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We have used highly accurate quantum Monte Carlo methods to determine the chemical structure and
electronic band gaps of monolayer GeSe. Two-dimensional (2D) monolayer GeSe has received a great deal
of attention due to its unique thermoelectric, electronic, and optoelectronic properties with a wide range of
potential applications. Density functional theory (DFT) methods have usually been applied to obtain optical and
structural properties of bulk and 2D GeSe. For the monolayer, DFT typically yields a larger band-gap energy
than for bulk GeSe but cannot conclusively determine if the monolayer has a direct or indirect gap. Moreover,
the DFT-optimized lattice parameters and atomic coordinates for monolayer GeSe depend strongly on the choice
of approximation for the exchange-correlation functional, which makes the ideal structure—and its electronic
properties—unclear. In order to obtain accurate lattice parameters and atomic coordinates for the monolayer,
we use a surrogate Hessian-based parallel line search within diffusion Monte Carlo to fully optimize the GeSe
monolayer structure. The DMC-optimized structure is different from those obtained using DFT, as are calculated
band gaps. The potential energy surface has a shallow minimum at the optimal structure. This, combined with
the sensitivity of the electronic structure to strain, suggests that the optical properties of monolayer GeSe are
highly tunable by strain.

DOI: 10.1103/PhysRevMaterials.5.024002

I. INTRODUCTION

Group-IV monochalcogenides MX (M = Ge or Sn, X =
S or Se) have received a great deal of attention because of
their unique thermoelectric and electronic properties, which
can be exploited in wide range of applications such as pho-
todetection, gas sensing, and as potential anode materials for
lithium-ion batteries [1–3]. In particular, germanium selenide
(GeSe) is a two-dimensional (2D) layered p-type semiconduc-
tor that has been extensively studied because of its optical
properties; however, they are still not yet fully understood.
In the past few decades, bulk GeSe has been shown to
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have an indirect band gap at room temperature by various
experimental and theoretical studies [4–10]. Experimental re-
sults have provided indirect gap measurements in a range
of 1.07–1.29 eV using different experimental methods, such
as electron-energy-loss spectroscopy [11], diffuse reflectance
spectroscopy [7], and ultraviolet photoemission spectroscopy
[12]. Very recently, adsorption spectra measurements sug-
gested the possibility of a direct band-gap minimum of 1.3 eV
[13]. This spread in experimental results indicates a high
sensitivity of measured GeSe optical properties to the partic-
ular choice of optical spectroscopy method used. Theoretical
results on GeSe optical gaps have also shown to be strongly
dependent on the relaxed GeSe structure as well as on the
particular theoretical methodology used in the calculations.
Several density functional theory (DFT) studies have been
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performed to investigate the optical properties of GeSe; how-
ever, the computed band gaps vary strongly with the particular
exchange-correlation (XC) potential used in DFT Kohn-Sham
Hamiltonian. For example, the generalized gradient approxi-
mation (GGA) is a well-known XC functional that has been
widely applied to study structural and optical characteris-
tics of various electronic structures. Many GGA optical gaps
for bulk GeSe have been evaluated so far; however, as is
typical, GGA tends to underestimate optical gaps compared
to experiment [14]. Moreover, even within the same class
of XC functional, different approximate DFTs have yielded
significantly different optimized lattice parameters for the or-
thorhombic Pnma GeSe structure, with lattice parameters in
the ranges of a = 4.21 Å to 4.83 Å, b = 3.78 Å to 3.86 Å, and
c = 10.60 Å to 14.69 Å [14,15]. This points to an intrinsic
limitation of DFT approximations when applied to optical
and structural properties for GeSe and motivated us to use
a highly accurate numerical approach which allows for full
incorporation of electron correlation and interlayer interaction
for layered GeSe.

Detailed experimentally determined structural and optical
properties of monolayer GeSe have not yet been reported,
so these properties have largely been obtained using first-
principle calculations. According to previous DFT studies,
monolayer GeSe is expected to be a direct-gap semiconductor
with a larger band gap than bulk GeSe, and its gap can be
tuned using uniaxial or biaxial strains [14]. This strain sen-
sitivity of the optical properties of monolayer GeSe clearly
shows the importance of obtaining an accurate monolayer
chemical structure in order to accurately predict its band-
gap energy. Strain could be applied either directly or via a
substrate or heterostructure. The DFT-optimized monolayer
chemical structure exhibits a distorted NaCl-type structure,
but the exact structural parameters for the distortion, as well
as the equilibrium lattice parameters, are not known for the
monolayer: DFT-GGA calculations have yielded monolayer
relaxed lattice parameters of a = 3.99–4.83 Å and b = 3.78–
3.97 Å [14,16,17]. This huge variation makes it difficult to
ascertain the monolayer chemical structure and also diffi-
cult to assess the accuracy of reported DFT band gaps of
0.8–1.8 eV [14,15], because these values from separate DFT
studies were usually obtained from different structural pa-
rameters for the monolayer. Consequently, this range of DFT
results leads us to conclude that an accurate benchmark calcu-
lation of the geometry of pristine monolayer GeSe is needed
in order to accurately estimate optical properties and their
qualitative and quantitative changes induced by strains.

