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Weak nonlinearities in viscoelastic mechanical properties of polymers near their glass transition:
Local versus macroscopic laws for stress-induced acceleration of the mechanical response
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We focus on the role of dynamical heterogeneities on the weak mechanical nonlinearities of amorphous poly-
mers near and above the glass transition temperature Tg by combining experiments and numerical coarse-grained
simulations. The acceleration of the macroscopic nonlinear modulus relaxation resulting from the applied stress
is measured below yielding. As a result of dynamic disorder, the macroscopic acceleration differs from the local
acceleration. We obtain a good agreement of experimental measurements with simulations computed by using
an exponential function of the square stress for the local acceleration. Further, the length scale of dynamical
heterogeneities is deduced.
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I. INTRODUCTION

Many studies have focused on upscaling the mechanical
response of disordered materials as it is encountered in many
different systems (granular media [1], foams [2], networks
[3], and polymers [4,5]) and situations (elasticity fracture
[6] and yield stress [7]). Many nonintuitive behaviors have
been reported, particularly in the nonlinear regime. However,
change of scale in the nonlinear viscoelasticity of amorphous
polymers has not yet been completely understood, particularly
near the glass transition, where the dynamical heterogeneities
are completely at stake.

Glassy polymers can be represented as tiled by domains of
a few tens of monomers whose collective configuration can
be reorganized under thermal agitation [8–10]. Each domain
has an intrinsic relaxation time that is temperature dependent.
Experiments have shown that the intrinsic relaxation times
are randomly distributed over an entire system with a very
wide distribution function (more than four decades) [9]. In this
frame, numerical simulations showed that mechanical cou-
pling between domains modifies the intrinsic local response
of heterogeneities resulting in a complex macroscopic average
of the local viscoelastic responses [11–15].

For a polymer glass near its glass transition temperature Tg,
relaxation times vary with temperature in the linear regime
and with macroscopic stress in the nonlinear regime. In the
linear regime, an increase in temperature results in a decrease
in the local intrinsic times: the conformational changes are
favored by the thermal energy kBT . At the macroscopic scale,
the time-dependent mechanical response of glassy polymers is
accelerated. For instance, after a step strain, the macroscopic
stress relaxes from its glassy value to its rubber value at
shorter times for increasing temperature. However, the form
of the macroscopic response does not significantly vary with
temperature, i.e., in a good approximation, all intrinsic re-
laxation times are shifted by the same factor as temperature

increases. This feature is known as the time-temperature su-
perposition law. Thus, in the linear regime, the macroscopic
stress relaxation measured at two different temperatures T and
Tref can be superimposed by applying a shift factor to the
timescale which is equal to the factor applied to the local
relaxation times. Thus, after an increase in temperature, the
macroscopic and local mechanical responses are accelerated
similarly.

Experiments have shown that the application of a non-
linear mechanical solicitation (strain or stress) results in an
acceleration of the macroscopic response. For instance, after a
step strain, the nonlinear stress relaxation of a glassy polymer
is faster than that measured in the linear regime [16–22].
Therefore, nonlinear acceleration might be addressed with
certain shift factors, as this approach is generally employed
for the temperature effect. However, O’Connell and McKenna
[21,22] have shown that nonlinear effects do not correspond
to a simple shift factor applied to the timescale, as is the
case for time-temperature superposition. Hence, the nonlinear
acceleration of relaxation is challenging.

At the nanometric scale, plastic deformation is attributed to
stress-induced molecular rearrangements [23–26] that occur
by crossing energy barriers. Employing photobleaching meth-
ods, Lee et al. [27] measured the rotational correlation time
as a function of the true stress for N, N ′-dipentyl-3,4,9,10-
perylenedicarboximide molecules in polymethylmethacrylate
(PMMA) samples near Tg during uniaxial creep deformation.
According to Long et al. [28], these effects can be described
by multiplying the intrinsic local relaxation times with a func-
tion f of the local stress σ which is exp[−(σ/Y )2], where Y
is the critical stress given by Y 2 = 2kBT GG

ξ 3 , where ξ is the size
of the dynamical heterogeneities, kB is Boltzmann constant, T
is the temperature, and GG is the glassy shear modulus.

