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Fracture is the ultimate source of failure of amorphous carbon (a-C) films; however, it is challenging to
measure fracture properties of a-C from nanoindentation tests, and results of reported experiments are not
consistent. Here, we use atomic-scale simulations to make quantitative and mechanistic predictions of fracture of
a-C. Systematic large-scale K-field controlled atomic-scale simulations of crack propagation are performed for
a-C samples with densities of ρ = 2.5, 3.0, and 3.5 g/cm3 created by liquid quenches for a range of quench rates
Ṫq = 10–1000 K/ps. The simulations show that the crack propagates by nucleation, growth, and coalescence of
voids. Distances of ≈1 nm between nucleated voids result in a brittlelike fracture toughness. We use a crack
growth criterion proposed by Drugan, Rice, and Sham [J. Mech. Phys. Solids 30, 447 (1982)] to estimate
steady-state fracture toughness based on our short crack-length fracture simulations. Fracture toughness values of
2.4–6.0 MPa

√
m for initiation and 3–10 MPa

√
m for the steady-state crack growth are within the experimentally

reported range. These findings demonstrate that atomic-scale simulations can provide quantitatively predictive
results even for fracture of materials with a ductile crack propagation mechanism.

DOI: 10.1103/PhysRevMaterials.5.023602

I. INTRODUCTION

Amorphous carbon (a-C) has many industrial applications,
from electrochemical sensors [1] to wear-resistant coatings
[2]. Mechanical processes, such as plasticity and fracture, play
a crucial role in the performance of a-C in these applica-
tions [3]. Fracture toughness is particularly important for the
reliability of coatings, which often fail by shear or flexural
cracks, in particular during tribological loading [4,5]. Tough-
ness values are commonly measured using nanoindentation
tests [6–9]. While nanoindentation is easy to perform, it is
nontrivial to analyze [10]. The values reported for fracture
toughness of a-C scatter between KI = 3 and 12 MPa

√
m

[6–9]. Some of the differences can be associated with the
difference in density of the testing specimen, although this has
not been clearly investigated in the literature. The differences
between results highlight the fact that it is not straightforward
to measure fracture properties using nanoindentation meth-
ods.

An alternative to experiments is the calculation of material
properties from atomic-scale simulations that are in principle
predictive. However, calculating fracture properties [11–13]
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has remained difficult for most materials because the process
zone at the crack tip, where the material deforms inelastically,
is typically much larger than the accessible simulation cell
sizes. Typical sizes range from 1 cm for metals to 100 nm for
brittle ceramics, while molecular calculations are presently
limited to sizes of a few tens of nanometers. Molecular cal-
culation of fracture properties for a fully developed fracture
process zone has therefore been limited to brittle crystals that
show little to no plasticity near the crack tip: silicon [14–26]
and diamond [27,28]. Exceptions are molecular dynamics
(MD) calculations on model Lennard-Jones glasses that can
yield insights, such as cavitation in front of the crack tip, but
are difficult to translate to real-world materials [29,30] and a
few cases of realistic materials such as amorphous Li-Si [31].

Atomic-scale fracture simulations can be divided into mul-
tiple categories. Simple equiaxial loading simulations can
be used to study bond-breaking mechanisms [32]. However,
since stress distribution is completely different from the real
crack tip, this type of simulation does not reveal the mecha-
nism of fracture at crack tips. The thin strip geometry is often
employed for the study of dynamic fracture propagation in
MD, due to its simplicity and the fact that the strain energy
release rate is constant and independent of crack length [23].
However, in thin strip loading, the “K field” near the crack
tip has a superimposed uniaxial T stress which is known to
have a significant effect on fracture toughness [33,34]. A third
solution, which we also employed in this paper, is to use
the solution of linear-elastic fracture mechanics to control
the displacement of the outermost atoms of the simulation
domain. This approach eliminates the T stress and can directly
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provide fracture parameters, given the condition that plasticity
is well contained in the simulation zone. This approach goes
back to Sinclair and Lawn [11] and Sinclair [35] and was
used subsequently to study crystals [16,17,27,28] and amor-
phous materials [31]. We note that Sinclair [35] used flexible
boundary conditions, while Refs. [16,17,27,28,31] employ
rigid boundaries (as we do here). Both techniques yield Kc

I ,
but values converge faster with respect to system size for
flexible than for rigid boundaries [36].