Quantum Monte Carlo (QMC) is a highly accurate class
of stochastic method which can describe the ground-state
properties of many-body electronic structures. Previous QMC
studies have successfully provided accurate structural prop-
erties for various functional materials, including 2D layered
systems [18–21]. In this study we used QMC to study struc-
tural and optical properties of bulk and monolayer GeSe.
More recently, Wines et al. [22] used QMC methods to obtain
the lattice constants and band gaps of monolayer GaSe. Our
results are analogous to theirs in that Wines et al. showed
that there is a large spread in DFT results for structure and
band gaps, and they also showed that many-body perturbation
theories such as the Bethe-Salpeter equation also underesti-

mate band gaps compared to results using diffusion Monte
Carlo (DMC). In order to describe accurate distortions in the
NaCl-type monolayer structure, we fully optimized the GeSe
monolayer geometry using QMC. Finally, we used DMC to
estimate optical gaps of the optimized monolayer geometry
and observed significantly larger band-gap energies than ei-
ther DFT band gaps for monolayer GeSe or experimental
values for bulk GeSe. We also verified using multidetermi-
nant expansions of the ground state and excited states that
the fixed-node approximation from single-determinant trial
wave functions did not introduce any appreciable errors in the
estimated DMC band gaps.

II. COMPUTATIONAL DETAILS

Our QMC calculations were carried out with the fixed-node
DMC method [23,24] as implemented in the QMCPACK code
[25,26]. Slater-Jastrow type wave functions were used as trial
wave functions, consisting of a single Slater determinant and
Jastrow correlation functions with up to three-body correla-
tions. Single-particle orbitals in the Slater determinants were
obtained with the DFT Kohn-Sham scheme based on plane-
wave basis sets using the QUANTUM EXPRESSO package [27].
The Perdew-Burke-Ernzerhof (PBE) parametrization [28] of
GGA was employed as the XC functional, and the plane-wave
calculations used a 350 Ry (about 4,762 eV) kinetic energy
cutoff for the energy-consistent norm-conserving Ge and Se
pseudopotentials developed by Burkatzki, Fillip, and Dolg
(BFD) [29,30]. We used the same pseudopotentials for all
DFT and QMC calculations, except for the multideterminant
expansions (below). Bulk and monolayer GeSe were simu-
lated with Monkhorst-Pack 8 × 8 × 8 (bulk) and 8 × 8 × 1
(monolayer) k-point grids; a 20-Å-thick vacuum padding was
added along the z axis (perpendicular to the plane of the
monolayer) for the monolayer. All DMC calculations in this
study were done with a 0.005 Ha−1 time step, which was
shown to be a fully converged value in previous DMC studies
of various periodic 2D systems [18,20]. The one-body finite-
size effects from the periodic supercell DMC calculations
were fully controlled by applying twist-averaged boundary
conditions (TABC) [31]. (See Appendix A for details on
convergence with respect to the k-point grid and TABC.) We
additionally reduced the two-body finite-size effect by extrap-
olating DMC energies estimated at various supercell sizes to
the bulk limit.

In addition, we performed in this study selected
configuration-interaction (sCI) calculations using the con-
figuration interaction using a perturbative selection made
iteratively (CIPSI) method [32] in order to compare the band-
gap energy computed with the CIPSI multideterminant wave
function to the single-determinant DMC band-gap energy.
All CIPSI calculations in this study were performed with a
modified version of Quantum Package 2 [33] using integrals
from PySCF [34] and used correlation-consistent effective
core potentials (ccECPs) with the double-zeta (DZ) and triple-
zeta (TZ) basis sets developed for use with these ccECPs
[35]. Each multistate CIPSI calculation was performed using
matching to the renormalized second-order perturbative cor-
rection to the energy [33]. For each DZ and TZ basis, an initial
two-state CIPSI calculation was performed using DFT orbitals
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FIG. 1. (a) DMC total energy of bulk GeSe as function of N−1, where N is the total number of atoms in the supercell. The dotted line
indicates a simple linear regression fit. (b) Extrapolated DMC total energy of GeSe as function of unit-cell volume. The dotted line represents
a Vinet fit.

obtained with the B3LYP XC functional [36–39] until the size
of the variational space reached 105 determinants. Natural or-
bitals (NOs) were formed from the resulting multideterminant
wave functions (with equal weights for each state), and a sec-
ond two-state CIPSI calculation was performed in the space
of these NOs with a larger number of determinants (about
9 × 106). For the calculations in the TZ basis, this process
of forming NOs was repeated after reaching 106 determi-
nants within the first set of NOs, and then a second two-state
CISPI calculation with about 107 determinants. Estimated
full-CI energies were obtained via linear extrapolation of the
CIPSI variational energies with respect to the renormalized
second-order perturbative correction to the energy (rPT2) as
rPT2 → 0.

