z and R was proven with
a data-driven idea, by regressing another powerful empirical
formula with LASSO [42] in a previous paper. Although these
features are not independent to each other, which means the
length scale of these parameters will inevitably include large
values, they are very easy to obtain because they are all basic
features (material-dependent parameters) in the periodic table.
It is harmless to include them in the selection of features.
Specifically, the TPP-2M formula does not include Z and R
yet; we stated that they are necessary in GPR. Meanwhile,
many other features were deleted from the candidates because
their length scales were not reasonable, and finally, the eight
features used in this paper were decided.

We now demonstrate the ability of the current ML model
to predict IMFPs. In the ML area, one of the algorithms to
monitor and avoid overfitting is cross-validation (CV). In this
paper, we also introduced one cross-validation, e.g., LOOCY,
which is also widely used to test the prediction performance
of ML algorithms. In the LOOCV method, we trained the ML
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Li |Be BI[C[N|[O|F [Ne
P|s|cl|Ar |
Ca Mn Zn|GalGelAs|Se|Br |Kr| &
(o]
Rb| Sr ¥ | zr Tc Ccd Sb|Te| I [xe =
Cs|BalLa Hg| Tl |Pb| Bi [Po| At |Rn
Fr|Ra|Ac|Rf|Db|Sg|Bh|Hs|Mt|Ds|Rg|Cn{Nh| FI [Mc|Lv|Ts |Og
0,
[La]ce] Pr[Nd[Pmism]Eu|GafBIBY] Ho| Er [Tm]Yb[Lu] 0%
(b) 100 (c) 25
e A
Irx10? 20l R Transition
Gdx10' < coa o &
< 15¢ o Lanthanide
Fex10° a Co
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. 74
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FIG. 2. (a) Direct representation of root mean square deviations (RMSDs) determined for the 41 investigated materials in the periodic

table. The gradual color change from green to yellow corresponds to the RMSD value. A detailed RMSD value distribution is provided in
Table IV. (b) Some typical leave-one-out cross-validation (LOOCV) results (Ir, Gd, and Fe); the electron energies are expressed with respect
to the Fermi level. The variances are also shown in the figure, which are very small. (c) RMSD as a function of energy for different kinds of
materials. The black dashed line is the average RMSD for all materials. The blue solid line is for transition and lanthanide metals.
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TABLE IV. RMSDs (%) of LOOCYV results.

C C C
Element Li Be (graphite) (diamond) (glassy) Na Mg Al
RMSD 12371229 8.10 17.02 7.98
Element Y Nb Mo Ru Rh Pd Ag In

RMSD 6.62 2.66 2.28 2.52

K S¢c Ti V Cr Fe Co Ni Cu Ge

10.595.125.29 9.59 9.74 2.933.11 1.74 1.67 7.88 6.10 3.17 4.31 19.68

Cs Gd Tb Dy Hf Ta W Re Os Ir Pt Au Bi

1.70  2.96 6.69 8.49 6.00 28.59 4.49 4.10 4.46 8.09 3.97 1.87 1.71 2.27 1.36 1.10 2.57 28.89

model with 40 of the 41 materials. The performance of the
model was then tested on the 41st material. In other words,
the information of the 41st material was the testing set, and
the data for the other 40 materials were the training set for the
model. We repeated the process 41 times so that the prediction
performance (characterized by RMSD) was obtained for all
the materials in the current dataset. The LOOCV method
was conducted as follows in this paper. First, all the data for
a single material were taken out as a testing set, and then
the data for the other 40 materials were used as a training
set. Second, an ML process was run on the training set, and
then the learning result was tested using the testing set. This
process was repeated 41 times (once for each material) to
generate a total of 41 cross-validation learning results. Be-
cause each training cycle is equivalent to using the data of 40
materials to predict the remaining one material, this method
can effectively test the ability of GPR to predict the IMFP of a
material.

Figure 2(a) displays a color map of the RMSDs of the 41
materials determined from the LOOCYV testing (Table IV).
The total average RMSD was 6.9% and >80% of the ele-
mental solids had RMSDs within 10%. Careful examination
of Fig. 2(a) reveals that the predicted IMFPs of the transi-
tion and lanthanide metals show very good accuracy with an
average RMSD of only 3.5% for all the transition and lan-
thanide metals in the dataset. Figure 2(b) shows three typical
LOOCYV results with different accuracies for the transition or
lanthanide metals Ir (1.36%), Gd (4.49%), and Fe (7.88%).
Even the LOOCYV results for Fe in Fig. 2(b) show satisfactory
agreement with the results from optical data. The energy de-
pendence of the RMSD values is presented in Fig. 2(c). For
the transition and lanthanide metals, the ML model shows
slightly larger RMSDs in the lower energy range, especially
in the region from approximately 10 to 100 eV, and then
gradually decreased as the energy increases. Considering the
information in Figs. 2(b) and 2(c), we can draw the conclusion
that the predictive performance of the GPR for transition and
lanthanide metals is consistent and superior to that for other
materials. Figure 2(c) also shows the typical RMSD distribu-
tion of transition and lanthanide metals with energy, which
confirms the good prediction accuracy of the ML model for
transition and lanthanide metals.