In this study, we measure the macroscopic stress relax-
ation of cross-linked PMMA samples in the linear and weak
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nonlinear regimes. The experimental responses are analyzed
using a finite-element approach that was developed in a
previous study which mimics dynamical heterogeneities. In
the nonlinear regime, intrinsic relaxation times characterizing
each heterogeneity are assumed to be proportional to the same
function of the local stress according to the law proposed by
Long et al. [28]. To compare the local nonlinear response with
the macroscopic response, we define a macroscopic accelera-
tion function F which is equal to the local function f if all
domains have the same intrinsic relaxation time. Numerical
simulations show that nonlinear responses of heterogeneous
systems are different at the local and macroscopic scales,
revealing the strong effect of disorder. Using Long’s law as
a local acceleration function, the shape of the experimental
macroscopic acceleration function is in good agreement with
that predicted by simulations. Finally, by comparing experi-
mental and simulation results, we estimate the value of the
critical stress Y involved in the local stress acceleration func-
tion of our PMMA sample, i.e., the only parameter we adjust
to describe the macroscopic nonlinear response measured on
PMMA samples. Thus, we estimate the size of dynamical
heterogeneities using Long’s model.

II. MATERIALS AND METHODS

We measured the macroscopic relaxation modulus of
cross-linked PMMA chains at various temperatures in the
glass transition domain.

A. PMMA samples preparation

PMMA samples were prepared according to the method
described by Casas et al. [29]. A 1-mm sheet polymer was
obtained using radical polymerization and reticulation of
methylmethacrylate monomers by applying UV irradiation
for 8 h. We chose diacrylate butanediol as the crosslinker.
To initialize the polymerization and reticulation, we added a
photoinitiator (Irgacure, Ciba, France) (0.1 wt. % monomer).
The concentration of the crosslinker was chosen equal to
0.6% per mol of methylmethacrylate monomers such that the
average weight between the crosslinks Mc was similar to the
entanglement distance Me (Me ≈ 8000 g/mol, corresponding
to an entanglement length of approximately 6 nm). Crosslink-
ing allowed us to successively perform step-strain linear and
nonlinear tensile relaxation tests on the same sample.

B. Procedure for stress relaxation measurements

It is very difficult to precisely measure weak deviations to
linearity below the yield point. Hence, the measurements of
the linear and nonlinear responses should be conducted on the
same sample in the same setup without displacing the sample.
In practice, the macroscopic stress relaxations of PMMA sam-
ples are measured in the linear and weak nonlinear regimes at
different temperatures. We verified that for strain amplitudes
below 0.3%, the mechanical responses are linear near Tg.
Thus, we apply a step strain of 0.3% for linear measurements.
The nonlinear stress relaxations are measured in the weak
nonlinear regime, i.e., below the yield point. Thus, we applied
a strain with an amplitude smaller than 2%. To accurately
observe the deviation of the nonlinear response with respect

to the linear response, we applied a nonlinear condition strain
ranging between 0.75 and 2%.

Linear and nonlinear stress relaxations were successively
measured on the same sample to compare them with sufficient
accuracy. Between each measurement, thermal annealing was
achieved by heating the sample at 32 °C above the glass
transition temperature. The sample was then cooled to the
temperature of the experiment while applying zero stress con-
trol. After attaining thermal equilibrium, the relaxation of the
modulus was measured. We verified that the results obtained
do not vary when an aging step is added before the measure-
ment.

III. MODELING THE MECHANICAL RESPONSE OF A
POLYMER NEAR ITS GLASS TRANSITION

TEMPERATURE

Amorphous polymers near their glass transition temper-
ature are heterogeneous at the nanometric scale. To model
nonlinear effects at the macroscopic scale on such a heteroge-
neous system, we use the 3D version of the model developed
by Masurel et al. [30–32]. The space is tiled by mechanically
coupled domains. The resolution is performed in 3D using the
finite-element method [30].

The mechanical response of each domain is given by a
Zener system made of two parallel branches. One branch
consists of a Maxwell branch that represents the glassy con-
tribution to the stress with an elastic modulus EG and a
relaxation time of τi. The second branch has an elastic spring
of modulus ER that represents the stress contribution due to
the chain entropy.

The glassy and rubber moduli are assumed to be equal for
all domains. The compression modulus K is assumed to be
independent of time and is set to 2 GPa for the domains. We
verified that for values of K larger than 1 GPa, the results of
this study are the same. Each domain has its own relaxation
time τi which is randomly drawn following a log-normal
probability distribution, P(ln(τi )) = 1√

2πs
exp(−ln( τi

τ0
)2

/2s2),
where τ0 is the center of the log-normal distribution and s is
its width. τ0 is the only timescale in the model. The value of
τ0 thus defines the position of the glass transition, whereas
the width s of the distribution controls the width of the glass
transition.

