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Onset of sliding across scales: How the contact topography impacts frictional strength
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When two solids start rubbing together, frictional sliding initiates in the wake of slip fronts propagating along
their surfaces in contact. This macroscopic rupture dynamics can be successfully mapped on the elastodynamics
of a moving shear crack. However, this analogy breaks down during the nucleation process, which develops
at the scale of surface asperities where microcontacts form. Recent atomistic simulations revealed how a
characteristic junction size selects if the failure of microcontact junctions either arises by brittle fracture
or by ductile yielding. This work aims at bridging these two complementary descriptions of the onset of
frictional slip existing at different scales. We first present how the microcontact failure observed in atomistic
simulations can be conveniently “coarse grained” using an equivalent cohesive law. Taking advantage of a
scalable parallel implementation of the cohesive element method, we study how the different failure mechanisms
of the microcontact asperities interplay with the nucleation and propagation of macroscopic slip fronts along
the interface. Notably, large simulations reveal how the failure mechanism prevailing in the rupture of the
microcontacts (brittle versus ductile) significantly impacts the nucleation of frictional sliding and, thereby, the
interface frictional strength. This work paves the way for a unified description of frictional interfaces connecting
the recent advances independently made at the micro- and macroscopic scales.
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I. INTRODUCTION

The rapid onset of sliding along frictional interfaces is
often driven by a dynamics similar to the one observed during
the rupture of brittle materials. Just like a propagating shear
crack, slipping starts and the shear stress drops in the wake of
a slip front that is moving along the interface. This analogy
particularly suits the observed behaviors of frictional inter-
faces at a macroscopic scale and explains that the earthquake
dynamics has been studied for decades as the propagation of
shear cracks along crustal faults [1–4].

Recent experiments [5] quantitatively demonstrated how
linear elastic fracture mechanics (LEFM) perfectly describes
the evolution of strains measured at a short distance from
the interface during the dynamic propagation of slip fronts.
From this mapping, a unique parameter emerges, the equiva-
lent fracture energy Gc of the frictional interface, which was
later used to rationalize the observed arrest of slip fronts in
light of the fracture energy balance criterion [6,7]. The same
framework was also successfully applied to describe the fail-
ure of interfaces after coating the surface with lubricant [8].
Despite a reduction in the force required to initiate sliding,
the equivalent fracture energy measured after lubrication was
surprisingly higher than for the dry configuration [9]. This
apparent paradox in the framework of LEFM is expected to
arise during the nucleation phase, which is controlled by the
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microscopic nature of friction and contact. At the microscale,
surfaces are rough and contact only occurs between the sur-
face peaks, resulting in a very heterogeneous distribution of
the sliding resistance [10,11].

A class of laboratory-derived friction models [12–14] has
been successfully used to rationalize some key aspects of the
rupture nucleation along frictional interfaces, particularly in
the context of earthquakes (critical length scales at the onset
of frictional instabilities [13,15–18], speed and type of the
subsequent ruptures [19–23]). The so-called rate-and-state
formulations are empirically calibrated to reproduce the subtle
evolution of friction observed during experiments [10]. A
direct connection with the physics of the microcontacts and
their impact on the frictional strength, however, remains un-
settled and motivates the recent effort to derive physics-based
interpretations of the rate-and-state friction laws [24–27].

To rationalize the friction coefficient of metal interfaces,
Bowden and Tabor [28,29] suggested that the microcontact
junctions represent highly confined regions yielding under a
combination of compressive and shear stresses. Later, By-
erlee [30] proposed an alternative for brittle materials, by
assuming that slipping does not occur through the plastic
shearing of junctions but rather by fracturing the microcon-
tacts, which leads to a smaller value of the friction coefficient,
in agreement with the ones measured for rock interfaces. From
atomistic calculations, Aghababaei et al. [31–33] recently
derived a characteristic size of the microcontact junction d∗
controlling the transition from brittle fracture (of junctions
larger than d∗) to ductile yielding (of junctions smaller than
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FIG. 1. Geometry of the problem. The inset presents the
schematic shear stress σxy profile predicted by LEFM at a distance
r from a macroscopic rupture front. A nonlinear region (I) exists at
the immediate vicinity of the tip, followed by a linearly elastic region
(II), where σxy is dominated by the square root singularity. Further
away from the tip (III), nonsingular contributions dominate the pro-
file of σxy, which converges toward the far-field stress conditions. At
the onset of sliding, the microcontacts within the nonlinear region
(I) can either break by brittle fracture of their apexes or by plastic
yielding [28,30,31]. Our work aims at describing how these different
failure mechanisms occurring at the scale of asperity contact, i.e.,
“hidden” within (I), impact the onset of sliding and the frictional
strength.

d∗). As sketched in Fig. 1, these brittle and ductile fail-
ure mechanisms coexist along two rough surfaces rubbing
together. From this permanent interplay, Frérot et al. [34]
proposed an interpretation of surface wear during frictional
sliding, while Milanese et al. [35] discussed the origin of the
self-affinity of surfaces found in natural or manufactured ma-
terials. The link between these different microcontact failure
mechanisms and the macroscopic frictional strength of the
interface remains overlooked, however.