A systematic study of elastoplastic behavior of a-C with
different densities was recently performed by Jana and co-
workers [37,38], showing that the stress sustained during
steady-state flow of a-C follows a Drucker-Prager law at room
temperature [39]. Furthermore, we have also performed uni-
axial tests at 0 K to measure the yield stress of a-C. From these
results, we estimate that the process zone radius in mode-I
fracture for a stress intensity factor KI = 10 MPa

√
m, which

is in the range of experimental results, is less than 22 nm. a-C
may therefore be in a sweet spot in which near-tip plasticity
occurs but the process zone is small enough such that direct
atomistic calculations of early-stage fracture are possible. In-
sights obtained from fracture of a-C may well transfer to other
network glasses, such as silica or alumina.

We therefore here apply systematic large-scale, K-field
controlled MD simulations to study fracture in a-C as a
function of its density. We study initiation and propagation
of cracks up to tens of angstroms of crack length under
small-scale yielding conditions, which allow for the mea-
surement of fracture resistance curves and initiation fracture
toughness Kc

I . This simulation needs on-the-fly calculation of
crack-tip position and adjustment of the boundary conditions,
which is discussed in detail. Furthermore, based on a criterion
introduced by Drugan, Rice, and Sham [40], we calculate
steady-state fracture toughness Kss

I under pure mode-I fracture
loading. Finally, these calculations enable us to compare our
MD results with experimental measurements.

II. SIMULATION METHOD

We use the screened variant of the Tersoff III potential
[28,41] for all our simulations. This potential was designed
to correctly describe bond-breaking processes [27], which are
fundamental to correctly capture plastic deformation and frac-
ture. We perform quasistatic calculations using overdamped
MD to simulate fracture in a-C. Quasistatic simulation ensures
a clean separation of mechanics from temperature-driven re-
laxation in amorphous systems. In contrast, room-temperature
MD simulation of an amorphous material does not capture
the real relaxation in the experimental system due to the vast
difference between timescales of simulation and experimental
settings.

A. Sample preparation

We create our samples by quenching a-C from the melt.
Following standard procedure [42,43], we equilibrate the melt
for 5.0 ps at 6000 K. We note that de Tomas et al. [43] have
systematically studied the equilibration of the melt for a range
of potentials and concluded that a short equilibration time is
sufficient. We also note that 6000 K is well above the melting

point for our interatomic potential [44]. Equilibration of the
melt is followed by a linear quench down to 0.1 K at three
different rates of 10, 100, and 1000 K/ps. Lower quench rates
are computationally expensive; thus most of our calculations
are done with samples prepared with 1000 K/ps. The slower
rates of quench are used to investigate quench rate dependence
of the results. Temperature is controlled using the Langevin
thermostat during the whole procedure. Finally, we relax the
box and atomistic degrees of freedom using the energy mini-
mization method. The box is allowed to relax independently in
all three Cartesian directions with an energy change tolerance
of 10−8 eV/atom or root-mean-square force change tolerance
of 10−8 eV Å−1 atom−1. This removes the residual stress; that
is, the diagonal components of the stress tensor vanish after
relaxation. Liquid quenches are a standard procedure for the
creation of a-C samples [37,42,43,45,46], since direct simula-
tion of a-C thin film growth [47–52] is prohibitively expensive
for the sample sizes considered here.

B. Calculation of mechanical properties

Mechanical properties of a-C have been reported in pre-
vious works [37,38] at room temperature. However, all of
our fracture simulations are performed at zero temperature.
Furthermore, it has been shown that the flow stress of a-C
depends on the internal pressure of the cell, which can be built
up during quenching and mechanical loading [38]. Specifi-
cally, Jana et al. [38] observed a Drucker-Prager law with a
zero-pressure shear flow stress of 41.2 GPa and an internal
friction coefficient of 0.39. Thus the stress is a function of
internal pressure, and relaxing the internal pressure during the
mechanical loading would decrease the measured stresses. In
the fracture test we perform here, creation of a crack can lead
to pressure relaxation during the test.