III. RESULTS

We first computed the equation of state for bulk GeSe using
fixed-node (FN) DMC in order to assess the structural and
optical properties of bulk GeSe and to verify the DMC results
against available experimental values. Figure 1(a) shows the
DMC total energies for bulk GeSe with respect to the inverse
of the number of atoms N per supercell at the experimental
lattice parameters a = 4.38, b = 3.82, and c = 10.79 Å [40].
Three different sizes of supercell with up to 108 formula units
(f.u.) of GeSe were simulated using TABCs with up to 64
twists in order to minimize the one-body finite-size effect.
Figure 1(a) shows that linear regression provided an excel-
lent fit for TABC-DMC total energies in the thermodynamic
limit, and the extrapolated total energy was estimated to be
–360.796(3) eV/f.u. Using the same protocol, we calculated
extrapolated TABC-DMC total energies at various unit-cell
volumes in order to obtain the equation of state. We calculated
the DMC energy by changing the unit-cell volume, keeping
the aspect ratio and (relative) atomic coordinates fixed. Using
the Vinet function to fit the equation of state, as shown in
Fig. 1(b), the equilibrium DMC lattice parameter a and bulk
modulus were estimated as 4.40(1) Å and 32.1(3) GPa, re-
spectively, which are in good agreement with the experimental

values of 4.40 Å and 37.9 GPa. The DMC cohesive energy for
bulk GeSe was calculated as 6.91(2) eV/f.u. As the experi-
mental cohesive energy for bulk GeSe is not reported yet to
the best of our knowledge, we expect that this DMC cohesive
energy can give good guidance to assess the energetic stability
of GeSe-based materials, as DMC has been shown to yield
accurate cohesive energies in many materials [18,41–44].

We then carried out DMC calculations to estimate the band
gaps of bulk GeSe. DMC excitonic gaps can be evaluated by
computing Eex

g = Eph(k) − E0, where E0 and Eph(k) repre-
sent the ground-state energy and the DMC total energy upon
a particle-hole excitation, particle-hole excitation energy, re-
spectively, with the latter estimated by promoting an electron
from the top of the valence band to the bottom of the con-
duction band at a momentum k. In order to find the relevant
single-particle momentum k, we plotted the DFT band struc-
ture for bulk GeSe using DFT-PBE. In the PBE band structure
of bulk GeSe [see Fig. 2(a)], we can see that the direct mini-
mum gap minimum is located at the high-symmetry � point,
which is the k point at which we calculated the excitonic gap.
We verified that the band structure obtained using PBE0 gave
the same direct and indirect gaps as the PBE band structure
(see Appendix C for details). In addition to the excitonic gap,
we also estimated the DMC quasiparticle gap by calculating
the ground-state total energy difference of N + 1, N − 1, and
N electron systems, Eqp

g = E (N + 1) + E (N − 1) − 2E (N ).
Both the DMC excitonic and the quasiparticle gaps were fully
extrapolated to the bulk thermodynamic limit using a simple
linear regression fit, with estimated DMC gaps in different
supercell sizes of 32, 72, and 108 f.u. supercells, as can be
seen in Fig. 2(b). The extrapolated excitonic direct gap was
calculated to be 1.62(16) eV, which is in good agreement with
the experimental result for the direct gap, 1.53 eV [45]. The
extrapolated quasiparticle gap of 1.95(21) eV is seemingly
larger than the excitonic gap, although the two values are
within each others’ error bars. In any case, one would expect
the excitonic gap to be smaller by an amount equal to the
exciton binding energy; our results suggest a weak exciton
binding energy ∼0.3 eV.

024002-3



HYEONDEOK SHIN et al. PHYSICAL REVIEW MATERIALS 5, 024002 (2021)

FIG. 2. (a) PBE band structure of bulk GeSe. (b) DMC excitonic gap and quasiparticle gap for bulk GeSe as function of N−1, where N is
the total number of atoms in the supercell. The dotted line indicates a simple linear regression fit.

Computed direct-gap and structural properties of bulk
GeSe in this study are summarized in Table I. Among the XC
functionals in Table I, there is no single DFT XC functional
that simultaneously yields structural properties and band gap,
in reasonable agreement with experimental values. For exam-
ple, the PBE0 lattice parameters and cohesive energy are in
good agreement with the experimental or DMC values, but the
PBE0 band gap is significantly larger than the experimental
one. In contrast, the DMC results are in good agreement
with the experimental results for both structural properties and
band gap. Based on our accurate DMC results for bulk GeSe,
we can confidently assume that DMC will enable us to pre-
dict accurate structural properties and band gap of monolayer
GeSe, as well to guide future experiments and computational
works.

We now turn to the monolayer form of GeSe. In order to
study monolayer GeSe, it is necessary to obtain an accurate
monolayer structure, which is not known yet experimentally.
In experiments, the monolayer geometry will also be affected
by the substrate used. That is an additional complication that

TABLE I. Equilibrium lattice constant (a), bulk modulus (B0),
cohesive energy (Ecoh), and band gap (Eg) for bulk GeSe computed
using various DFT XC functionals and DMC; Eex

g and Eqp
g are the

excitonic and quasiparticle gap, respectively.

Method a (Å) B0 (GPa) Ecoh (eV) Eg (eV)

PBE 4.43 28.9 6.89 0.68
LDA 4.38 32.8 8.54 0.58
SCAN 4.43 30.0 – 0.88
PBE0 4.38 33.2 6.96 1.88
B3LYP 4.48 27.1 6.06 1.77
HSE06 4.38 32.4 5.97 1.21

Eex
g : 1.62(16)

DMC 4.40(1) 32.1(3) 6.91(2)
Eqp

g : 1.95(21)
Exp. 4.40a 37.9b – 1.53c

aReference [40].
bReference [46].
cReference [45].

we will not consider here but will focus on the unstrained
equilibrium structure of monolayer GeSe. As seen in Fig. 3,
there are a total of eight structural parameters that need to
be optimized for the monolayer geometry. Direct structural
optimization based on force minimization is not yet fully
developed in efficient algorithms in QMC methods, and a
brute-force optimization by mapping out the energy land-
scape as a function of eight degrees of freedom would be
prohibitively expensive. Direct structural optimization based
on force minimization, while developed and implemented for
variational Monte Carlo (VMC) by Sorella and Capriotti [47],
and also by Moroni et al. [48], is not get fully developed in
efficient DMC algorithms, particularly for solids and heavier
elements. In contrast, DFT is routinely used to optimize a
given structure based on force minimization. Therefore, we
first optimized the monolayer structure using DFT in order
to get a rough estimate of its geometry and of the difference
between monolayer and bulk structures.