In this study, nonlinear effects are modeled in the frame-
work of the theory proposed by Long et al. For nonlinear
simulations, the intrinsic relaxation time of domains is mul-
tiplied by the stress acceleration function predicted by Long
et al. at the scale of heterogeneity and is equal to f (σ ) =
exp[−( σ

Y )2]. In the Long et al. theory, the stress is scalar. In
this study, we extended the relation proposed by Long et al.
to 3D tensor stress. According to the expression of f (σ ),
intrinsic times are significantly accelerated for σ > Y . The 3D
criteria for polymer yielding follows an extended von Mises
criterion [33]. Hence, we use the equivalent stress σ eq as

σ
eq
loc =

√
3

2
=
σ D :

=
σ D − αp, (1)
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FIG. 1. Linear relaxation master curve (empty markers) and non-
linear relaxation measured at 108 °C (filled circles). The black line
corresponds to simulation predicted by our model for linear condi-
tion by applying the following values: K = 2 GPa, ER = 1.5 MPa,
EG = 1.200 GPa, and ln(τ0) = 4.1s = 4.83.

with
=
σ D the local deviatoric part of the stress and p its local

pressure [30,31]. The coefficient α is set to 0.3 in agreement
with experiments [34].

In this study, numerical simulations were performed in 3D
with systems containing 16 × 16 × 16 cubic domains which
are mechanically coupled according to the finite-element
method. The resolution is performed using the finite-element
method with the finite element code ZEBULON [35,36]. Each
domain was divided into eight quadratic c3d20 cubic ele-
ments. To avoid edge effects, periodic boundary conditions
were applied. The local stress used in the acceleration func-
tion in the nonlinear case is the mean over the domain. The
macroscopic stress and strain are the means over the entire
system.

We computed the relaxation of the system undergoing
uniaxial elongation and applying either linear or nonlinear
conditions.

IV. EXPERIMENTAL RESULTS

The modulus relaxation is measured in the linear regime
at different temperatures by applying a step strain. The linear
relaxation function of the modulus, called EL, is determined
by applying the time-temperature superposition principle. The
data measured at temperature T are superimposed with the
data measured at the reference temperature Tref by multiplying
the timescale by a factor aT/Tre f . Figure 1 presents the master
curve we obtained which corresponds to the linear relaxation
function EL. Here, the reference temperature was chosen to be
108 °C.

On the same sample, we measured with the same setup the
nonlinear response at different temperatures for a given strain
amplitude. In Fig. 1, the nonlinear modulus ENL, measured
by applying a step strain of 1% at the reference temperature
Tref = 108 ◦C, is compared with the linear relaxation function
EL at the same temperature. At 1% deformation, the macro-
scopic modulus relaxes faster than the modulus measured
under linear conditions for the same sample.

Figure 2 presents the modulus relaxation measured in the
nonlinear regime at different temperatures as a function of

FIG. 2. Nonlinear relaxation measured at different temperatures
by applying a deformation of 1% are plotted as a function of the
shifted time aT/Tre f t where aT/Tre f are the time-temperature equiv-
alence shift factors measured in the linear regime at the reference
temperature of 108 °C. The master curve measured in the linear
regime is added. Experimental data are compared to numerical simu-
lation predicted by our model in the linear and nonlinear regimes by
applying: ER = 1.5 MPa, EG = 1.200 GPa, s = 4.83, ln(τ0 ) = 4.1.
In the nonlinear regime, a good description of experiments is ob-
tained adjusting the value of the critical stress Y involved in the local
acceleration function f [see Eq. (2)]. For T = 96 ◦C, Y = 4 MPa, for
T = 108 ◦C, Y = 5.75 MPa, and for T = 112 ◦C, Y = 7 MPa.

the variable aT/Tref t , where aT/Tref are the time-temperature
shift factors determined in the linear regime. As shown in
Fig. 2, data measured in the nonlinear regime at different
temperatures do not collapse into a master curve.

Consequently, we analyze the nonlinear response with
respect to the linear response by comparing the nonlinear
modulus relaxation to the master curve built in the lin-
ear regime at the same temperature. A comparison is thus
performed for each temperature. The timescale accessible
through the direct measurement of stress relaxation is signifi-
cantly shorter than that related to the linear relaxation function
EL which shows the complete relaxation of the modulus from
its glassy value to its rubber value. Thus, the comparison of
nonlinear and linear experimental data can be performed only
on a limited (restricted) time range, and thus, a limited range
of modulus values for each measurement temperature.

V. EXPERIMENTS VIA NUMERICAL APPROACH

We employ our numerical model to describe the linear and
nonlinear responses measured at different temperatures on our
PMMA samples.

A. Linear regime

First, we consider the experimental master curve EL built in
the linear regime. The values of the glassy and rubber moduli,
EG and ER, of each heterogeneity are equal to the macro-
scopic moduli measured on our samples, i.e., EG = 1.2 GPa
and ER = 1.5 MPa. Further, for these simulations, K = 2 GPa.
Consequently, the value of the Poisson coefficient ν is equal to
0.4999 in the rubber state and to 0.40 in the glassy state; these
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values are in agreement with the experimental values of ν re-
ported for PMMA, that ranged between 0.34 and 0.4 [37]. The
fitting of the master curve using the numerical model is per-
formed by adjusting the values of the width s and center τ0 of
the intrinsic relaxation time distribution. At the reference tem-
perature of 108 °C, we obtained a good agreement between
the simulations and experiment when s = 4.83 and τ0 = 60 s
with EG = 1.2 GPa, ER = 1.5 MPa, and K = 2 GPa.