Figure 2(a) reveals that the total RMSDs for three elements
exceeded 20%: namely, Ge (20%), Cs (29%), and Bi (29%).
These large prediction biases probably originated from the
lack of training data, especially data for elements with similar
physical properties. For example, Cs and Bi are quite isolated
from the other elements in the training set on the periodic ta-
ble, as shown in Fig. 2(a). In addition, Ge has no neighboring
elements in the periodic table that are in the training dataset.
Another possible reason for the large prediction biases is that

the current descriptors in the ML model may not be sufficient
to describe Ge, Cs, and Bi well. Further investigations should
be conducted to collect more training data and search for more
universal descriptors for the IMFP data.

In Fig. 2(c), the energy dependence of total RMSD for all
materials shows a similar trend to that of the transition and
lanthanide metals, except that the absolute values were larger,
especially in the very low energy (<50 eV) range. The highest
RMSD was 22% at an energy of ~30 eV. While this prediction
error is nonnegligible, in addition to the inaccuracy of FPA
in the low energy region (<50 eV), namely, our training set
stated earlier, three points should be emphasized: (1) The
large deviation in the very low energy (<50 eV) range mainly
arose from the small number of elements in the dataset. For
example, the RMSDs for the alkali and alkaline earth metals
are much larger than those of the transition and lanthanide
metals. This result occurs mainly because the difference of the
physical properties between alkali and alkaline earth metals is
relatively large, whereas other materials, e.g., the transition
and lanthanide metals, are fairly similar to each other. (2)
Barely any empirical formula has prediction power for low
energy IMFPs. On one hand, the TPP-2M formula was not
intended for use in the low energy region (<50 eV); on the
other hand, despite the empirical formula including the very
low energy (<50 eV) range has been achieved in Ref. [43],
there are still significant limitations for its application, as
mentioned before. When the energy is as low as 50 eV, there
are few channels for electrons to lose energy; meanwhile,
the probabilities for inelastic scattering generally decrease
for electron energies less than several times the excitation
energy, which simultaneously causes the IMFP to increase
in the very low energy (<50 eV) region. Therefore, the cal-
culation of FPA in the very low energy (<50 eV) is not as
accurate as intermediate energies (>50 eV or <200 keV)
because of the neglect of many effects. The imprecise values
of IMFPs in the very low energy (<50 eV) as a training set
may mislead the prediction of ML, thus resulting in a large
peak in low energy region. Despite the training set, namely,
FPA-calculated IMFPs from Ref. [24], has less validity at
extreme energies (<50 eV or >200 keV) than the intermediate
energy region and may cause lower reliability in our GPR
prediction, it is not a disadvantage for GPR. (3) From the
IMFP calculation methods (e.g., FPA), we can see that the
description of IMFP in the low and high energy regions relies
on different material-dependent parameters (features), respec-
tively. However, to meet the need for all the energy regions
in this paper, the features were selected together. This may
lead to a poor prediction for the low energy region. In other
words, as was mentioned before, the IMFP calculation using
FPA is directly associated with ELF. The shape of ELF is
quite different in lower energies (<100 eV) for each material.
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TABLE V. Properties of transition and lanthanide metals used to predict IMFPs. Note that these are materials whose IMFPs cannot be
calculated by physical theory (e.g., FPA) because of a lack of ELF or optical constants.