Table II shows structural parameters for fully relaxed
monolayer GeSe using various DFT XC functionals. When we
compare the DFT results for monolayer to the experimental
values for bulk GeSe, we see large differences in the GeSe
structural parameters between monolayer DFT and experi-
mental results. However, because of the strong variation of
the calculated structural parameters for monolayer GeSe with
the DFT XC functional, we cannot at this point assertively
claim that the monolayer geometry is different from that of
the bulk. In particular, the Strongly Constrained and Appro-
priately Normed (SCAN) meta-GGA shows a significantly
larger lattice parameter a than is obtained from other XC
functionals for monolayer or bulk GeSe. Based on the large
variation within the DFT results, we conclude that structural
optimization using DMC is necessary.

As stated earlier, force-minimization methods for QMC
DMC are not well developed. We therefore used an energy-
minimization method based on the DMC total energy and
without use of DMC energy gradients. A total of eight struc-
tural parameters consisting of two lattice parameters and six
atomic coordinates are not straightforward to fully optimize
manually; if we were to use a quartic function, which has been
widely used for geometry optimization [49,50], optimizing
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FIG. 3. (a) Top and (b) side view of GeSe monolayer. Parameters in the geometry are taken from Ref. [14].

the monolayer structure would require at least 58 grid points
in order to estimate the global minimum in the energy surfaces
for eight structural parameters. Because such a brute-force
method requiring a total of 390 625 DMC total energy cal-
culations would be prohibitively expensive, we introduce two
distinct ways to efficiently optimize the monolayer structure
using DMC with a reduced set of degrees of freedom.

A. DMC lattice parameter optimization
with DFT atomic coordinates

We first computed a 52 DMC energy data grid for opti-
mizing only the lattice parameters a and b for the monolayer,
while the remaining internal atomic coordinates (d , l1, l2, θ1,
and θ2—see Fig. 3) were relaxed using DFT at a given pair of
lattice parameters a and b. This replaces the six parameters for
the internal atomic coordinates with the relaxed DFT results.
Therefore, the choice of the DFT XC functional used to relax
the atomic coordinates is very important in order to obtain
the best possible DFT atomic coordinates. In order to choose
a XC functional for the relaxation, we calculated DMC total
energies at a few different lattice parameters and with DFT
internal atomic coordinates relaxed (at fixed lattice parame-
ters) using various XC functionals. In order to select the DFT
XC functional for the relaxation of the internal atomic coor-
dinates, we first did a screening of various DFT functionals.
We fixed the lattice parameter b at 3.95 Å and selected four
different values of the lattice parameter a. For each value of a,
we then optimized the atomic coordinates using six different
DFT XC functionals and finally calculated the DMC energy
for the given lattice parameters a and b and the optimized
atomic coordinates, in total, 24 DMC calculations. These cal-

TABLE II. Relaxed geometry of a GeSe monolayer using various
DFT XC functionals. The experimental values are for bulk GeSe.

a (Å) b (Å) d (Å) l1(Å) l2(Å) θ1(deg) θ2(deg) θ3(deg)

PBE 4.26 3.95 2.50 2.65 2.52 96.5 93.9 97.2
LDA 4.03 3.96 2.51 2.71 2.51 93.9 89.3 96.0
SCAN 4.71 3.76 2.46 2.57 2.54 94.2 103.6 95.4
PBE0 4.21 3.85 2.48 2.58 2.51 96.5 100.3 91.8
B3LYP 4.47 3.89 2.51 2.56 2.51 96.9 98.5 96.7
HSE06 4.38 3.99 2.46 2.63 2.50 98.8 101.3 93.2
Exp. (Bulk)a 4.40 3.85 2.49 2.58 2.54 95.4 103.6 90.8

aReference [45].

culations suggested that the HSE06 XC functional provides
the best atomic coordinates as the DMC total energy was
lowest for the HSE06-optimized atomic coordinates. We then
proceeded with the 25 DMC energy calculations scanning
lattice parameters a and b for fixed (relative) atomic coordi-
nates given by the HSE06 optimization. We will denote this
DMC energy “DMC(HSE06).” Details of the DMC computa-
tions using relaxed DFT atomic coordinates can be found in
Appendix B.