In this work, we first present how to approximate the mi-
crocontacts failure using a convenient cohesive model. The
cohesive approach is then implemented in a high-performance
finite element library and used to simulate the onset of sliding
across two scales. At the macroscopic level, we study the
ability of an interface to withstand a progressively applied
shearing, i.e., its frictional strength, while at the microscopic
scale, we observe how the failure process develops across the
microcontact junctions. This study culminates by discussing
how small differences in the interface conditions or the size
of asperity junctions, only visible at the scale of the micro-
contacts, can nevertheless have a significant impact on the
nucleation phase and the macroscopic frictional strength.

II. PROBLEM DESCRIPTION

We consider two linearly elastic blocks of height h/2
brought into contact along their longitudinal face of length
l . As presented in Fig. 1, the two blocks are progressively
sheared by displacing the top surface at a constant speed �̇x,
while the bottom surface is clamped. In a Cartesian system of
coordinates, whose origin stands at the left edge of the con-
tacting plane, the boundary conditions of this elastodynamic
problem correspond to

u(x,−h/2, t ) = 0

u̇x(x, h/2, t ) = �̇x

uy(0, y, t ) = uy(l, y, t ) = 0

(1)

and lead to a state of simple shear, for which the shear compo-
nents of the Cauchy stress tensor are σxy = σyx = τ . In Eq. (1),
u = {ux, uy} corresponds to the displacements vector and �̇
denotes a time derivative. The elastodynamic solution of this
system in the absence of interfacial slip is presented in Fig. 5
of the Appendix. As illustrated in Fig. 1, sliding nucleates
at small scales from the rupture of the microcontacts which
potentially stems from several nonlinear phenomena (cleav-
age, plasticity, interlocking). As discussed by Aghababaei
et al. [31], atomistic models are particularly suited to simulate
these phenomena in comparison to continuum approaches,
but are conversely disconnected from the macroscopic dy-
namics. Therefore, we rely on a 2D plane strain continuum
description of the two solids, while the complex interface
phenomena and associated dissipative processes are assumed
to be constrained at the contact plane and entirely described
by a “coarse-grained” cohesive law deriving from a ther-
modynamic potential �. The shape of � and its associated
exponential cohesive law correspond to a generic failure re-
sponse of the microcontact asperities observed during a large
set of atomistic simulations [31–33,35–38]. As sketched in
Fig. 1, sliding is assumed to initiate at the edge of a critical
nucleus (e.g., the largest noncontacting region or the result of
underlying stochastic processes [21,39]) existing at the very
left of our model interface with a size w0. Moreover, the
rough contact topography sketched in Fig. 1 is idealized as
a regular pattern of contacting and noncontacting junctions of
microscopic size w � w0.

Additional details about theoretical derivations, the numer-
ical method, and the material properties used in this paper
are provided in Appendix, which namely defines the values of
the Young’s modulus E , the Poisson’s ratio ν, and a reference
interface fracture energy Gref

c .

III. CHARACTERISTIC LENGTH SCALES OF THE
BRITTLE-TO-DUCTILE FAILURE TRANSITION

Next, we study the onset of slip along a uniform and
homogeneous interface (i.e., a unique junction) of fracture
energy Gc and size (l − w0). Figure 2(b) presents the evo-
lution of energies observed during a typical failure event, i.e.,
the applied external work Wext, the elastic strain energy Eel,
the energy dissipated by fracture Efrac, and the kinetic energy
Ekin. During an initial phase, the elastic strain energy builds
up in the system following the dynamics predicted in the
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FIG. 2. The ratio of the process zone size to the length of the junction mediates the work required to initiate sliding. (a) Normalized external
work required to initiate sliding along a single uniform junction as function of the ratio between the process zone size lpz and the resisting
junction size (l − w0) for different types of interface properties and geometries. Panels (b) and (c) present the evolution of energies during the
onset of sliding, which occurs respectively at t = 92t∗ and t = 35t∗. The two events share the same elastic properties and Gc = 4Gref

c , but their
respective interface cohesive laws lead to lpz/(l − w0) = 3.5 · 10−2 and lpz/(l − w0 ) = 3.5. The dashed lines in panels (b) and (c) present the
buildup of elastic strain energy in the absence of interfacial slip discussed in the Appendix.