Element V4 M p(g/cm?) N, E, (eV) E, (eV) Er (eV) R (pm)
Mn 25 54.94 7.47 7 28.10 0 10.9 140
Zn 30 65.38 7.14 12 32.97 0 9.47 135
Zr 40 91.22 6.51 4 15.39 0 5.8 155
Tc 43 98.00 11.50 7 26.10 0 7.1 135
cd 48 112.41 8.65 12 27.68 0 7.47 155
La 57 138.91 6.15 9 18.17 0 3.7 195
Ce 58 140.12 6.69 9 18.88 0 2.9 185
Pr 59 140.91 6.64 9 18.76 0 3.8 185
Nd 60 144.24 7.01 9 19.05 0 4 185
Pm 61 145.00 7.26 9 19.34 0 42 185
Sm 62 150.36 7.35 9 19.11 0 45 185
Eu 63 151.96 5.24 9 16.05 0 42 185
Ho 67 164.93 8.80 9 19.95 0 49 175
Er 68 167.26 9.07 9 20.12 0 3.9 175
Tm 69 168.93 9.32 9 20.30 0 4.1 175
Yb 70 173.05 6.57 9 16.83 0 2.7 175
Lu 71 174.97 9.84 9 20.49 0 6 175
Hg 80 200.59 13.53 12 25.91 0 7.13 150

We noted that the used features, even for E, and E,, cannot
completely show the characteristics of ELF in these ener-
gies. Therefore, in sight of the energy-dependent degree, the
GPR prediction ability in this energy region, especially from
material-dependent parameters, is inevitably poorer. Based on
the specified database, the current ML model covers both
the low and high energy regions, which means that it is a
reliable approach and can be applied to the prediction of the
IMFP.

With our confidence in the current ML model established,
especially for transition and lanthanide metals, we then made
predictions of unknown IMFPs using the parameters listed in
Table V. Figure 3 shows the predicted IMFP curves for Mn,
Zn, Zr, Tc, Cd, and Hg as representative examples. For com-
parison, we also include the IMFPs predicted by the TPP-2M
formula, which only works in the high energy region. Because
of the robustness of our ML method, the trend predicted by the
ML approach is consistent for the six materials, and the high
energy region agrees well with the results from the TPP-2M
formula. The most unagreed result in the high energy region
between our ML approach and the TPP-2M formula are the
materials Zn and Hg. We noticed that Zn and Hg both have
just one neighbor material on the degree of period table in
the training data [see Fig. 2(a)], but other materials in Fig. 3
have both neighbors. Additionally, Hg is the only liquid metal
existing in simple materials, and this fact may bring out some
unique trends on the IMFP curve. These trends may not have
been seized by FPA calculation as our training data; thus,
ML should have a larger deviated result. Considering that
our training set includes the FPA-calculated IMFP data, and
the TPP-2M formula is also derived from FPA-calculated
IMFP data, the agreement between our ML data and TPP-2M
formula is very reasonable. These results demonstrate that the
ML method is very reliable because it is only dependent on
the reliability of the input data; it does not require any artifi-
cial or subjective factors that are often included in empirical
formulas. More details of the ML prediction data used to de-

termine the IMFPs of transition metals, including lanthanide
metals [uncolored elements in Fig. 2(a)] are described in the
Appendix.

However, the only comparison with the empirical formula
is not pursuable. Here, another series of FPA calculations for
materials not included in Ref. [24], i.e., the training set of
our ML approach, is carried out for further comparison. The
most sensitive factor in the FPA calculation is ELF. In fact, the
reason why Shinotsuka et.al. did not include several materials
in the FPA calculation [24] is that they could not find suitable
ELFs at that time for Mn and Zr, etc. Suitable means their
quality, namely, two sum rules have large errors.

Two sum rules, i.e., the oscillator strength sum rule (f-sum
rule) and the perfect screening sum rule (ps-sum rule) [53],
were applied to check the accuracy of the ELFs of Mn and Zr
used in this paper. The f-sum rule Z is given by

2 ®max _1
T = —— m] — ldo. 10
f nsz;fo wm{e(w)} @ (10

where Qp = /4nn,e?/m, n, = N,p/m, is the number den-
sity of atoms, N, is the Avogadro’s number, p is the mass
density, and m, is the atomic weight. The ps-sum rule P can
be obtained from the Kramers-Kronig relation as Ref. [53]:

Po=2 [ bl 2 e £ el L 11
LRE A Pl s FO A

where Re{1/¢(0)} = 0 for conductors. The theoretical values
of Z.+ and P are atomic number and unity, respectively, in
the limit of wmax — o0. In this paper, wmax was 1 MeV.