By employing the values of the five parameters determined
from data measured in the linear regime, we now model the
nonlinear response measured on the same PMMA samples.

B. Nonlinear regime

We now compare the predictions of our model by applying
nonlinear conditions to experimental results measured on the
PMMA samples. We recall that according to our numerical
approach, the intrinsic relaxation time of each heterogeneity
is multiplied in the nonlinear regime by a local stress acceler-
ation function that we assume to be equal to the function that
was theoretically predicted by Long et al., i.e.,

f
(
σ

eq
loc

) = exp

[
−

(
σ

eq
loc

Y

)2
]
. (2)

where the local equivalent stress σ
eq
loc is given by Eq. (1).

Computations were performed using the values of ER, EG,
s, and τ0 obtained from the fitting of the linear response
measured on our PMMA samples. The critical stress Y is thus
a parameter that must be adjusted.

Using Y = 5.75 MPa, we obtained a good agreement be-
tween the simulations and nonlinear response measured at
the reference temperature of 108 °C and for a strain step
of 1% amplitude. The simulation and experimental data are
compared in Fig. 2.

If Y is assumed to be independent of temperature, the
model predicts a time-temperature superposition for the non-
linear response for a given strain amplitude. Because no
time-temperature superposition in the nonlinear regime is ex-
perimentally observed, the value of Y must be varied with
temperature.

Figure 2 compares the experiments performed for 1%
strain at different temperatures from the numerical curves
predicted by our model in the nonlinear regime assuming
a temperature dependence of Y. We adjust the value of Y
to obtain the best description of the experimental result. We
found values for Y varying from 4 to 7 MPa for temperatures
ranging between 96 and 112 °C, as shown in Fig. 3.

We analyzed the distribution of local strain during non-
linear relaxation. In such heterogeneous systems, the strain
is locally distributed with domains undergoing a larger local
strain than the other. However, we observed that the local
strain is always smaller than 4% for a 1% macroscopic strain
applied. In the strain range studied in this study, the local
stress is not modified by the limit extensibility of polymer
chains; an extension of 4% at the length scale of heterogene-
ity (i.e., a few nanometers) is significantly smaller than the
maximal extension at this scale, which is given by εmax =
1 − Rmax

〈R2
ee

1/2〉 = 1 − bN
b
√

N
= 1 − √

N , where Rmax = bN is the

contour length of a polymer chain, 〈R2
ee〉 = b

√
N is its mean-

FIG. 3. Parameter Y as a function of temperature inferred from
the fitting by our model of the nonlinear responses measured at
different temperatures applying 1% step strain on PMMA samples
(see Fig. 2). The corresponding values of the size of heterogeneities
computed following the relation suggested by Long et al. [28] are
presented in the inset.

square end to end distance, b is the Kühn length, and N is
the number of Kühn segments of a chain segment included in
heterogeneity [38]. For a size of heterogeneity of 3 nm, ap-
plying b = 1.7 nm for PMMA chains, the approximate value
of N = (3/1.7)2 = 3.5, leading to a maximum value of ap-
proximately εmax = 76% for PMMA chains. The extension
undergone by the chain segment is thus negligible at the scale
of heterogeneities. The local response we assume in our model
is thus valid in the weak nonlinear regime.

Our model provides a satisfactory description of macro-
scopic response in the linear and weak nonlinear regimes.
The model provides also information on the local stress field
and the local relaxation times distribution during the nonlinear
macroscopic stress relaxation.

We analyze the distribution of local relaxation times that
are defined as τi(σ

eq
loc) = τi f (σ eq

loc) during the stress relaxation
for nonlinear conditions. Figure 4 presents the distribution
functions of the Napierian logarithm of the relaxation times
P(ln[τi(σ

eq
loc)]) at different steps of the nonlinear relaxation,

computed with Y = 6 MPa and ε = 0.01. The corresponding
macroscopic stress relaxation is shown in Fig. 5(a). We can
identify several regimes.

At short macroscopic times [ t < 1e–6 s in Figs. 4 and 5(a)],
the shape of the distribution function does not change com-
pared to the shape of the intrinsic relaxation time distribution,
but the distribution is shifted towards lower times. The shift
results from the homogeneous stress just after application of
step strain when all the domains are in their glassy state.