We therefore reevaluate the yield stress in auxiliary cal-
culations that emulate the stress state of our fracture test.
We apply a uniaxial tension in the z direction and use a
fixed periodic boundary in the y direction together with a
periodic but relaxed pressure boundary in the x direction. The
boundary conditions in the y direction are similar to the frac-
ture test boundary condition that is carried under plane-strain
conditions (see Sec. II C), and relaxing the pressure in the x
direction mimics the relaxation that occurs in the fracture test
when the crack opens.

Here, we are using zero-temperature uniaxial loading to
calculate elastoplastic material parameters of a-C. We use
a simulation cell of dimensions lx = 25 Å, ly = 22 Å, and
lz = 25 Å. This cell is quenched with the method explained
in Sec. II A and loaded in the z direction by changing the box
size in that direction. The box size is relaxed in the x direction
using a barostat with time constant of 1 ns to remove the stress
in that direction. The dynamics is damped with a damping
constant of 5 fs.

We will employ the Hutchinson, Rice, and Rosengren
(HRR) [53,54] solution of elastoplastic fracture for the inter-
pretation of our results. HRR uses a Ramberg-Osgood [55]
plastic material model. Previous works [37,38] have shown
that atomistic samples of the size considered here behave
isotropically and a J2 plasticity model is a reasonable approx-
imation of their flow behavior. Then, the Ramberg-Osgood
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TABLE I. Mechanical properties of a-C as measured in MD
simulation. Estimated plastic zone size is given as a function of
KI (MPa

√
m), and maximum possible KI is calculated based on

plastic zone size estimate.

ρ E σy ry max KI

(g/cm3) (GPa) ν (GPa) (Å) Small sample Big sample

2.5 582 0.216 22.2 2.14 × K2
I 4.3 10.1

3.0 776 0.218 23.8 1.87 × K2
I 4.6 10.8

3.5 858 0.229 24.2 1.80 × K2
I 4.7 11.0

elastoplastic material model for a general stress-strain state
reads

εi j = 1 + ν

E
si j + 1 − 2ν

3E
σppδi j + 3

2E
α

(
σe

σy

)n−1

si j . (1)

Here, si j = σi j − σppδi j/3 is the deviatoric stress, σe is the
equivalent von Mises stress, E is the Young’s modulus, ν is
Poisson’s ratio, n is the hardening power exponent, σy is the
yield strength, and we use the Einstein summation convention.
The parameter α is associated with the yield strain offset. In
the Ramberg-Osgood model, ασy/E is the strain after which
we consider the material to be plastic. Here, we take α = 0.05,
which is associated with a strain deviation of ≈0.2% for
ρ = 2.5 g/cm3. All other parameters are extracted by fitting
the model in Eq. (1) to the simulation results. Relevant ex-
tracted parameters are reflected in Table I. The hardening
power exponents are first fitted to the data for all samples and
calculated to be n � 5.5. To have a consistent plasticity model
for all samples, we fix the hardening power exponent to be
exactly n = 5.5 for all densities. Figure 1 shows the simulated
stress-strain data and the fit of the model to this data.

C. Fracture simulations

We study fracture in generalized plane-strain conditions.
Plane strain creates smaller process (or plastic) zone than
plane stress and thus needs smaller sample sizes in MD. We
use two different simulation cell sizes. The simulation cell is
limited by the time required for creating the a-C: Quenching

bigger samples is prohibitively time-consuming for slower
quench rates. The small samples have the dimensions lx =
100 Å, ly = 22 Å, and lz = 200 Å, and big samples have the
dimensions lx = 500 Å, ly = 22 Å, and lz = 300 Å. The cell
is periodic in the y direction with fixed ly. We put an ini-
tial notch in the x-y plane with a length of 30 Å along the
x direction. Figure 2(a) shows the geometry and details of
the small simulation cell. An example of a propagated crack
configuration is shown in Fig. 2(b).