After a lot of literature research, we validated the amount of
ELFs of many simple materials and finally found two suitable
ELFs for two materials, Mn and Zr. The ELFs of Mn used
in the calculation of the IMFP were taken from Adachi [54]
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FIG. 3. Representative predictions for the transition metals Mn, Zn, Zr, Tc, Cd, and Hg. Blue solid curves are inelastic mean free paths
(IMFPs) predicted by Gaussian process regression (GPR), red dashed curves are IMFPs predicted by the TPP-2M formula. All electron energies
are expressed with respect to the Fermi level. The variances are also shown in the figure.

in the photon energy range of 0.07-6.6 eV, from Wehenkel
and Gauthé [55] in the range of 7.0-110 eV, and from Henke
et al. [56] in the range of 0.11-30 keV [see Fig. 4(a)]. The
ELFs of Zr were taken from Prieto et al. [57] in the photon
energy range of 0-80 eV and from Henke et al. [56] in the
range of 0.08-30 keV [see Fig. 4(b)].The ELFs for energy
losses between 0.03 and 1 MeV were calculated from atomic
scattering factors [58]. The discontinuity of ELFs shown in
Figs. 4(a) and 4(b) is because the ELFs are composed of
multiple sets of experimental data, and the results of different
experiments are different, including the connective energy
points. Figures 4(c)—4(f) show the f- and ps-sum rule checks

of the ELFs of Mn and Zr used in this paper. Table VI lists the
results of the f- and ps-sum rules of the ELFs of Mn and Zr.
In the validation of sum rules for both materials, the ps-sum
rule shows very small relative errors; the f-sum rule shows

TABLE VI. List of f- and ps-sum rule checks of ELFs of Mn

and Zr.
f-sumrule Relative error  ps-sum rule  Relative error
Mn 21.47 —14.1% 0.984 —1.6%
Zr 37.24 —6.9% 1.016 1.6%
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FIG. 4. Energy loss functions (ELFs) and two sum rules for Mn and Zr.

relatively larger error, especially for Mn, but still acceptable
comparing with other ELFs we found.

Through the validated ELFs of Mn and Zr, IMFPs were cal-
culated through FPA. Figure 5 shows the comparison of FPA-
calculated with GPR-predicted IMFPs on Mn and Zr. In the
low energy region (<100 eV), the GPR-predicted IMFPs for
Mn are larger than the FPA result but still illustrate the trend;
in the high energy region (>100 eV), the GPR-predicted
IMFPs are like the FPA results but slightly lower. Meanwhile,
for Zr, the relative position of the curves for GPR and FPA are
almost similar with the situation of Mn in the whole energy
region, but Zr has a better GPR result than Mn. The larger
deviation of Mn is highly probable due to the underestimated
ELF used in the FPA calculation. As shown in Fig. 4(c) and
Table VI, the f-sum rule of the ELF for Mn has a relative error
of —14.1%, representing the ELF of Mn used herein has ap-
parent error with the true value, especially for the high energy
part. This result shows that, in the future, we are willing to use
the GPR-predicted IMFP as a reference for splicing different
experimental ELFs between different energy segments.

Moreover, to compare the predictive power of empirical
formulae with GPR, we also plot the IMFPs predicted by
various empirical formulae including the TPP-2M formula
in Fig. 5 for the whole energy region. The TPP-LASSO-S
formula was also developed by our group in Ref. [42], while
the S1 and G1 formulae were developed by Seah and Gries
[38]; details can be found in Ref. [59]. Although the appli-
cable energies for the TPP-2M formula are >50 eV and for
TPP-LASSO-S, G1, and S1 formulae >200 eV, the IMFPs
predicted by each formula are shown in the whole energy
region. The shorted values in the lower energy for each for-
mula are because they give out negative IMFPs which cannot
be shown in the figure. Firstly, the formulae and GPR show
consistency with FPA-calculated data in high energies (>50
eV). To quantify the error, the relative deviation between
GPR-predicted and FPA-calculated IMFPs, as well as the
most representative one among all formulae, and the TPP-2M
formula-predicted and FPA-calculated IMFPs are calculated
in the high energy region (>50 eV). For Mn, the RMSDs
[see Eq. (9)] of GPR and the TPP-2M formula are 3.77% and
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FIG. 5. Representative predictions for Mn and Zr. Blue solid curves are inelastic mean free paths (IMFPs) predicted by Gaussian process
regression (GPR), red dashed curves are IMFPs predicted by the TPP-2M formula, the green dotted curves are IMFPs predicted by the
TPP-LASSO-S formula, the brown dash-dotted curves are IMFPs predicted by the G1 formula, the purple short dashed curves are IMFPs
predicted by the S1 formula, and black hollowed dots are IMFPs obtained from full-Penn algorithm (FPA) calculation. Despite the applicable
energies (>50 eV for the TPP-2M formula, >200 eV for the other formulae), the predicted IMFPs for these energies for each formula are still
shown in gray dots for comparison. For clarity, the comparison of each material is shown in two plots, respectively. All the electron energies
are expressed with respect to the Fermi level.
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FIG. 6. Representative predictions for the transition and lanthanide metals Er, Tm, Pr, Nd, Lu, Yb, and Ho. Blue solid curves are inelastic
mean free paths (IMFPs) predicted by Gaussian process regression (GPR), red dashed curves are IMFPs predicted by the TPP-2M formula,
and black dots are IMFPs calculated from experimental data for comparison.
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102 10 10* 10% 10%° 107
Energy(eV)