absence of interfacial slip (Fig. 5) and depicted by the black
dashed line. After an initial loading phase, sliding nucleates
at x = w0, and a propagating slip front breaks the interface
cohesion and releases E∗

frac = Gc(l − w0). The asterisks in
Figs. 2(b) and 2(c) simply distinguish the final value of energy
obtained after the complete interface failure from its transient
value, i.e., E∗

i = Ei(t � t∗). After the complete failure, an
eventual excess of mechanical energy (W ∗

ext − E∗
frac) remains in

the system and takes the form of elastic vibrations in absence
of any other dissipative process.

Figure 2(c) describes the evolution of energies observed
during another failure event, during which sliding initiates for
a significantly lower applied external work, exactly balancing
the energy dissipated in fracture (W ∗

ext = E∗
frac). Perhaps sur-

prisingly to some readers, these quantitatively different sliding
events arise within two systems having identical elastic prop-
erties (E , ν) and interface fracture energy Gc. These different
dynamics emerge solely from the size of the fracture process
zone at the tip of the crack, which can be estimated as [40,41]

lpz
∼= e

δc

τc

E

(1 − ν2)
= Gc

τ 2
c

2μ

1 − ν
. (2)

τc and δc are respectively the maximum shear strength and
critical slip displacement entering the cohesive formulation
[see Eqs. (A14) and (A15)]. When the size of the process zone
lpz is comparable to the junction size (l − w0), the sliding
motion develops along a damage band stretching over the
entire length of the interface with an energy balance similar to
the one observed in Fig. 2(c). Conversely, if lpz � (l − w0),
sliding initiates in the form of a slip front propagating from
x = w0 and leading to a more violent rupture as described
in Fig. 2(b). The two different stress profiles existing prior
to the rupture events presented in Figs. 2(b) and 2(c) can
be visualized in Fig. 6 of the Appendix. In the limit of an
infinitesimally small process zone, the rupture corresponds to
a singular shear (mode II) crack, whose propagation initiates
according to LEFM energy balance. In this context, the ap-
plied external work should not solely balance E∗

frac but also
load the system above the strain energy required to initiate
the rupture. The latter is derived in the Appendix and can be

estimated as (χ ≈ 1.12):

E lefm
el = Gc

χ2

hl

πw0(1 − ν)
. (3)

For different interface properties and dimensions, Fig. 2(a)
presents how the process zone size [Eq. (2)] together with the
rupture energy balance can rationalize the observed transition
from the dynamics of sharp crack-like events [for lpz � (l −
w0)] to gradual ductile failures [for lpz � (l − w0)].

In some applications, the system is preferably described in
terms of the macroscopic force F ∗

ext required to trigger sliding,
i.e., to reach the interface frictional strength. As presented in
Fig. 7, the brittle-to-ductile transition can be similarly char-
acterized from the evolution of the force required to initiate
sliding between F lefm

ext and F str
ext . Using Eqs. (2) and (A10), F str

ext
can be rewritten as

F str
ext = F lefm

ext

( lpz

l − w0

)− 1
2

√
χ2π

w0

l

(
1 − w0

l

)
. (4)

This expression is depicted by the black and gray solid
lines in Fig. 7 and predicts well the evolution of the frictional
force observed when the process zone is large. With very
small process zones, the frictional force saturates at the value
predicted by brittle fracture theory in Eq. (A10).

The evolution between these two failure mechanisms re-
ported in Figs. 2(a) and 7 is analogous to the transition
discussed in the tensile failure of concrete structures [42] from
the plastic failure of small specimens to the brittle failure
of larger structures. Two important differences arise during
the shear failure of frictional interfaces. Brittle and ductile
mechanisms coexist during the failure of rough surfaces and
the characteristic length scale is not purely a bulk property
but also depends on interface conditions (for example, lubrica-
tion). Indeed, an equivalent brittle-to-ductile transition exists
in the failure of the microcontact asperities observed in the
atomistic simulations. Aghababaei et al. [31] revealed how a
characteristic junction size

d∗ = λ
Gc

τ 2
c

μ (5)
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FIG. 3. Evolution of the frictional strength in the presence of microcontact junctions for two representative interfaces differentiated by
their respective characteristic junction size (d∗