In a second stage and at the beginning of the nonlinear
stress relaxation [t = 5e–5 s and t = 2e–3 s in Figs. 4 and 5(a)],
the domains having the shortest intrinsic relaxation times
relax their local stresses. Consequently, σ

eq
loc relaxes towards

zero, and their relaxation times τi(σ
eq
loc) increase up to the

intrinsic relaxation time of the domain. In the same time,
the slowest domains still undergo a large local stress. The
values of their local relaxation times stay shifted towards low
values. As a result, the fastest domains are shifted towards
larger times, while the slowest ones remain unchanged and
sustain most of the stress [12]. A growing peak appears on
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FIG. 4. Distribution function of the Napierian logarithm of local
relaxation times ln[τi(σ

eq
loc )] at different steps of the macroscopic

stress relaxation. Computation was performed applying Y = 6 MPa,
ε0 = 0.01. The width and the center time of the intrinsic relaxation
time distribution were equal to s = 4.23 and τ0 = 60 s. The values
of the macroscopic stress relaxation 	 are reported for each time.
The corresponding whole macroscopic stress relaxation curve 	 is
presented in Fig. 5(a). Each curve is arbitrarily shifted by a constant.

the fast side of the distribution function that corresponds to
the accumulation of the relaxation times of fast relaxing and
relaxed domains. Consequently, the width of the distribution
decreases.

For macroscopic stress value on the order of E0ε/e [i.e.,
t = 3 s and 	 = 5 MPa in Figs. 4 and 5(a)], the network
constituted by the slowest domains vanishes: the local stresses
of the latter domains relax and their local relaxation times
τi(σ

eq
loc) tend towards their values at rest. As a result, the

width of the distribution function increases again up to its
initial value. At long macroscopic times (t > 4e3 s), all do-
mains have relaxed their stress and the local relaxation time
distribution converges towards the distribution of the intrinsic
relaxation times.

The inverse of the width of the time distribution 1/s
is plotted in Fig. 5(a) as function of time for varying
values of Y. The width s is determined applying the re-

lation s2 = ∫ [ln(τi (σ
eq
loc ))−〈ln(τi (σ

eq
loc ))〉]2P(ln[τi (σ

eq
loc )])dln(τi (σ

eq
loc ))

∫ P(ln[τi (σ
eq
loc )])dln(τi (σ

eq
loc ))

. Figure
5(b) presents the variation of the geometric mean value of the
relaxation times modified by the local stress 〈τi(σ

eq
loc)〉 divided

by the geometric mean of the intrinsic time distribution τ0 as
a function of the macroscopic stress. The width of the local
relaxation time distribution reaches a minimum value for a
macroscopic stress value on the order of σ0/e corresponding
to the end of the percolation of slow domains.

The evolution of the local relaxation times predicted by
our numerical model for nonlinear stress relaxation agrees
with observations reported by Lee et al. [19] for nonlinear
creep experiments on PMMA samples: they not only observed
a decrease of the local mean relaxation time under stress,
previously discussed by Long et al. [28], but also a narrowing
of the local time distribution followed by its broadening after
the flow onset.

Our numerical approach shows that mechanical percola-
tion drives the nonlinear macroscopic stress relaxation in our
PMMA samples. We emphasize the main difference between
step-strain and creep experiments is that, in the first case, the
mechanical percolation threshold is crossed keeping a small
macroscopic strain, i.e., smaller than the yield strain. In con-
trast in creep experiments, the strain continuously increases.
Having this effect in mind, we only performed and discussed
step-strain experiments, in order to remain in the small-strain
regime, and to avoid effects due to limit extensibility.

Now that we have shown that our model is able to describe
the feature observed by Lee et al. [19] at a microscopic scale,
we turn to the comparison of behaviors of the macroscopic
stress.

VI. COMPARISON OF MACROSCOPIC AND LOCAL
STRESS RELAXATIONS

As shown in Fig. 2, the nonlinear relaxation is accelerated
when compared with the linear relaxation. To analyze the
effect of disorder on the nonlinear response, we first define
a macroscopic acceleration function F which we will com-
pare with the local function f that is applied at the scale of
heterogeneities.

A. Definition of the macroscopic acceleration function

We use the macroscopic linear and nonlinear response of a
system to define a macroscopic acceleration function F such
that, for a single Zener system, it is equal to the local stress
acceleration function f .

First, we consider a single Zener system with a Maxwell
branch representing the glassy contribution to the stress with
an elastic modulus EZ

G and relaxation time τ0 that is in paral-
lel with an elastic spring of modulus EZ

R , which represents
the stress contribution owing to the chain entropy. In our
approach, we model the nonlinear behavior of the polymer
by multiplying the relaxation time τ0 with an acceleration
function f of the stress σ . According to Long et al., we assume
an acceleration function of the form exp[−(σ/Y )2].