Our molecular calculations follow a technique pioneered
by Sinclair and Lawn [11] and Sinclair [35] and subse-
quently used by many authors [16,17,27,28,31]. We apply
displacement boundary conditions on the boundary of the cell
compatible with the solution of linear-elastic fracture mechan-
ics of isotropic media in mode I with stress intensity factor KI

for a semi-infinite crack field as follows:

�ux = 2(1 + ν)�KI

E

√
r

2π
cos(θ/2)

[
2 − 2ν − cos2(θ/2)

]
,

�uz = 2(1 + ν)�KI

E

√
r

2π
sin(θ/2)

[
2 − 2ν − cos2(θ/2)

]
.

(2)

Here, r is the distance from the crack tip, and θ is the angle
with respect to the plane of the crack. Loading is applied
through incremental increases �KI of KI , leading to incre-
ments of the displacement (�ux,�uz) on the boundary. The
increments of the displacement are applied to the whole sam-
ple. Then, the atoms in the boundary region are fixed, and
the rest are relaxed. The boundary region has a thickness of
t = 10 Å in the x-z plane. The atoms in the boundary region
are fixed relative to each other, and therefore they apply a
force to other atoms inside the box. We use increments of
�KI = 0.05 MPa

√
m in each step. The loading step is fol-

lowed by a relaxation period of 0.5 ps in the NV T ensemble
with T = 0.1 K and a thermostat damping constant of 5 fs.
This is followed by an energy minimization step with an al-
lowed root-mean-square force change of 10−7 eV Å−1 atom−1

for subsequent minimization steps.
The crack starts moving when KI > Kc

I , and the boundary
condition should be adapted accordingly. We find the new

(a) (b) (c)

FIG. 1. Stress-strain curve (solid line) and its fitted curve (dashed line) according to the Ramberg-Osgood model for samples with densities
(a) ρ = 2.5 g/cm3, (b) ρ = 3.0 g/cm3, and (c) ρ = 3.5 g/cm3. The stress-strain curve is cut at the maximum stress level for each density.
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FIG. 2. (a) Geometry of simulation cell. Load is applied through
K-field displacement of the boundary layer shown with lighter shad-
ing. An initial crack of 30 Å is created through removing bonds
between atoms on the opposite sides of the crack surface. (b) A
snapshot of fracture in a sample with ρ = 2.5 g/cm3 is shown here
as a showcase for the fracture simulation result.

crack-tip position after each step of loading using coordina-
tion analysis. Specifically, we detect the newly created surface
and take the surface atom with the farthest distance along the x
direction as the new crack-tip position. Namely, we are taking
maxi xi, where xi are the x positions of all atoms detected by
the surface detection algorithm as the new crack-tip position.

Our surface detection algorithm works as follows: We com-
pute the local density of each atom and compare that to a
threshold density. The local density is the mean density of the
a-C near atom i, computed within an atom-centered augmen-
tation sphere of radius rc = 4 Å. Given the number of atoms
ni within this sphere (centered on atom i), the mean density
is ρi = mni/(4πr3

c /3), where m is the mass of a carbon atom.
When atoms are close to a flat surface, a spherical cap with
height h remains empty. This reduces the local density from
the bulk value ρ0 to ρsurf = [1 − ξ 2/4(3 − ξ )]ρ0, with ξ =
h/rc. ρsurf represents the average density of near-surface a-C
computed from a sphere with an empty cap. We define ξ =
0.85 as the threshold parameter for identification of the sur-
face. All atoms with ρi < ρsurf are identified as surface atoms.

The important parameter in this surface detection algo-
rithm is the cutoff radius rc. It should be taken in the same
range as the feature sizes that need to be detected. A too
big rc averages out the crack-tip features. A small value of
rc introduces noise from the quenched disorder of the a-C’s
structure into the surface detection algorithm. The values of
rc = 4 Å and ξ = 0.85 are chosen from trial and error. A sim-
ilar method for crack-tip tracking has been used in previous
MD simulation of fracture in amorphous Li-Si [31].

The above method assumes that linear-elastic fracture
mechanics is valid some distance away from the crack tip. An-
alytical and numerical results on elastoplastic fracture show
that this boundary condition remains valid outside the plastic

zone even for finite deformation elastoplastic deformation
[56] and is valid in nanometer proximity to the crack tip for
purely brittle materials [57].