A < w < d∗
B). (a) The gray circles recall the data discussed previously in Fig. 2(a). The blue

circles correspond to homogeneous (single-junction) interfaces. The red circles are associated to multiasperity interfaces with a heterogeneous
microstructure but the same average fracture energy Gref

c . [(b), (c)] Enlargements of the vicinity of the critical nucleus (x = w0) revealing the
origin of the frictional strength difference between interfaces A and B in the presence of microcontacts. Colors depict the shear stress profile

existing before the onset of sliding while an artificial vertical displacement (uy(x, y) = ux (x, y)) is applied to help visualizing the slip profile
along the interface (200 times magnification). The evolution of junctions strength is depicted with a gradation from black (τ str = τc) to white
(τ str = 0). The sketches located in the top right of each plot associate the failure of the coarse-grained multicontacts interfaces A and B to the
corresponding failure mechanism of surface asperities discussed in Fig. 1.

mediates this transition from the brittle rupture of the apexes
of junctions larger than d∗ to the ductile yielding of junctions
smaller than d∗. In Eq. (5), λ is a dimensionless factor ac-
counting for the geometry (typically in the range of unity)
and, therefore, lpz [Eq. (2)] corresponds to the same charac-
teristic length scale as d∗ [Eq. (5)]. Remarkably, there is a
direct analogy between the brittle-to-ductile failure transition
(controlled by d∗) observed during the failure of microcon-
tact asperities [31] and the failure of the “coarse-grained”
junctions (controlled by lpz) presented in Fig. 2(a) using the
cohesive approach. The latter represents therefore a powerful
tool to unravel the impact of the microcontacts failure on the
macroscopic frictional strength of multiasperity interfaces.

Next, we select two types of interface properties with the
same fracture energy Gc = Gref

c and with process zone sizes
that are much smaller than the size of the domain. We later
refer to these two systems as interface A (lpz,A/l = 9 × 10−4)
and interface B (lpz,B/l = 4.5 × 10−2). For the single-junction
interfaces considered in this section, the interfaces A and
B rupture with a cracklike dynamics (as lpz � l − w0) at
similar magnitudes of external work [see the blue circles in
Fig. 2(a), which are recalled in Fig. 3(a)]. In the next section,
the frictional strength of multiasperity interfaces is studied in
light of the characteristic junction size d∗. The size of the
microcontact junctions w is chosen in order to discuss the
cases where w is respectively larger (smaller) than the char-
acteristic junction size of the interfaces A (B) (d∗

A < w < d∗
B).

The characteristic junction sizes are computed using λ ∼= 3
in Eq. (5), such that d∗ ≡ lpz. This value of λ corresponds to
the one estimated for three-dimensional spherical asperities in
Ref. [31].

IV. ROUGH CONTACT TOPOGRAPHY AND FRICTIONAL
STRENGTH

As sketched in Fig. 1, two solids come into contact along
a reduced portion of the interface, between the peaks of
the microscopically rough surfaces. To model the effect of
this heterogeneous topography, we now introduce an ide-
alized array of microscopic gaps and junctions of size

w = 0.05w0 = 0.005l . In order to keep the total energy dis-
sipated into fracture unchanged [E∗

frac = Gref
c (l − w0)], the

fracture energy of the microscopic junctions is set to 2Gref
c .

The interfaces A and B have significantly different frictional
strength in presence of the heterogeneous microstructure as
shown by the red circles in Fig. 3(a) for the external work and
in Fig. 7 for the external force. This major difference is caused
by the introduction of a new length scale w in the systems,
which exactly stands between the characteristic length scales
d∗

A and d∗
B.

As presented in Fig. 3(c), along interface B (d∗
B > w),

several microcontact junctions start damaging and slipping
during the initial loading phase. The stress concentration at
the edge of the critical nucleus spans several microcontact
junctions and gaps. Their individual properties are thereby
homogenized within this large process zone and result in a
quasihomogeneous frictional response driven by the strength-
dominated ductile failure. Conversely, for interface A (d∗

A <

w), the shear stress sharply concentrates at the very edge of the
microcontact junctions [cf. Fig. 3(b)] whose local toughness
directly controls the onset of failure.

For interface B, the effective fracture energy corresponds
to the average value, which explains that the heterogeneous
and homogenized interfaces break at the same magnitudes of
W ∗

ext and F ∗
ext. For interface A, the toughness of the microcon-

tact junctions (Gc = 2Gref
c ) directly controls the failure. From

Eqs. (A9) and (A10), the external work and the external force
are hence expected to increase by respectively a factor 2 and√

2, in good agreement with the simulated values (reported
in Figs. 3 and 7). Such toughening mechanism can therefore
become stronger if a larger contrast exists between the tough-
ness of individual microcontacts and the average macroscopic
toughness of the interface.