This optimization procedure yields an energy as a function
of the lattice parameters a and b. As can be seen in the total
energy contour plot in Fig. 4, the DMC(HSE06) energy mini-
mum is located at a = 4.73(1) Å and b = 3.76(1) Å, which is
far away from the PBE(HSE06) energy minimum (DFT-PBE
total energy calculated with the HSE06-optimized atomic
coordinates) of a = 4.26 Å and b = 3.95 Å. This significant
difference between the DMC(HSE06) and PBE(HSE06) en-
ergy landscapes strongly suggests that the fully optimized
DMC and DFT geometries are rather different. Moreover,
PBE and HSE06 optimizations of the atomic coordinates yield
very different results (Table II), while PBE and PBE(HSE06)
optimizations of the lattice parameters yield almost identi-
cal results. This suggests that the DFT underestimates the
difference in forces between the PBE and HSE06 atomic
coordinates. Moreover, we found that the PBE(HSE06) op-
timized lattice parameters a and b are identical to the fully
relaxed PBE lattice parameters even though their internal
atomic coordinates are different (see Table II). This can be
understood to originate in erroneously negligible differences
between the PBE and HSE06 computed atomic forces, which
leads us to suspect that the atomic force evolution is under-
estimated in the DFT relaxation process. On the other hand,
we see a large discrepancy between the lattice parameters
obtained from DMC(HSE06) and the fully relaxed HSE06
result, the latter with a = 4.38 Å and b = 3.99 Å, even though
the same HSE06 functional was used in the relaxation of the
atomic coordinates. This tells us that among the tested DFT
XC functionals, HSE06 yields the best atomic coordinates,
although they still differ discernibly from those obtained from
DMC and still yield large errors in the lattice parameters.
This tells us that among the DFT XC functionals, HSE06
yields relatively accurate optimized atomic coordinates but
can still yield large errors in the lattice parameters. Thus
we conclude that lattice parameters and atomic coordinates
need to be optimized simultaneously using a fully DMC-based
energy-minimization method.
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FIG. 4. Total energy contour plots for (a) PBE(HSE06) and (b) DMC(HSE06) energies as functions of lattice parameters a and b in atomic
units. Crosses indicate global minima of the energy contours.

B. DMC geometry optimization using a surrogate
Hessian-based parallel line search method

As stated earlier, optimization of crystal structures with
multiple cell and/or internal parameters is generally a chal-
lenge for DMC as forces and stresses are not yet widely
available. Energy-based methods may instead be used; how-
ever, these generally require many costly energy evaluations
in order to sample the atomic potential energy surface (PES)
in sufficient detail to determine the optimal structure. Here, we
briefly outline a surrogate Hessian-based optimization method
that accelerates the search for the DMC PES optimum by
incorporating approximate information from the DFT-energy
Hessian. This significantly reduces the number of DMC cal-
culations required. The full details of this method will be the
subject of an upcoming publication.

The method combines line search with information from
the DFT energy Hessian. The line search is a robust method
to locate minima of multidimensional functions, and it is
often used in QMC optimization methods for wave-function

parameters [25]. A potential drawback of line search is slow
convergence, potentially requiring many iterations and hence
many calculations of the DMC total energy. If the DMC en-
ergy Hessian were available, it could significantly accelerate
the search. We instead guide the search using the approximate
DFT Hessian, which still provides significant acceleration.
For GeSe, the DFT energy Hessian was evaluated in the para-
metric subspace spanned by cell parameters a, b and internal
parameters x, z1, z2, where x, z1, z2 are fractional coordinates
of the four atoms in the unit cell, the positions of which are
Ge(x, 0.25 z1), Ge(x + 0.5, 0.75, 1-z1), Se(0.5, 0.25, 1-z2),
and Se(0, 0.75, z2), respectively. We noted that DFT-optimized
structures would yield fixed atomic fractional coordinates y
along the b axis for all XC functionals used. Therefore we
could fix the atomic fractional coordinate y and use symmetry
constraints for the remaining fractional coordinates to reduce
the number of degrees of freedom to 3 for the internal atomic
coordinate plus 2 for the lattice parameters. The explicit rela-
tions between (l1, l2, d, θ1, θ2, θ3) and (a, b, c, x, z1, z2) are

l2
1 = (xa)2 + (0.5b)2 + [(z1 − z2)c]2

l2
2 = [(x − 0.5)a]2 + {[(z1 + z2) − 1]c}2

d = [(z1 + z2) − 1]c

θ1 = 2 tan−1

[
0.5b√

x2a2 + (z1 − z2)2c2

]

θ2 = cos−1

[
(2x − 1)xa2 + 2

(
z1 − z2 − z2

1 + z2
2

)
c2

2
√

(0.5 − x)2a2 + (1 − z2 − z1)2c2
√

x2a2 + 0.25b2 + (z1 − z2)2c2

]

θ3 = cos−1

[
(2x − 1)xa2 + 2

(
z2 − z1 − z2

2 + z2
1

)
c2

2
√

(0.5 − x)2a2 + (1 − z2 − z1)2c2
√

x2a2 + 0.25b2 + (z1 − z2)2c2

]
, (1)

where c is the dimension of the simulation supercell along
the z axis (coincident with the crystallographic c axis in
Fig. 3) that includes vacuum padding. In our simulations,
c = 21.58 Å.

The Hessian was found in this subspace by a quadratic fit
to direct PBE energy values calculated on a uniform grid con-
taining five points along each dimension. Next, the Hessian so
obtained was diagonalized to yield a set of search directions
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TABLE III. Progress of DMC energy and structural parameters for the GeSe monolayer during the parallel line search. Step 0 corresponds
to the PBE relaxed geometry, which was the starting point of the search. Error bars corresponding to the 1-σ uncertainty of the last significant
digits are shown in parentheses for each quantity.