For a step strain, the relaxation of the modulus in the linear
regime is given in 1D by

dEZ
L

dt
= −EZ

L (t ) − EZ
R

τ0
(3)

and in the nonlinear regime by

dEZ
NL

dt
= −EZ

NL(t ) − EZ
R

τ0 f (ENLε0)
. (4)

In Eqs. (3) and (4), EZ
L and EZ

NL are the relaxation moduli
(i.e., the ratio of stress over strain), for linear and nonlinear
behaviors, respectively, and ε0 is the deformation. Further,
the equations driving the modulus relaxation are written in
1D. They can also be written in 3D as shown in Appendix
A. The 1D and 3D relaxation equations result in the same
equations regarding the direction of the deformation (uniaxial
elongation in this study).
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FIG. 5. (a) Macroscopic stress relaxation 	 as a function of macroscopic time. Computation was performed for ε0 = 0.01 and for varying
Y values. The inverse of the width of the corresponding local relaxation time distributions 1/s is shown as a function of macroscopic time. (b)
The geometric mean time of the corresponding local relaxation time distributions τi(σ

eq
loc ) divided by the geometric mean time value of the

intrinsic time distribution τ0 is plotted as a function of the macroscopic stress 	.

From Eqs. (3) and (4), we deduce that

dEZ
L

dt
dEZ

NL
dt

= f (E , ε0), (5)

where the two time derivatives of the left-hand side of Eq. (3)
are considered not at the same time but for the same values of
EZ

L and EZ
NL that are equal to E.

We extend Eq. (5) to the macroscopic system, and thus,
define the macroscopic acceleration function F as the ratio of
the derivatives of linear (EL ) and nonlinear relaxations (ENL )
measured at the same state of relaxation:

F (E , ε0) = dEL

dt

/
dENL

dt
, (6)

with EL = ENL = E . The function F depends on the relax-
ation state which is characterized by the value of the modulus
and strain that has been applied.

According to the definition we choose for F, for a single
Zener system, the macroscopic function F depends only on the
stress undergone by the Zener system that is equal to ENLε0.

In the next section, we show that because of disorder,
the macroscopic acceleration function F deviates from the
local function f . Further, we analyze the shape of the macro-
scopic acceleration function F resulting from measurements
performed on our PMMA samples.

B. Shape of the macroscopic acceleration function F

1. Experimental results

Applying Eq. (5), the experimental macroscopic acceler-
ation function of our PMMA samples is determined from
the linear master curve and nonlinear response measured at
the same temperature T. Figure 6 presents the macroscopic
acceleration functions obtained at each temperature for a step
strain of 1% amplitude. We observed that the macroscopic
function of our samples, F, depends on temperature. We rep-
resent the macroscopic function F by plotting −ln[F (E , ε0)]
as a function of the macroscopic stress Eε0 with log scales.
Here, we obtained a linear curve with a slope of approximately

0.9+/−0.1. The value of the slope does not significantly vary
with temperature in the range probed by experiments.

Thus, on the modulus range accessible by experiments,
the form of F can be described by the relation F (E , ε0) =
exp[−(E/Z )m] with Z that depends on temperature. To under-
stand the temperature and modulus dependence of F observed
experimentally, we compare the experimental results with nu-
merical responses predicted by our model.

2. Numerical predictions

We compute the macroscopic acceleration function F for
a disordered system and compare it with the acceleration
function f of a Zener system. Figure 7 presents the curves
obtained by plotting −ln(F) and –ln( f ) as a function of E/E0

on a log scale for Y = 5 MPa with E0 = EG + ER. Here, F and
f exhibit very different behaviors.

First, we consider the case of a single Zener system. Here,
−ln( f ) = (Eε0/Y )2 results in a straight line with a slope of 2
on a log scale.

In the heterogeneous case, we identify a range of mod-
ulus values over which the quantity ln[F (E , ε0)] varies

FIG. 6. The quantity –ln[F (E , ε0 )] deduced from experiments
performed at different temperatures applying a deformation ε0 of 1%
vs macroscopic stress Eε0 in log-log scale.
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FIG. 7. The quantity −ln[F (E , ε0 )] as a function of the modu-
lus normalized by E0, the modulus at t = 0 in log-log scale. Data
in filled blue squares are computed assuming a 3D heterogeneous
system applying a local acceleration function f given by Eq. (2) with
Y = 5 MPa.

linearly with E/E0 in log scale. In this modulus range, the
slope is equal to 0.83. This means that owing to dynamical
heterogeneities, the macroscopic and local acceleration func-
tions are different.