V. SUBSEQUENT RUPTURE DYNAMICS

The main objective of the paper is to study the impact
of the microscopic roughness at nucleation. It is neverthe-
less insightful to briefly comment the subsequent rupture
dynamics observed along the heterogeneous interfaces A and
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FIG. 4. At a macroscopic distance from the interface, the evolutions of the stress fields observed during the dynamic failure of the
heterogeneous interfaces A (top) and B (bottom) comply with LEFM predictions for an interface fracture energy corresponding to the average
value Gref

c . On the left panels, shear stress at the vicinity of the propagating slip front is mapped using the same color scale. To mimic the
experimental measurements, the white lines highlight the position along which the components of the Cauchy stress tensor are presented on
the right panels in red. The stress fields predicted by LEFM at the vicinity of a shear crack are plotted in blue for a fracture energy equal to
Gref

c . Note that the mismatch visible in the simulation profiles of σxy is caused by the shear wave traveling ahead of an accelerating shear crack
which is not included in LEFM solutions of Eq. (A18) [43,44].

B. As shown in the previous sections, the details of the
microstructure play an important role during the nucleation
phase as the macroscopic frictional strength cannot be system-
atically predicted from the average interface properties. How-
ever, the subsequent rupture dynamics are macroscopically
similar and comply with LEFM predictions for homogenized
interface properties. In Fig. 4, the stress profiles are measured
at a macroscopic distance (h/25 � w) from the contacting
plane, as is the case during experiments [5,7,8]. In both situa-
tions, the stress profiles present the K dominance predicted by
LEFM for dynamic shear cracks with an associated dynamic
energy release rate balancing the average fracture energy Gref

c .
The details of the linear elastic stress solutions used in Fig. 4
are described in the Appendix.

A few differences need to be mentioned: As d∗ signifi-
cantly impacts the nucleation, dynamic rupture initiates under
higher shear stress along interface A than B and consequently
propagates at faster velocities. Both explain the different stress
amplitudes between the two interfaces in Fig. 4. The high-
frequency radiations visible in the stress profile of interface A
are another difference arising from the interplay of dynamic
ruptures with heterogeneities larger than the process zone
[45], and therefore are mainly for interface A. Nevertheless,
their wavelength and amplitude are expected to decay for
microcontacts smaller than the two orders of magnitude con-
sidered in our simulations and become out of the resolution
of macroscopic experiments. Finally, additional differences
could exist for three-dimensional systems. Indeed, the in-
plane distortions of the slip front caused by tough asperities
larger than d∗ (as in configuration A) could cause intense
stress concentrations strongly impacting the overall rupture
dynamics (as reported in the context of dynamic fracture
[46,47]).

VI. DISCUSSION AND CONCLUDING REMARKS

Between two realistic rough surfaces in contact, a dense
spectrum of junction sizes forms the real contact area, which
often barely exceeds a few percent of the apparent area of
the contact plane [10]. The contacting asperities form clusters
whose sizes typically follow a power-law distribution [48].
Moreover, the strength of each asperity could vary following
Gaussian or Weibull distribution. In this context, our results
predict the length under which the details of the microstruc-
ture can be homogenized along the tip of a nucleating slip
patch. Interestingly, this length is equivalent to the char-
acteristic junction size d∗ used to study the formation of
wear particles [31,34]. Indeed, the strength of the junctions
smaller than d∗ can be averaged [cf. responses of interface
B in Fig. 3(a)], whereas the toughness of the microcontact
junctions larger than d∗ are individually impacting the macro-
scopic frictional behavior of the interface [cf. responses of
interface A in Fig. 3(a)]. The combination of the criterion
described in this paper with models simulating the contact
of two rough surfaces [11,49] opens new prospects to in-
vestigate the frictional strength of contact interfaces. Such
models could notably account for three-dimensional effects
(e.g., shear-induced anisotropy [50], shielding of neighboring
rupture fronts [36], or its pinning by tough asperities [51]).