Step EDMC (eV/unit cell) a (Å) b (Å) x z1 z2

0 −721.0684(49) 4.26 3.95 0.4140 0.55600 0.56000
1 −721.1277(98) 4.27(2) 3.95(1) 0.402(6) 0.5603(3) 0.5536(4)
2 −721.1432(38) 4.40(1) 3.89(1) 0.399(3) 0.5607(3) 0.5528(4)
3 −721.1533(38) 4.40(2) 3.89(1) 0.400(3) 0.5604(2) 0.5532(2)

within this parameter space. In this diagonalization step, we
find that the lattice parameters a and b are coupled, parameters
z1 and z2 are coupled, while x is essentially independent. If
the DFT Hessian is a perfect surrogate for the DMC Hes-
sian (i.e., no error) and if the energy surface is locally well
approximated by a multidimensional quadratic function, then
performing a line search along each of the separate directions
in parallel converges to the DMC PES minimum in a single
step.

In practice, for GeSe convergence was achieved by the sec-
ond step. The search began from the PBE relaxed geometry.
In each step, seven DMC calculations were performed along
each parameter direction (31 calculations in total as all search
directions shared a common point), and the energy curve
along each line was approximated by a least-squares quartic
polynomial fit. The minimum along each separate direction
defined the starting parameter coordinate for the next iteration
of the search. Table III contains the convergence of the struc-
tural parameters with search step. As the structural parameters
converge, the total energy also converges to sub-millihartree
accuracy.

Table IV summarizes the optimized DMC structural pa-
rameters for the GeSe monolayer. The DMC(HSE06) internal
atomic coordinates are in general in better agreement with
the DMC ones than are the PBE ones, but the differences
in lattice parameters a and b are large; HSE06 does not si-
multaneously yield accurate atomic coordinates and lattice
parameters. While the DMC(HSE06) internal atomic coor-
dinates are in rather good agreement with the DMC ones,
the differences in lattice parameters a and b are large, which
clearly shows that HSE06 does not simultaneously yield ac-
curate atomic coordinates and lattice parameters. In the DMC
geometry optimization, the initial geometry was set to the
relaxed PBE monolayer geometry, which has a smaller lat-
tice parameter a and larger b than the experimental bulk lattice
parameters, but the DMC relaxed geometry is close to the
bulk GeSe one in terms of lattice parameters and the six
atomic coordinates. We conclude that the absence of the in-
terlayer interactions in the monolayer form does not give rise

to significant changes in the lattice parameters but does give
rise to some differences in the internal atomic coordinates.
Having obtained the optimized GeSe monolayer structure,
we can calculate the interlayer binding energy of GeSe by
computing the total energy difference between the bulk and
monolayer forms. The interlayer binding energy extrapolated
to the bulk limit is estimated to be 0.27(2) eV. Because the
experimental binding energy is not yet reported, this DMC
binding energy can serve an accurate guide for predicting
interlayer binding energies for multilayer GeSe for future
studies.

C. Electronic band gaps

With the fully optimized DMC monolayer geometry, we
examined carefully how the electronic band structure and
band gaps in the DMC geometry differ from those of DFT
geometries, which are the ones that have generally been used.
In the PBE band structure (based on the PBE-relaxed geome-
try), the direct gap and indirect band gaps are located between
X and Y high-symmetry points [see blue lines in Fig. 5(a)].
Among these two band gaps in the PBE band structure, it is
difficult to confidently confirm the band-gap position because
of the very small energy difference (about 0.05 eV) between
the direct (1.06 eV) and indirect PBE gaps (1.01 eV). In
Fig. 5(b), the PBE band structure based on the DMC geometry
exhibits larger band gaps than the PBE geometry, but the
minimum band gaps are located at the same k points as for the
PBE geometry for both the direct (1.24 eV) and indirect gaps
(1.02 eV). However, the direct gap is 1.50 eV at the � point
in the DMC geometry, which is significantly smaller than the
band gap (2.32 eV) in the PBE geometry. This clearly shows
that the GeSe monolayer band structure is very sensitive to
the precise structure. As a consequence, it is very important
to accurately predict the structure in order to obtain accurate
electronic structure. It also suggests that controlling strain,
e.g., by using different substrates or by mechanical bending of
samples, can be a route to manipulate the electronic properties
of monolayer GeSe, in particular its optical absorption.

TABLE IV. Relaxed PBE and DMC geometry of the GeSe monolayer. The experimental values are for bulk GeSe geometry.

a (Å) b (Å) d (Å) l1 (Å) l2 (Å) θ1 (deg) θ2 (deg) θ3 (deg)

PBE 4.26 3.95 2.50 2.65 2.52 96.5 93.9 97.2
DMC(HSE06) 4.73(1) 3.76(1) 2.44 2.56 2.53 94.2 103.1 96.4
DMC 4.40(2) 3.89(1) 2.45(1) 2.63(1) 2.49(1) 95.4(5) 100.2(2) 93.4(2)
Exp. (bulk)a 4.40 3.85 2.49 2.58 2.54 95.4 103.6 90.8

aReference [45].
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FIG. 5. PBE monolayer GeSe band structure for (a) PBE and (b) DMC geometry. Blue lines represent candidates for direct and indirect gap.