FIG. 7. Predictions for SiC based on elemental materials using
the virtual crystal approximation. Blue square dots are inelastic mean
free paths (IMFPs) of Si, and green triangle dots are IMFPs of
C (graphite) calculated from experimental data in Ref. [24]; they
are used for SiC IMFP calculation in this figure. Red dotted curve
is IMFPs predicted by Si and C (graphite). Black dots are IMFPs
calculated from experimental data in Ref. [25] for comparison.

2.91%, respectively, while those of Zr are 2.28% and 3.89%.
Meanwhile, for the situation of energy >200 eV, the RMSDs
for GPR, TPP-LASSO-S, GI1, and S1 are 5.68%, 11.91%,
18.72%, and 26.18% for Mn, while those of Zr are 5.91%,
12.43%, 19.58%, and 27.46%, respectively. These relative
deviations clearly indicate that, at least in the situation of Mn
and Zr, GPR has the same predictive power compared with
TPP-2M for electron energies >50 eV, and generally better
than the TPP-LASSO-S, G1, and S1 formulae for electron
energies >200 eV, about which researchers are frequently
concerned. Additionally, in lower energies (<50 eV), even
the trends of empirical formulae do not give certain reference
values, while our GPR-predicted IMFPs are the most closed
curve to FPA-calculated values. In fact, although there is no
further experimental evidence for IMFPs of Zn, Tc, and Cd,
we believe that only for the cases discussed in this paper,
namely, from the known IMFP database to predict the IMFPs
unknown for sporadic transition metals in the database, GPR
can give out reliable results in the degree of statistics.

GPR is different from traditional empirical formulae for
the different focus points. GPR-defaulted material features
follow the Gaussian distribution, which means that the pre-
dictions of GPR focus on local information between similar
materials in the prediction; but empirical formulae, includ-
ing the TPP-2M formula, must contain the information of
all the materials, including 14 organic compounds [23], 41
element materials [24], and 42 inorganic compounds [25];
thus, the IMFP descriptions for general materials must make
a sacrifice for materials with special properties to contain
all the material IMFPs. This characteristic can also be seen
from Fig. 2(a): transition metals and lanthanides show a better
prediction (lower RMSD), while the RMSDs for Bi and Cs are
very large. Not only associated with atomic numbers, for the
elementary materials far away in the periodic table, various
physical and chemical properties may have large differences.

Therefore, for GPR, the prediction of these materials with
large differences in features will lack effective information,
leading to poor learning effects of these materials, namely,
large RMSDs. Therefore, comparing with GPR, the TPP-2M
empirical formula obtained by mass data analysis is more suit-
able for prediction of the material IMFPs with less correlation
with the known IMFP materials. Naturally, the “correlation”
here means the feature values difference between materials
(i.e., the correlation between physical and chemical proper-
ties). The ML method, e.g., GPR in this paper, has a stronger
predictive ability when the known IMFP materials are more
relevant to the material whose IMFPs need to be predicted.

Because TPP-2M is an empirical formula, it is appro-
priate to prove the accuracy of the prediction data with
experiments in addition to the TPP-2M formula in Fig. 3.
Figure 6 compares the ML results and those obtained from
other calculations using the experimental data from Ref. [60],
software ELSEPA developed in Ref. [61], and the calculation
method inspired by Refs. [4,62-64]. The EAL Agap [4] is
another important physical quantity in surface analysis [64].
From the EAL data, an experimental IMFP value can be
evaluated. EAL can be calculated as follows [62]:

X

In(IS/I® + 1)’

for all the predicted materials. In Eq. (12), x is the surface
layer thickness and IS /I? is determined from the experimental
data in Ref. [60]. EAL was then converted to IMFP to compare
results. Using the software ELSEPA [61], the transport cross-
section oy was obtained. A linear interpolation was used to fit
the energies. According to Ref. [63],

AEAL = (12)

Ae=Mow)', M =NoplAn, (13)

where M’ is the atomic density, Ny is the Avogadro number,
A, is atomic weight, and p is density. Equation (13) allows
oy to be converted to transport mean free path (TMFP) A... As
described in Ref. [64],