Any modification of the characteristic junction size d∗
(lubrication, coating) or the microcontact topography (sand-
ing) will thereby impact the macroscopic frictional strength
(even if such modifications are only visible at a microscale
and do not change the average interface properties). The
brittle-to-ductile transition discussed in this work brings then
an interesting avenue to rationalize the “slippery but tough”
behavior of lubricated interfaces discussed in the introduction.
As reported by Bayart et al. [9], the lubrication significantly
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increases the critical slip distance δc and the interface fracture
energy Gc. Moreover, a reduction of the interface adhesion
also leads to an increase of the characteristic junction size
d∗ [37,38]. Dry contact can hence be viewed as a strong but
fragile interface, where slip initiates by a sharp concentration
of the shear stress and damage zone at the edge of the micro-
contacts, followed by the abrupt brittle failure of individual
microcontacts. After lubrication, the damage zone distributed
over multiple microcontacts leads to the strength-dominated
ductile failure of several junctions, resulting macroscopically
into a more slippery yet tougher interface.

Whereas the microcontacts topography together with d∗
play a significant role at nucleation, the macroscopic rupture
dynamics appears to be much less impacted by the micro-
scopic details and comply with the theoretical predictions
for average homogenized properties. This observation is in
good agreement with a recent set of frictional experiments
revealing how the fracture energy inverted from interfacial
displacements shows significant variations around the average
and uniform value inverted from strain measurements in the
bulk [52].

More broadly, this work also find implications in our un-
derstanding of the failure of heterogeneous media, particularly
in the context of multiscale and hierarchical materials, for
which the microstructure organization can be tuned to en-
hance the overall material properties [53,54].
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APPENDIX

1. End-member elastic solutions

The numerical results presented in the paper are supported
by theoretical solutions derived hereafter in the framework of
linear elasticity which rests upon the following momentum
balance equation:

∇ · σ(x, y, t ) = ρü(x, y, t ). (A1)

In the equation above, ∇ is the divergence operator and we
recall that σ is the Cauchy stress tensor, u is the displacements
vector, and �̈ denotes a double time derivative. At time t = 0,
the two continua presented in Fig. 1 are initially at rest and
start being progressively loaded by a shear wave whose am-
plitude corresponds to Δτ = μ/cs �̇x. μ is the elastic shear
modulus and cs is the shear wave speed such that t∗ = h/cs

is the wave travel time between the top and bottom surfaces.
Figure 5 presents the elastodynamic solution of this system
under the boundary conditions listed in Eq. (1). In this state of
simple shear, the only nonzero components of σ are the shear
stress σxy = σyx = μ∂ux/∂y such that the elastic strain energy
reduces to

Eel = 1

2μ

∫ h
2

− h
2

∫ l

0
(σxy)2dxdy. (A2)

Integrating the stress of the solution presented in Fig. 5 ac-
cording to Eq. (A2) leads to the quadratic buildup of strain

FIG. 5. Elastodynamic solution in the absence of interfacial slip.
The dynamic fields are mediated by the vertical propagation of a
shear wave front characterized by Δτ = μ/cs �̇x . t∗ = h/cs is the
time needed by the front to travel between the top and bottom
surfaces and n ∈ N is the total number of reflections observed at the
top boundary.

energy depicted by the black dashed lines in Figs. 2(b) and
2(c).

After an initial loading phase, the buildup of strain energy
is limited by the nucleation of slip and the progressive failure
of the interface. As the system is initially at rest, the energy
conservation implies that

Epot + Ekin + Efrac = 0. (A3)

Epot = Eel − Wext is the potential energy, such that Eq. (A3)
can be rewritten after the complete interface failure as

Eel + Ekin = W ∗
ext − E∗

frac. (A4)

As discussed in the paper, the right-hand-side terms of
Eq. (A4) reach constant values, respectively, W ∗

ext and E∗
frac,

while the left-hand-side terms represent an eventual excess of
mechanical energy remaining in the system after the rupture.

As function of the size of the region where sliding nu-
cleates (i.e., the process zone size lpz), two end-member
situations exist. In the limit of an infinitesimally small pro-
cess zone, this excess of mechanical energy can be related
to the energy barrier governing the nucleation of a singular
shear (mode II) crack. From linear elastic fracture mechanics
(LEFM) [55–57], the rupture propagation starts according to
the following thermodynamic criterion:

KII > Kc. (A5)

In the equation above, Kc is the interface fracture toughness,
which can be computed from the fracture energy as

Kc =
√

Gc
E

(1 − ν2)
. (A6)

KII is the stress intensity factor, which depends on the far-field
shear stress σ∞

xy , the initial crack size (w0 in our setup), and a
dimensionless factor χ accounting for the geometry:

KII = χσ∞
xy

√
πw0. (A7)