An estimate for the size of the plastic zone under plane-
strain conditions based on a continuum mechanical analysis
is ry = (KI/σy)2/3π [58,59]. Table I shows the anticipated
plastic zone size as a function of KI . The maximum possible
KI load for each density until which the plastic zone can be
accommodated is also indicated in Table I for both sizes of
samples. Applying the boundary condition of Eq. (2) is realis-
tic for our simulations; that is, the plastic zone is confined to
the region inside the box until the applied load is less than the
indicated maximum KI in Table I.

An additional correction to the continuum solution (which
we apply on the boundary) comes from the quenched disorder
of the amorphous atomic structure, leading to stress fluctu-
ations throughout the geometry. However, Rice [60] showed
that small deviations from the dominant singular elastic stress
do not have a strong effect on the J integral or fracture tough-
ness and thus will not alter our simulation results.

III. RESULTS

A. Simulated R curves

We used the abovementioned procedure to measure the
crack length a, or rather its change �a from the initial con-
dition, as a function of mode-I stress intensity factor KI .
This allows us to plot the function KI (�a), the crack growth
resistance curve often named the R curve [61]. To avoid con-
fusion, one should bear in mind that we are controlling KI and
measuring �a, and the functional dependency of the R curve
KI (�a) is used as a standard notation in fracture mechanics. A
full R curve manifests three stages of crack growth: (i) The
crack initiation regime provides us with Kc

I . (ii) The crack
growth regime is characterized by the slope dKI/d�a that
drops toward zero when the crack enters (iii) the steady-state
regime, where the stress intensity factor saturates to a constant
fracture toughness value Kss

I . For a semi-infinite crack in a
big enough sample loaded according to the elastic K field,
unstable growth only happens if KI = Kss

I . In an experimen-
tal setting, unstable crack growth happens when the rate of
change of the energy pumped to the crack is greater than the
R-curve slope. This depends on geometry and loading condi-
tions. Furthermore, geometry and loading of the experimental
specimen can change the T stress (the triaxial stress), which
significantly changes the steady-state fracture toughness [62].

After the crack initiation phase, the crack resistance is a
result of energy dissipation in two regions: (i) The fracture
process zone, which is a small region close to the crack tip
where the fracture processes take place, and (ii) the plastic
zone farther away from the crack tip, where plasticity plays
the main role and no abrupt change in the microstructure is
visible. The general understanding in the fracture mechanics
community is that the amount of energy dissipated in the
fracture process zone remains constant and constitutes the
work of separation [61]. This is related to the Kc

I defined
above. For ductile materials, the size of the plastic zone in-
creases with the crack advancement. The increase in fracture
resistance is mainly due to this contribution. Distinguishing
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(a) (b) (c)

FIG. 3. R curves for small samples with densities (a) ρ = 2.5 g/cm3, (b) ρ = 3.0 g/cm3, and (c) ρ = 3.5 g/cm3 and three different quench
rates Ṫq. Scales of the plots are the same to ease visual comparison. The red dashed line is fitted to the samples with quench rate Ṫq = 1000 K/ps.

these two effects is the basis for the cohesive zone models of
fracture [61]. Due to this separation of effects, it is possible
to infer the steady-state fracture toughness Kss

I based on the
initiation fracture toughness Kc

I , the initial R-curve derivative
dKI/d�a|�a=0, and the yield stress, and we discuss this point
in detail in Sec. IV. Another consequence is that samples with
different sizes should lead to the same Kc

I . Thus KI (�a) and
simulation results before reaching Kss

I are useful. We point out
that we were unable to reach the steady state in MD simula-
tions due to limitation in computational power, which limits
the size of the fracture test specimen. Due to these reasons,
we only continue the fracture simulation up to �a ≈ 100 Å
and also will be careful in interpreting results of simulations
of different sample sizes.