However, the local and macroscopic acceleration would
have been equal if the local acceleration function was assumed
to depend on the mean stress rather than the local stress. The
difference between the macroscopic and local acceleration
functions occurs because the stress field is disordered. How-
ever, at short times, immediately after the strain step where
E/E0 is close to 1, the stress field is homogeneous and f
and F collapse. With increasing time, a disordered stress field
occurs owing to the distribution of intrinsic times. This stress
field results in heterogeneous acceleration. The macroscopic
acceleration deviates from the local acceleration.

In practice, the range of modulus values over which the
quantity ln[F (E , ε0)] varies linearly with E/E0 in log scale
corresponds to the experimental windows for which mechan-
ical measurements are sufficiently accurate to experimentally

determine the acceleration function. Thus, we focus on this
modulus range, where the form of the macroscopic accelera-
tion function is given by e−(E/Z )m

.

3. Dependence of F on strain amplitude

First, we compare the macroscopic acceleration functions
resulting from simulations performed by applying different
strain amplitudes ε0. The curves obtained for different ε0

values have similar shapes as shown in Fig. 8(a). The value of
the slope of the linear part of the curve m is not significantly
dependent on the strain amplitude over the deformation range
probed in this study. As a result, the curves can be overlaid
by applying a vertical shift factor 1/g(ε0), as presented in
Fig. 8(b). Therefore, although the amplitude of the macro-
scopic acceleration function varies with strain amplitude, the
value of the slope m does not depend on ε0 at zero order.

4. Dependence on Y

Variations in the parameter Y of the local acceleration func-
tion lead to vertical shifts of the curves, as illustrated in Fig. 9.
The vertical shift factor b, which should be applied to overlay
the curves in the modulus range we consider, is proportional
to Y 1.87 ± 0.1 , as shown in the inset of Fig. 9(b). According to
the Long model, the parameter Y depends on the temperature
and size of dynamical heterogeneities.

As shown in Fig. 2, we obtain a very good fitting of
experimental data employing at the local scale the accelera-
tion function predicted by Long et al. However, we studied
the variation in the shape of the macroscopic acceleration
function F of disordered systems for more general local accel-
eration functions of the form of exp[−(σ/Y )n]. Computations
were performed for values of exponent n varying from 1 to 3.
The results are presented in detail in Appendix B. The effect
of the width of the relaxation time distribution is also studied.
Despite the value of n assumed for the local acceleration func-
tion, we observed that there is always a modulus range over
which the quantity –ln[F (E , ε0)] scales as (E/E0)m, where m
depends on n. The experimental value of m = 0.9 corresponds
to the values of n >∼ 2.

FIG. 8. (a) −ln[F (E , ε0 )] as a function of E for different strains in log scales. (b) Vertical shift factors 1/g(ε0 ) are applied to the data. The
inset presents the variation of g(ε0) as a function of the strain amplitude in log scales.
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FIG. 9. (a) The quantity −ln[F (E , ε0)] predicted by our model
for varying values of the critical stress Y are plotted as a function
of the modulus value E divided by the modulus value in the glassy
state E0 in log-log scale. Computations were performed by applying
ER = 1.5 MPa, EG = 1.2 GPa, s = 4.83, ln(τ0 ) = 4.1, and ε = 1%.
Y value was varied from 3 to 12 MPa. (b) Numerical curves collapse
if a shift factor b is applied to the quantity −ln[F (E , ε0 )]. The inset
presents the variation of b as a function of Y in log-log scale. The line
corresponds to a power-law function with an exponent equal to 1.87.

C. Origin of the temperature dependence of the experimental
macroscopic acceleration function

The experimental curves obtained by plotting
−ln[F (E , ε0)] as a function of E are linear and depend on the
temperature of the experiment. The temperature dependence
of F observed for our PMMA samples could result from
the temperature dependence of the critical stress Y. The
macroscopic acceleration functions measured at different
temperatures should thus be overlaid by applying a vertical
shift factor resulting from the temperature dependence of Y.
Figure 10 presents the experimental master curves similarly
obtained for 1 and 1.5% deformation. Similar slopes were
observed for the two deformation amplitudes, as was the case
in our simulations. As shown in Fig. 10, the macroscopic
acceleration functions measured for a reference temperature

FIG. 10. The quantity −ln[F (E , ε0 )] deduced from experiments
vs macroscopic stress Eε0 in log-log scale. The master curves are
obtained at Tref = 108 ◦C for strains of 1 and 1.5% applying a mul-
tiplicative shift factor βT/Tre f . to −ln[F (E , ε0)]. Continuous lines
are simulation results computed using Y = 5.75 MPa and f (σ ) =
exp[−(σ/Y )2] with K = 2 GPA, ER = 1.5 MPa, EG = 1.200 GPa,
s = 4.83, and ln(τ0) = 4.1.