In this paper, χ is approximated as 1.12 for the edge crack
configuration of interest [57]. The rupture is then expected to
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FIG. 6. Shear stress profiles before the onset of sliding for the
two different failure mechanisms selected by the size of the process
zone. In the left plot [lpz � (l − w0 )], the stress concentrates at the
very edge of the junction and the subsequent rupture corresponds
to the sharp crack-like event studied in Fig. 2(b). In the right plot
[lpz > (l − w0)], the stress is uniform over the junction and leads to
the ductile failure presented in Fig. 2(c).

initiate when

σxy � σ∞
xy = 1

χ

√
Gc

πw0

E

(1 − ν2)
. (A8)

By assuming homogeneous shear stress within the two solids,
the elastic strain energy required to initiate the rupture can be
approximated by

E lefm
el = 1

2μ

∫ h
2

− h
2

∫ l

0

(
σ∞

xy

)2
dxdy = Gc

χ2

hl

πw0(1 − ν)
, (A9)

which represents a strain energy barrier governing the onset of
rupture growth. In the limit of a process zone larger than the
length of the interface, the failure progressively occurs every-
where along the contact plane once the shear stress reaches the
interface strength σxy = τc such that no energy barrier exists
and W ∗

ext = E∗
frac.

Figure 6 presents the shear stress profiles existing for these
two end-member situations prior to the rupture. In the paper,
this transition is studied in terms of the energy balance but
the same approach could be used to predict the macroscopic
force F ∗

ext required to trigger sliding, as demonstrated in Fig.
7. Invoking that the dynamic effects are negligible before the
onset of sliding, two end-member solutions can be similarly
derived for F ∗

ext. In the limit of an infinitesimal process zone
[lpz � (l − w0)], the force is controlled by the far-field shear
stress predicted by LEFM and corresponds to

F lefm
ext = σ∞

xy l = l

χ

√
Gc

πw0

E

(1 − ν2)
. (A10)

Conversely, if lpz > (l − w0) the applied force should balance
the peak strength along the entire contact junction such that
F ∗

ext approaches

F str
ext = τc(l − w0). (A11)

FIG. 7. External force required to trigger sliding as function of
the process zone size for the simulations reported in the Figs. 2(a) and
3(a) of the paper. In the large process zone limit, the data follow F str

ext ,
whose evolution predicted by Eq. (4) is depicted by the black and
gray solid lines for the two studied geometries, respectively w0/l =
0.05 and w0/l = 0.1. With shorter process zone sizes, the external
force saturates at F lefm

ext , the value predicted from brittle fracture.
The blue and red dots present the values observed for respectively
the homogeneous and heterogeneous large-scale simulations. Please
refer to the presentation in the main text for more information about
the different setups.

2. Numerical method

The elastodynamic equation [Eq. (A1)] is solved with a
finite-element approach using a lumped mass matrix coupled
to an explicit time integration scheme based on a Newmark-β
method [59]. The stable time step is defined as function of the
dilatational wave speed cd and the spatial discretization �s as

�t = 0.7
�s

cd
, (A12)

with �s being typically set to l
1000 in this work. For the large

simulations of interfaces with a heterogeneous microstruc-
ture, the discretization is brought to l

5000 , leading to about
70 000 000 degrees of freedom. The virtual work contribution
of the frictional plane is written as

Ŵ (t ) =
∫ l

0
τ (x, t )δ̂x(x, t )dx, (A13)

with �̂ denoting a “virtual” quantity and δx(x, t ) =
ux(x, 0+, t ) − ux(x, 0−, t ) being the interfacial slip between
the top and bottom surfaces. The shear traction acting at the
interface τ is assumed to derive from an exponential Rose-
Ferrante-Smith universal potential � [58] and is expressed as

τ = ∂�

∂δx
= δx

δc
τce1− δx

δc . (A14)

In Eq. (A14), τc and δc are respectively the maximum strength
and critical slip of the interface characterizing the exponen-
tial traction-separation law sketched in Fig. 8, for which the
fracture energy corresponds to

Gc =
∫ ∞

0
τdδx = eτcδc. (A15)
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FIG. 8. From left to right: Typical force vs slip profile observed during the shearing of two interacting asperities in molecular dynamics
simulations (see Ref. [32] for a detailed presentation of the method and setup). Such behavior can be conveniently described by the exponential
cohesive law given in Eq. (A14) and derived from a Rose-Ferrante-Smith [58] type of universal binding potential. The exponential cohesive
law allows for saving the cost of describing the fine details of asperity contact and, in return, the coarse-grained junctions can embed the
microcontact failure behavior into the macroscopic response of frictional systems. More notably, these coarse-grained junctions also reproduce
the essential observations of the molecular dynamics simulations: the brittle-to-ductile transition in the failure of microcontact junctions
controlled by an identical characteristic length scale (see the discussion in the main text). Examples of a very brittle cohesive law in dark blue
(τ b

c ; δb
c ) and a more ductile one in cyan (τ d

c = 0.1τ b
c ; δd

c = 10δb
c ) having the same fracture energy.