AIMEP

)\EAL = (1 — O~738w))\IMFPa w=—————.
AIMFP + Ag

(14)

Using the known TMFP, IMFP can be determined accord-
ing to

(AL — i) + v/ (REaL — Aw)® + 1.048ApaL Ay
0.524 ’

AMFP =

15)
Therefore, Eq. (15) allows IMFP to be estimated from
experimental data, and the resulting values can be compared
with our ML predictions. It shall be noted that Eq. (15) is
an empirical formula, and this method allows us to do only a
rough comparison because it has an unknown amount of error.
In particular, the method in Ref. [62] is very approximate, es-
pecially for the value of x in Eq. (12). The x changes with the
materials because of the related lattice relaxation and surface
core level shift in materials. This means that the trend of the
curve in Fig. 6 is more important than the absolute values.
Figure 6 presents the comparison of the IMFPs determined
by our ML method, TPP-2M formula, and using Eq. (15). Be-
cause of the robustness of our ML method, the trend predicted
by the ML approach is consistent for the seven materials, and
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TABLE VII. Properties of compounds used to predict IMFPs. Note that the values of Z, M, N,, and R are estimated using the VCA.

Element z M p(g/cm?) N, E, (eV) E, (eV) Er (eV) R (pm)
AgBr 41 93.89 6.48 9 2271 2.68 6.95 137.5
AgCl 32 71.66 5.59 9 24.14 3.25 751 130
Agl 50 117.39 5.72 9 19.08 2.92 6.15 150
AL O4 10 20.39 3.97 4.8 27.86 8.63 16.63 86
AlAs 23 50.95 3.73 4 15.59 2.16 7.43 120
AIN 10 20.49 3.26 4 22.99 6 12.03 95
AlSb 32 7437 4.28 4 13.83 1.62 6.94 135
¢-BN 6 12.41 3.49 4 30.56 7.2 15.71 75
h-BN 6 12.41 2.3 4 24.81 5 13.77 75
Cds 32 72.24 4.8 9 2228 2.46 6.88 1275
CdSe 41 95.69 5.66 9 21.03 1.7 6.23 135
CdTe 50 120.01 5.85 9 19.09 1.51 6.13 1475
GaAs 32 72.32 5.32 4 15.63 1.47 8.54 1225
GaN 19 41.86 6.09 4 21.98 3.4 10.49 97.5
GaP 23 50.35 4.13 4 16.51 2.26 8.93 115
GaSb 41 95.74 5.61 4 13.95 0.73 7.75 137.5
GaSe 32.5 74.34 5.07 45 15.96 1.98 9.71 1225
InAs 41 94.87 5.67 4 14.09 0.36 6.48 135
InP 32 72.90 4.79 4 14.77 1.38 7.36 127.5
InSb 50 118.29 5.78 4 12.74 0.18 6.36 150
KBr 27 59.50 2.75 4 12.39 7.26 9.86 167.5
KCl 18 37.27 1.98 4 13.28 7.4 10.1 160
MgF, 10 20.77 3.177 5.33 26.03 10.95 16.45 83.33
MgO 10 20.15 3.576 4 24.28 7.69 13.99 105
NaCl 14 29.22 2.165 4 15.69 9 13.1 140
NbCo712 26.44 59.26 7.746 4.58 22.31 0 7.4 113.81
NbCo 544 24.98 55.88 7.769 4.54 229 0 7.4 110.67
NbC o3 24.13 53.93 7.781 452 23.27 0 74 108.86
PbS 49 119.63 7.62 16.26 0.42 5.63 140
PbSe 58 143.08 8.29 15.51 0.29 5.29 1475
PbTe 67 167.40 8.27 1432 0.32 4.86 160
SiC 10 20.05 3.22 23.1 231 9.26 90
Si02 10 20.00 2.19 5.33 22.02 9.1 19.1 85
SnTe 51 123.16 6.47 14.77 0.19 8.44 1425
TiCo, 15.41 33.11 4.627 21.54 0 5.7 111.18
TiCo.os 14.21 30.41 4.843 23 0 5.7 105.90
VCos 15.66 34.13 5.582 4.57 24.91 0 75 106.93
VCoss 15.14 32.94 5.605 4.54 25.32 0 75 104.95
Y;Al50,, 13.9 29.68 4.554 4.8 24.73 6.5 13 94.25
ZnS 23 48.72 4.09 25.05 3.81 9.18 1175
ZnSe 32 72.17 5.26 23.34 2.68 8.1 125
ZnTe 41 96.49 5.64 20.9 2.25 7.67 137.5