We performed simulations with two sample sizes. The
small sample size is chosen in a way to accommodate the
plastic zone at the initiation of fracture. The maximum al-
lowable KI load is indicated in Table I in the small-sample
column. The smaller size lets us perform the simulation for
very slow quench rates of 10 K/ps. Figure 3 shows the R curve
of samples with three different densities ρ = 2.5, 3.0, and 3.5
g/cm3 and three different quench rates Ṫq = 1000, 100, and
10 K/ps. Due to the inherent randomness in the material, we
provide the result of our test for five different samples for
each density and quench rate Ṫ = 1000 K/ps that have been
melted and quenched independently. The R curve consists of
sections where KI increases but the crack does not advance
and �a is constant, followed by smaller or bigger jumps of
the crack-tip position. These jumps are accompanied by the
breaking of multiple bonds within the system. The initiation
fracture toughness measured in these simulations is smaller
than the allowable load for the size of the sample, giving
confidence in our methodology. The R curve remains linear
for higher KI loads, which makes it easy to measure the initial
R-curve slope dKI/d�a|�a=0. Samples with lower quench
rates have the same initiation fracture toughness Kc

I but tend
to have smaller R-curve slope. This effect is, however, not
significant, and due to the high computational costs, we do
not test slower quench rates for big sample sizes.

The big sample can accommodate the plastic zone of
larger KI loads, which are indicated in Table I in the big-

sample column. Figure 4 shows the R curve of samples
with three different densities ρ = 2.5, 3.0, and 3.5 g/cm3.
For ρ = 2.5 g/cm3, we show all small-sample and big-sample
results in one figure. As can be seen from R curves for ρ =
2.5 g/cm3, initial fracture toughness Kc

I does not statistically
change across all samples. This is in agreement with the
separation of effects discussed above. Furthermore, the initial
R-curve slope dKI/d�a|�a=0 is also the same for small and
big samples. Small-sample and big-sample R curves deviate
after the maximum possible KI load for smaller samples. For
visual clarity, we only show the average value of �a for each
KI for smaller samples and all R curves for the bigger samples
for ρ = 3.0 and 3.5 g/cm3.

Table II provides Kc
I and an estimate of dKI/d�a|�a=0.

The Kc
I has been calculated based on the R curves of the big

samples. Due to similarity of the initial R-curve slopes for
small and big samples, we fit a line to the small-sample R
curves with quench rate Ṫq = 1000 K/ps and report that as an
estimate of dKI/d�a|�a=0. This linear regression is shown in
Fig. 3 as a red dashed line. The R-curve slope decreases for the
big samples and seems to saturate eventually to a steady-state
Kss

I . Both initial fracture toughness Kc
I and the initial frac-

ture toughness rate of change dKI/d�a|�a=0 increase with
the density of sample. Despite variations between different
samples with the same density, the increasing trend in Kc

I and
dKI/d�a|�a=0 is systematically present.

B. Fracture mechanism

Given the relatively small experimental fracture toughness
values for a-C, one might expect a brittle fracture mechanism
for the material. However, this material can also show a rela-
tively large plastic strain [37] that creates a condition for the
material to undergo a ductile fracture. One important advan-
tage of MD simulation of fracture for a-C is that it enables
us to better understand the mechanism of fracture and address
questions such as this brittle vs ductile fracture morphology.

Careful examination of the mechanism in MD simulation
of a-C shows a consistent mechanism for all densities. A
nano-sized void is formed in front of the crack tip, and then
the crack grows by coalescence. Figure 5 shows the void
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(a) (b) (c)

FIG. 4. R curves for samples with densities (a) ρ = 2.5 g/cm3, (b) ρ = 3.0 g/cm3, and (c) ρ = 3.5 g/cm3, two different sizes, and similar
quench rates Ṫq = 1000 K/ps. For ρ = 2.5 g/cm3 all small-sized samples are shown for comparison, but for ρ = 3.0 and 3.5 g/cm3, only the
average value of �a as a function of KI is shown. The model prediction is calculated according to Eq. (3). The shaded areas show the 95%
confidence interval of the model.

formation for three densities in the course of crack growth. It
is clearly visible that ahead of the crack tip there is a sharply
localized zone in which the mean coordination number drops
as an indication of void creation. The small size and distance
of voids from the crack tip are responsible for low fracture
toughness values and brittlelike fracture (see Sec. IV). The
size and the distance of voids from the crack tip only slightly
change with density, but generally increase with density.