In order to obtain accurate band gaps, we estimated DMC
gaps at selected k points in the Brillouin zone, two direct
and one indirect gap, based from the PBE band structure
in the DMC geometry (see Fig. 5). Table V shows a sum-
mary of the results for the DFT and DMC band gaps. The
DMC excitonic and quasiparticle gaps for monolayer GeSe
in the table are fully extrapolated results (see Fig. 6), as are
the corresponding bulk values. In Table V, all DFT calcu-
lations yield a smaller indirect band gap than direct gaps,
suggesting the characteristics of an indirect semiconductor.
While PBE, LDA, and SCAN largely underestimate band
gaps compared to corresponding DMC band gaps, the hy-
brid functionals (PBE0, B3LYP, and HSE06) that incorporate
some exact Hartree-Fock exchange yield band gaps closer
to those of DMC (although still significantly smaller), high-
lighting the importance of including some level of electron-
electron interactions beyond local and semilocal exchange
and correlations and the importance of reduced electron
self-interaction.

Monolayer GeSe has substantially larger band gaps, in the
range of 3.2–3.6 eV, than bulk GeSe, 1.6–2 eV. This sug-
gests that monolayer GeSe is a highly tunable wide-band-gap
semiconductor using strain to manipulate the band gap and
its optical absorption edge. Based on the DMC gaps, we
cannot conclusively state whether the monolayer is a direct
or indirect band-gap semiconductor. However, the closeness
of the direct gap at the � point and the indirect gap (X to
Y gap) and the strain sensitivity of the electronic structure

suggests that monolayer GeSe has a tunable direct-to-indirect
gap transition.

The estimated DMC band gaps for monolayer are sig-
nificantly larger than DFT band gaps. Because experimental
values for the monolayer band gaps are not known and some
previous DMC studies yielded overestimated band gaps com-
pared to experimental values [43,51], we need to eliminate
potential methodological errors in the estimated DMC band
gaps for monolayer GeSe. (Note that the DMC bulk direct
gap at the � point of 1.6 eV is close to the experimental
value of 1.53 eV, which suggests that this DMC gap is not
plagued by methodological errors.) A potential source of error
is the fixed-node approximation: if the nodal structures for the
ground-state and excited-state trial wave functions are poor,
this can give rise to errors in estimated band gaps. In partic-
ular, it has been claimed that fixed-node errors in the excited
state is a potential source of errors [51]. In order to eliminate
such an error, we compare the DMC band gap to band gaps
obtained using sCI through CIPSI in order to investigate the
dependence of the band gap on the number of determinants in
the wave function. Table VI shows calculated CIPSI energies
for the ground and excited state in a 1 × 1 GeSe monolayer
cell. We computed variational energies Evar and second-order
perturbative corrections EPT2 up to a maximum number of
determinant (Ndet) of 9 264 974 for double-zeta (DZ) and
10 197 480 for triple-zeta (TZ) basis sets in order to esti-
mate the extrapolated energy Eextrap. for the full variational
space using linear extrapolation to the limit EPT2 → 0. Using

TABLE V. Calculated DFT and DMC band gaps for monolayer GeSe (in eV). Note that all band gaps are computed in the same optimized
DMC geometry.

Direct (�) gap (eV) Direct gap (X-�) Indirect gap Quasiparticle gap

LDA 1.50 1.24 1.02 –
PBE 1.64 1.34 1.16 –
SCAN 1.90 1.61 1.38 –
PBE0 2.97 2.45 2.27 –
B3LYP 2.71 2.36 2.21 –
HSE06 2.29 1.87 1.67 –
DMC (bulk) 1.62(16) – – 1.95(21)
DMC (monolayer) 3.2(1) 3.6(2) 3.2(2) 3.1(2)
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FIG. 6. DMC quasiparticle and excitonic gaps for monolayer
GeSe as function of N−1, where N represents the total number of
atoms in the supercell. The dotted line indicates a simple linear
regression fit.

Eextrap. for DZ and TZ basis sets, we finally obtained energies
extrapolated to the complete basis set (CBS) limit for the
ground and for excited state with an electron promoted at
the � point. The excitonic gap, which is calculated as the
energy difference of Eextrap. in the CBS limit between the
ground and excited states, is computed as 1.52 eV. Based on
the good agreement of the estimated excitonic gap between
CIPSI (1.52 eV) and DMC (1.36(6) eV) at the same size of
supercell, we expect that the error induced by the fixed-node
approximation is negligible in the DMC excitonic gap for
GeSe monolayer. We were not able to compute CIPSI energies
in larger supercell sizes, but the almost identical CIPSI and
DMC band gaps lead us to expect that CIPSI band gap fully
extrapolated to the thermodynamic limit would exhibit band
gaps very similar to the DMC band gap energy estimated
using a single-determinant wave function. From these CIPSI
and DMC results, we conclusively confirm that monolayer
GeSe is a wide-gap semiconductor at low temperatures and

TABLE VI. Calculated CIPSI total energies in DZ and TZ qual-
ity basis sets and their extrapolated energies to the complete basis set
limit. Ndet , Evar, EPT2, and Eextrap. represent the total number of de-
terminants, variational energy, second-order perturbative correction,
and extrapolated energy to the EPT2 = 0 limit, respectively. Energies
are given in electronvolts.

Basis Ndet State Evar EPT2 Eextrap.