the high energy region agrees well with the results of the TPP-
2M formula. Considering that our training set includes the
calculated data for optical constants, instead of experimental
data, the agreement between our ML data and experimental
data is very valuable. For most of the transition and lanthanide
metals, the GPR result is close to the experimental data, even
if the comparison is only for the lower energy region because
of the lack of experimental data (obviously the results for
the higher energy region will be even better). The largest
inaccuracy is observed for the lanthanide metals. One reason
for this is that there are only three lanthanide metals available
for our training dataset. A complete series of data should
improve the performance for this group of elements. These
results demonstrate that the ML method is very reliable, which
is because it is only dependent on the reliability of the input

data; it does not require any artificial or subjective factors that
are often included in empirical formulas. More details of the
ML prediction data used to determine the IMFPs of transition
and lanthanide metals [uncolored elements in Fig. 2(a)] are
described in the Appendix.

Finally, the error caused by ML and the training data must
be considered. Shinotsuka er al. [24] calculated IMFP data
using the FPA with optical constants. Because of the lack
of experimental data, the optical constants are not complete,
which causes inaccuracy in the training data, especially in the
very low energy (<50 eV) region, which is sensitive to these
constants. Together with the reason of the FPA-calculation
model, it was pointed out by Shinotsuka er al. that the FPA-
calculated IMFP data are relatively not reliable in the very
low energy (<50 eV) region and very high energy (>200
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TABLE VIII. RMSDs of GPR predicted compound IMFP results
using VCA.

Material RMSD (%)
AgBr 6.93
AgCl 4.87
Agl 10.76
AlLO; 14.20
AlAs 8.14
AIN 7.41
AlSb 6.00
c-BN 9.99
h-BN 4.45
CdS 7.32
CdSe 10.56
CdTe 12.20
GaAs 6.80
GaN 9.37
GaP 7.79
GaSb 2.05
GaSe 5.69
InAs 3.31
InP 6.85
InSb 4.99
KBr 21.35
KCl 22.62
MgF, 24.35
MgO 9.95
NaCl 24.72
NbCo]lz 638
NbCy g4 7.25
NbCy o3 7.69
PbS 11.82
PbSe 15.14
PbTe 16.21
SiC 9.83
SiO, 18.38
SnTe 8.42
TiCo; 10.59
TiCy o5 12.86
VCo.76 7.15
VCoss 7.94
Y;3Al504, 4.29
ZnS 8.79
ZnSe 7.88
ZnTe 11.22
Average 10.11

keV) region. In addition, according to Ref. [65], N, cannot
be reliably evaluated in many cases, at least for the transition
and lanthanide metals predicted in this paper.

II1. DISCUSSION

So far, the results shown above are limited to the most
preliminary predictions and tests in the elemental material
IMFPs. Therefore, not limited to elemental material IMFPs,
to test the extension ability from elemental materials to com-
pounds, our initial attempt was to use the virtual crystal
approximation (VCA) [66] on the expansion from elemental

materials to compounds. The VCA is a well-received sim-
ple approximation used on the first-principles calculation, in
which the compounds are treated as primitive-periodicity-
styled crystals. However, the averaged potential of each atoms
is simply used for the total potential of the “virtual” system.
Similarly, a very natural idea is to apply the VCA directly on
elemental IMFPs to predict compounds.

Supposing that, for a compound A,B,, the IMFP can be
calculated through the accumulation of cross-sections of A
and B as follows, using VCA:

1

AA,B,

I !/
= na,B,04,B, = Na'0a + ng o, (16)

where n’ is the number of following atoms in the compound
in unit volume, and o is the cross-section. Then the IMFP of
A, B, can be derived according to the following equation:

ny' ng' \ !
Am&=:< A | 7B ) . A7)

nais  nghp

However, this is very limited because the IMFPs are not
always available for A or B, e.g., for the situation of oxides
and halides. We tried to predict the IMFPs of SiC using
the IMFPs of silicon and graphite. The predictive result is
shown in Fig. 7. The calculated IMFPs of SiC [25], Si, and
C (graphite) [24] based on experimental data are shown in
dots for comparison. We noted that the curve of predicted
values is not lying between the curves of Si and C (graphite),
as usual, because the SiC IMFP prediction is a weighted
harmonized average value of its components, according to
Eq. (17). The predicted IMFPs of SiC do not agree with the
FPA-calculated IMFPs with the RMSD of 14.16%; even the
raw data of elemental graphite and silicon is closer than the
prediction here, as shown in Fig. 7. Note that the energy gap
of SiC (2.31 eV) is even larger than the energy gap of Si
(1.1 eV) and graphite (0 eV), so the poor prediction here is
probably due to the large energy gap of SiC. In fact, Table IV
also indicates that the semiconductors always have very large
RMSDs, for example, C (diamond) and Ge. Semiconductors,

o5 | - N'iCI MgAF2
A
o0l KBra
’\; A
<15 4
(] % 4
(2] a A,
E 10 r 4 B A AAA A A
£ a0 0 -
5 a °*
~lnAs 4 @&
A GaSb
0 1 1 1 1 | |