IV. DISCUSSION

A. R-curve trends and qualitative analysis

Performing careful simulation of mode-I fracture loading
constitutes a reliable simulation of the fracture process zone.
When we specify an elastic fracture zone with our choice
of boundary conditions, a plastic zone emerges inside the
sample, and a process zone forms near the crack tip. The
experimental value for fracture toughness of a-C is rather low,
which is consistent with our simulations. Thus one expects
brittle fracture to take place. On the contrary, the void cre-
ation, growth, and coalescence mechanisms which we report
for this material are the typical features of ductile fracture. Ac-
cording to the Gurson model for ductile fracture, the initiation
fracture energy (akin to initiation fracture toughness Kc

I ) is
proportional to void spacing l∗ and yield stress, i.e., Jc

I ∝ σyl∗
[61]. In our material there are no preexisting voids, but voids
are created in the fracture process zone at nanometer-scale dis-
tances from the crack tip. This void creation process suggests
a nanoscale value for l∗. Thus the Gurson model predicts very

TABLE II. Fracture properties of amorphous carbon as measured
in MD simulation.

ρ (g/cm3) Kc
I (MPa

√
m) dKI

d�a |�a=0 (MPa
√

m/Å)

2.5 2.37 ± 0.29 (0.46 ± 0.04) × 10−1

3.0 3.59 ± 0.36 (0.75 ± 0.09) × 10−1

3.5 4.60 ± 0.33 (1.01 ± 0.21) × 10−1

small values for Kc
I , which resembles brittle fracture despite

the ductile fracture mechanisms.
Qualitative trends in our R curves are consistent with the

behavior expected from material properties. From the Gurson
model, we expect bigger values for the initiation fracture
toughness Kc

I for higher densities: The yield stress and void
spacing l∗ increase with density, and thus according to the
Gurson model, we expect an increase in the initiation fracture
toughness with increasing density. Furthermore, the increase
in dKI/d�a|�a=0 for higher densities is consistent with the
increase in yield stress and thus higher dissipated energy in
the plastic zone, and also the higher energy needed for tearing
of material in the fracture process zone. The material with
higher yield stress and a similar micromechanism of fracture
dissipates more energy in the plastic zone during advancement
of the crack.

B. Quantitative predictions and comparison with experiment

All of our simulations are carried out quasistatically, essen-
tially corresponding to the 0-K limit. There are two competing
effects in the mechanical behavior of amorphous a-C, namely,
the fast quenching rate, which decreases the yield stress,
and the zero-temperature effect, which tends to increase the
yield stress. These competing effects may imply that our
simulations on rapidly quenched a-C at zero temperature are
more relevant than one might envision. Nevertheless, we will
be careful in correlating fracture and yield stress to extract
trends that are related to experimental results. Furthermore,
room-temperature simulations would not contribute to a bet-
ter understanding of the phenomena due to the fact that the
competing effects of temperature relaxation and strain rate are
occurring at completely different scales in MD simulations
and experiments.

There are three reasons that make it difficult to make a
direct comparison between MD calculated fracture toughness
and experimentally measured values, namely, (i) different
geometry of experimental samples, which creates complex
loading conditions, (ii) T stresses in the experimental setting,
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(a) (b) (c)

FIG. 5. Snapshots of the creation of voids during the fracture process of samples with different densities taken at similar �a and (a) ρ =
2.5 g/cm3, (b) ρ = 3.0 g/cm3, and (c) ρ = 3.5 g/cm3. The grayscale code shows the coordination number relative to the average bulk value in
each density to better visualize the voids. Lighter shading shows higher coordination number and vice versa. The scale of all snapshots is the
same and is shown at the top of (a).

and (iii) different yield stresses in MD samples. In particular, a
positive T stress significantly reduces the fracture energy [63].
While very high values of positive residual stress have been
reported in deposited a-C thin films [64], this is not taken into
account for fracture toughness estimates from nanoindenta-
tion results. In general, we expect a deviation from experiment
due to T stresses and geometrical factors. To be consistent,
and rule out the geometrical factors, the two values of Kc

I and
Kss

I provide the lower and upper bounds for experimentally
measured fracture toughness independent of geometry with
zero T stress. The values for Kc

I shown in Table II for different
densities are all in the lower range of experimental values.
Given the fact that the effect of density on the fracture of
a-C has not been investigated experimentally, the simulated
values provide us with some insight into the effect of density
on initiation fracture toughness.