DZ 9264974 Ground –705.72 –0.97 –706.89
Excited –703.09 –0.94 –704.27
Gap 2.62

TZ 10197480 Ground –713.82 –1.76 –715.98
Excited –711.71 –1.81 –714.13
Gap 1.85

CBS extrap. Ground –719.81
Excited –718.28
Gap 1.52

that its band gap is severely underestimated by common DFT
approximations.

IV. CONCLUSIONS

We obtained structural properties and band gaps of bulk
and monolayer GeSe using QMC methods. We have shown
that QMC yields accurate structural and optical properties for
bulk GeSe but that DFT results vary significantly depending
on the choice of XC functionals. This is analogous to the
findings of Wines et al. [22], who showed that structural
and electronic properties of monolayer GaSe obtained using
DFT methods are unreliable, and even many-body pertur-
bation theory methods such as the Bethe-Salpeter equation
underestimate the direct gap. We used DMC to optimize the
monolayer GeSe structure using an algorithm based on a
surrogate Hessian-based method that considerably accelerated
the optimization process. We found that monolayer GeSe
exhibits a shallow potential energy surface minimum over a
large range of lattice parameters. This makes the structures
obtained by DFT very sensitive to the XC functional used.

FIG. 7. PBE total energy per formula unit GeSe for bulk GeSe as a function of k-point mesh (left panel) and as a function of kinetic energy
cutoff (right panel).
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FIG. 8. DMC total energy per GeSe formula unit for bulk GeSe
as function of number of twists in TABC.

Moreover, the electronic structure, including positions of band
minima and band gaps, is sensitive to the structural geometry
with a consequence that the DFT electronic properties also
vary significantly with the choice of XC functional. We also

used DMC to estimate direct gaps at the high-symmetry �

point and at a point on the high-symmetry line connecting
the X and � points; we also estimated the indirect gap at a
transition (from near the X point to near the Y point in the
Brillouin zone) suggested by the PBE band structure based
on the DMC structure. We also confirmed, using multideter-
minant wave functions, that the nodal error in the computed
DMC gaps is small. DMC shows that the �-point direct gap
is approximately the same as the indirect gap. This, and the
sensitivity of the electronic structure to the physical structure,
suggests that monolayer GeSe gaps are highly tunable and that
a transition can be induced from a direct-gap to an indirect-
gap semiconductor, with potential applications exploiting the
resulting changes in optical absorption. Moreover, our work,
as well as that of Wines et al. [22] clearly demonstrates the
need for highly accurate structural and electronic structure
methods in order to reliably assess the properties of GeSe and
GaSe, and presumably also for most monochalcogenides as
well as for transition-metal dichalcogenides, which is neces-
sary in order to fully exploit the properties of these materials
in future applications.

Input and output data from the computations [52] are avail-
able at the Materials Data Facility [53,54].

FIG. 9. DMC total energy for GeSe monolayer in lattice parameter (a) a = 4.05, (b) 4.15, (c) 4.26, and (d) 4.47 Å as a function of DFT
XC functional used for atomic coordinates relaxation. Note that lattice parameter b is the same as 3.95 Å.
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APPENDIX A: CONVERGENCE WITH RESPECT
TO k-POINT MESH AND TABC

Figure 7 shows the DFT PBE total energy per GeSe for-
mula unit for bulk GeSe with respect to k-point mesh (left
panel) and kinetic energy cutoff (right panel). Based on these
data, we used an 8 × 8 × 8 k-point mesh and a kinetic energy
cutoff of 4762 eV (350 Ry). Figure 8 shows the DMC total
energy per GeSe formula unit as a function of the number
of twists used in TABC. The figure shows that the DMC
TABC is well converged at 8 × 8 × 8 (512) twists, with only
about a 2(5) meV/GeSe difference in total energy from using
10 × 10 × 10 twists. Based on the well-converged results at
512 twists for a 4-f.u. supercell, we used 64 twists for a
32-f.u. supercell, which was the smallest supercell used in our
study.

APPENDIX B: DMC CALCULATION ON RELAXED DFT
GeSe ATOMIC COORDINATES

We computed DMC total energy for the monolayer with
the relaxed atomic coordinates using different DFT XC func-
tionals in order to find the best XC functional that can
minimize DMC total energy at given lattice parameter. DMC
was performed in large 72-f.u. supercell consisting of total

FIG. 10. DFT band structure using the PBE (black) and PBE0
(red) XC functionals. While the gap is different from that of PBE, as
expected, and the direct and indirect gaps occur at the same k points
as for PBE, indicated by the arrows.

720 electrons. Figure 9 represents DMC total energies in the
selected lattice parameters. Because of atomic coordinates
difference, we see large discrepancy in DMC energy between
different XC functionals used for the structure relaxation.
Between these XC functionals, we can see that HSE06 relaxed
atomic coordinates show uniformly lower DMC total energy
than the other XC functionals for various lattice parameters.
From these results, we predict that the HSE06 XC functional
can provide relatively stable GeSe atomic coordinates as com-
pared to the other XC functionals, which lead us to decide to
use the HSE06 XC functional for the geometry optimization.

APPENDIX C: PBE0 BAND STRUCTURE

We calculated the DFT band structure for monolayer GeSe
using the PBE0 XC functional on a 12 × 12 k-point mesh to
confirm that (at least for the PBE and PBE0 functionals) the
direct and indirect gaps occur at the same k points (Fig. 10).
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