0O 2 4 6 8 10 12
Bandgap (eV)

FIG. 8. The relationship between root mean square deviations
(RMSDs) of Gaussian process regression (GPR)-predicted com-
pound inelastic mean free path (IMFP) results using virtual crystal
approximation and the bandgap of compounds.
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FIG. 9. Prediction result in Table IX with variance.

together with insulators, have nonzero energy gaps, different
from most other materials in the training set, which led to
slower learning rates and poor results, so the prediction results
of semiconductors and insulators were not as accurate as those
of metals. In other words, it seems undesirable using the VCA
on IMFPs to predict compound IMFPs.

Alternatively, we now try to predict compound IMFPs with
ML using the model trained with elemental material IMFPs.
Obviously, some features of compounds should be estimated
with VCA and used as the input features in ML, as shown
in Table VII. With the comparison with the true values of
the compound IMFP database, which is taken from Ref. [25]
calculated by Shinotsuka et.al. for accuracy validation, the
prediction RMSD results are shown in Table VIIIL.

As mentioned before, for a better discussion of the rela-
tionship between RMSDs and bandgap energies, Fig. 8 shows
a clearly positive correlation between them. There are some
materials with extra-large errors at the right side of Fig. 8, e.g.,
KBr, KCl1, MgF,, and NaCl with red color. These materials
are all halides with large bandgap energies, in which the
atomics are combined with ionic bonds. In these compounds,
the valence electrons are largely biased to halogen atoms in
the compounds, so the physical and chemical properties of
these materials are very different from the elemental mate-
rials included in our training set in its formation. Therefore,
the predicted IMFPs of these compounds from the IMFPs of
elemental materials have larger deviations. Meanwhile, there
are also some materials with good predictions, such as GaSb
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and InAs with blue color at the left side of Fig. 8. These
materials show strong metallic characteristics with relatively
small bandgaps, in which the valence electrons show low bias
between the atomics and can be predicted by the VCA of
its formation elements. Moreover, the materials with small
bandgaps are also better predicted in our model, which was
trained by elemental materials. In the prediction of small
bandgap compounds, these similarly well-predicted small
bandgap elemental materials can have larger contribution due
to their similar electron properties. Although for most of the
compounds, the electron behaviors are very different from
their component elements, leading to poor prediction, this ML
model holds the potential to be used for predicting the IMFPs
of alloys as a mixture of multiple elemental materials, whose
electric properties are often similar to that of its components.
Thus, the IMFPs of alloys will be easily predicted with only
elemental materials.

IV. CONCLUSIONS

Based on the existing IMFP database, we developed an ML
technique to determine IMFPs from simple material proper-
ties. The obtained ML model achieved a robust description of
IMFPs over a wide energy range, overcoming the limitation
of the TPP-2M formula in the very low energy (<50 eV)
range. In the LOOCYV testing, the ML model showed reliable
performance in IMFP prediction. Based on the developed ML
model, we predicted IMFPs for several transition and lan-
thanide metals that were not included in the existing database
because of missing optical constants. Improved predictions of
IMFPs were achieved by our ML method, proving its supe-
riority to traditional empirical formula fitting methods. This
paper is only an initial example of using ML to complete the

missing part of the IMFP database, and we will extend this
method to the IMFP estimation of compounds and other ma-
terials in future work. Since the GPR method is more adept at
using local information for prediction, we are going to use the
GPR method to predict the IMFP of metal alloys. Importantly,
this ML method is not limited to IMFP prediction; it can easily
be extended to any other field to determine a small number of
missing data values in a specified database.

V. DATA AVAILABILITY

All data generated and/or analyzed during this study are
included in this paper.
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APPENDIX: GPR PREDICTION RESULT OF TRANSITION
AND LANTHANIDE METALS

Table IX listed the IMFPs result of transition and lan-
thanide metals, predicted by our trained machine learning
model. The results are also shown in Fig. 9 in blue curves,
together with their variances (orange).
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