FIG. 11. (a) The modulus relaxation E (τ, ε0 ) as a function
of time computed assuming s = 4.83, ln(τ0) = 4.1, EG = 1.2 GPa,
ER = 1.5 MPa, and a local stress dependence of the local accelera-
tion function that follows f (σ ) = 1 and f (σeq ) = exp[−(σeq/Y )n]
with Y = 5 MPa for linear and nonlinear conditions, respectively.
Computation was performed for n = 2 and n = 1. (b) The quantity
–ln[F (E , ε0 )] as a function of the modulus normalized by E0 in
log-log scale. The function F computed assuming a local stress field
disorder is compared to the local acceleration function f for different
values of n and ε0 = 0.01. (c) The variation of the macroscopic
exponent m as a function of the local exponent n for different time
distribution widths s.

of 108 °C and 1 and 1.5% strain can be described using
Y = 5.75 MPa.

In the frame of our model, the vertical shift observed
between the F functions measured at different temperatures
can be attributed to the temperature dependence of the critical
stress Y. According to Long et al. [28], the parameter Y of the
local acceleration function depends on the temperature and
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size of dynamical heterogeneities. According to the relation
proposed by Long et al., we estimate the size of dynamical
heterogeneities.

D. Size of dynamical heterogeneities

In the previous sections, we identified the values of Y to
fit with the model nonlinear responses measured at different
temperatures for a given deformation amplitude. Applying the
relation suggested by Long et al. [28] that gives

Y 2 = 2kBT GG
ξ 3 and considering GG = 427 MPa and K =

2 GPa, we found that the size of heterogeneity ξ (T ) de-
creases from 6.5 to 4.5 nm for a temperature increase of
approximately 15 K in the temperature range probed by our
experiments, as shown in the inset of Fig. 3.

VII. CONCLUSION

In conclusion, by combining experiments and a numerical
approach accounting for dynamical heterogeneities, we show
that experimental relaxation measurements performed in the
weak nonlinear regime before yielding can be described in our
model by applying the same local acceleration law for all the
dynamical heterogeneities. The microscopic time distribution
under strain is in agreement with experimental observations of
Lee et al. [19]. The macroscopic responses predicted by our
model using the expression of Long et al. [28] for the local
acceleration function are in good agreement with the mechan-
ical data. These results lead us to estimate the characteristic
length scale of dynamical heterogeneities, which decreases
with temperature and is close to 5 nm. Finally, we show
that—-under nonlinear solicitation—-stress-induced acceler-
ations of the mechanical relaxation are strikingly different at
the local and macroscopic scales.

APPENDIX A

In 3D, the differential equation of a Zener element for a
linear case is

τ0

=̇
σ z D +

=
σ z D = τ0(CR + CG) :

=̇
εz D + CR :

=
εz D

where
=
σ z D and

=
εz D are the time dependent deviatoric

stress and strain tensors, respectively, CR and CG are the
fourth-order glassy and rubber isotropic elasticity tensors,
respectively, and τ0 is the relaxation time.

In the case of a relaxation test, this leads to the following
equation:

dC

dt
= − 1

τ0
[C(t ) − CR],

where C(t ) is the fourth-order isotropic modulus tensor such

that
=
σ z D = C(t ) :

=
εz D,

In the nonlinear case, this is

dCNL

dt
= − 1

τ0 f (σ zeq )
[CNL(t ) − CR],

where CNL is fourth-order isotropic nonlinear modulus tensor
and f (σ zeq ) is an acceleration function that depends on an
equivalent stress.

Regarding the term corresponding to uniaxial elonga-
tion direction, this leads to the 1D equations:

dEZ
L

dt = −EZ
L (t )−EZ

R
τ0

for linear condition and dEZ
NL

dt =
−EZ

NL (t )−EZ
R

τ0 f (σ zeq ) for nonlinear condition,

where EZ
L and EZ

NL are Young’s moduli in the traction direction
and EZ

R is the rubber modulus.

APPENDIX B

Using a general local acceleration function f (σ ) =
exp[−(σ/Y )n] with values of n different from 2, the curves
−ln[F (E , ε0)] as a function of E with log scales, exhibit
a scaling regime in a limited range of relaxation modulus,
i.e.,−ln(F ) ∝ Em. The exponent m depends on the power n
of the local acceleration function. It further depends on the
width s of the relaxation time distribution. In the limit case
s = 0 which corresponds to a homogeneous case, f = F and
thus, m = n. The variations of m with n in the local acceler-
ation function are plotted in Fig. 11 for various widths of the
relaxation time distribution s. For the width of relaxation time
distribution s > 2.3, the slope m does not significantly depend
on s.
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