Modeling the failure of the junctions existing between two
rough surfaces motivates the choice of the exponential po-
tential and associated cohesive law [Eq. (A14)]. Indeed,
Aghababaei et al. [31,32,36] used atomistic simulations to
study the shear failure of various kinds of interlocking surface
asperities and reported how the evolution of the profile of
the “far-field” tangential force versus sliding distance follows
a similar evolution than the exponential cohesive law (see,
for example, Fig. 1 of Ref. [32]). In this context, the cho-
sen cohesive formulation should be understood as a generic
“coarse-grained” description of the failure of the underlying
microcontact junctions. This idea is illustrated in Fig. 8. Inter-
estingly, this coarse-grained formulation is, at the same time,
representative of the micromechanical behavior of microcon-
tact junctions and similar to the slip-weakening description of
friction used in the macroscopic modeling of contact planes
[43–45]. The main objective of this work is to study the nucle-
ation process, but the model could add residual friction at the
valleys or in the trail of the fronts with no loss of generality.

Capturing the multiscale nature of the problem requires an
efficient and scalable parallel implementation of the finite-
element method, capable of handling several millions of
degrees of freedom on high-performance computing clusters.
To this aim, we use our homemade open-source finite-
element software AKANTU, whose implementation is detailed
in [60,61] and whose sources can be freely accessed from
the C4SCIENCE platform [62]. More details about the finite-
element formulation [63–65] and the implementation of
cohesive element models [66,67] can be found in the reference
papers.

3. Material properties

The results are discussed in the paper with adimensional
scales but the material properties of Homalite used in the
simulations are given to the reader for the sake of repro-

ducibility: Young’s modulus E = 5.3 [GPa], Poisson’s ratio
ν = 0.35, shear wave speed cs = 1263 [m/s], and reference
interface fracture energy Gref

c = 23 [J/m2].

4. Dynamic fracture mechanics

For a detailed presentation of the dynamic fracture theory,
the reader is redirected to the reference textbooks [2,68,69].
For a mode II shear crack moving at speed vc, the dynamic
energy balance is expressed from the dynamic stress intensity
factor KII and a universal function of the crack speed AII :

Gc = G = 1 − ν2

E
K2

II AII (vc), (A16)

with

AII (vc) = αsv
2
c

(1 − ν)Dc2
s

, (A17)

where α2
s,d = 1 − v2

c /c2
s,d and D = 4αdαs − (1 + α2

s )2. As for
the static crack depicted in Fig. 1, stresses immediately ahead
of a dynamic front are dominated by a square-root singular
contribution. The latter can be expressed in a polar system of
coordinates (r, θ ) attached to the crack tip and as function of
the dynamic stress intensity factor KII [68]:

σxx = − KII√
2πr

2αs

D

{(
1 + 2α2

d − α2
s

) sin 1
2θd√
γd

− (
1 + α2

s

) sin 1
2θs√
γs

}
,

σxy = KII√
2πr

1

D

{
4αdαs

cos 1
2θd√
γd

− (1 + α2
s )2 cos 1

2θs√
γs

}
,

σyy = KII√
2πr

2αs(1 + α2
s )

D

{ sin 1
2θd√
γd

− sin 1
2θs√
γs

}
, (A18)
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with γs,d = √
1 − (vc sin θ/cs,d )2 and tan θs,d = αs,d tan θ .

The good agreement with LEFM predictions reported in
Fig. 4 is obtained with

KII =
√

Gref
c E

(1 − ν2)AII (vc)
(A19)

and by seeking for the position of the front xtip and its
propagation velocity vc that give the best predictions of the

simulated stress profiles according to a nonlinear least-squares
regression [70–72]. Just as in the Williams series describing
static cracks [73], nonsingular contributions could be added
to describe stresses evolution far from the tip (cf. region III in
Fig. 1 of the main text). As the profiles of stress are measured
above the contact plane, the first nonsingular contribution is
also considered during the mapping following the approach
presented in Ref. [5]. The nonsingular contribution has, how-
ever, a limited influence on the resulting mapping.
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