In order to find the steady-state fracture toughness, we
use a criterion introduced by Drugan, Rice, and Sham [40]
for crack propagation which is similar to the crack growth
criterion based on the attainment of a critical accumulated
plastic strain [40]. Using this criterion and the small-scale
yielding assumption, the crack growth follows a nonlinear
differential equation [40,65]:

T = T0 − β

α
ln

(
KI

2

Kc
I

2

)
, T = 2(1 − ν2)KI (�a)

σ 2
y

dKI

d�a
. (3)

Here, T is defined as the tearing modulus, and T0 is the initial
tearing modulus T0 = T |�a=0. Values of α and β depend on
the material properties, but α/β ≈ 0.1 is a good approxima-
tion for ν ≈ 0.25 [65]. We can find the steady-state fracture
toughness, using the limit of Eq. (3) when �a approaches
infinity, KI → Kss

I and thus T → 0 [65]:

Kss
I

Kc
I

=
√

exp

(
α

β
T0

)
. (4)

Values of Kc
I and dKI/d�a|�a=0 are obtained from our simu-

lations and are given in Table II. Thus the criterion enables
us to extrapolate to the steady-state fracture toughness Kss

I

from short crack-length MD simulations. These extrapolated
values are presented in Table III. Furthermore, the full so-
lution of the differential equation (3) using the average Kc

I

and dKI/d�a|�a=0 is shown in Fig. 4. In Fig. 4, we also
show the upper and lower bounds of the model as shaded
areas. The shaded areas show the 95% confidence interval
using a two-standard-deviation (±2σ ) difference in Kc

I and

dKI/d�a|�a=0 (reflected in Table II).
The values estimated in Table III for Kss

I capture the range
of reported experimental values in the literature very well, i.e.,
KI = 3–12 MPa

√
m [6–9]. Li and Bhushan’s [9] experimen-

tal results show that the fracture toughness increases with the
kinetic energy of the impacting ions during film growth. It is
well understood that increasing the ion energy increases the
density and sp3 fraction of the film [51,52]. These experi-
mental results are therefore in qualitative agreement with our
findings, which show increasing fracture toughness with film
density. This agreement suggests that the fracture of a-C is
very localized and the MD cell sizes used here can capture all
the important effects during crack growth.

Table III shows that the extrapolated values for Kss
I are

lower than the calculated R curves in Fig. 3. This may be
related to the model assumptions of Eq. (4) or ambiguities in
the measurement of the yield strength for our atomic-scale a-C
models. For example, to the best of our knowledge, there is no
direct experimental measurement of the yield strength of a-C
in the literature. On the other hand, calculation of yield stress
in MD is not straightforward (explained in Sec. II B). If we
take the fixed-volume condition for yield stress measurement

TABLE III. Estimation of fracture properties of a-C based on
MD simulation results.

ρ (g/cm3) Kc
I (MPa

√
m) Kss

I (MPa
√

m)

2.5 2.37 ± 0.29 2.93+0.51
−0.46

3.0 3.59 ± 0.36 5.65+1.27
−1.03

3.5 4.60 ± 0.33 9.76+3.23
−2.30
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(similar to Jana et al. [38]), the predicted values of yield
stress increase over our estimates, and thus Kss

I would de-
crease according to Eq. (4). In contrast, performing a test
by completely relaxing the pressure during the test would
lower the yield stress and thus increase the estimated Kss

I
according to Eq. (4). Here, we choose a trade-off between
these two extreme cases by fixing ly and relaxing lx, which we
believe is the best predictor of the yield stress in the fracture
test.

V. CONCLUSION

In this paper we performed large-scale MD mode-I fracture
simulation of a-C with K-field controlled boundary conditions
and a well-confined plastic zone. Since experimental measure-
ments of fracture toughness in a-C as a function of density
remain challenging, our simulation can provide valuable in-
sight into the fracture process. In this paper we simulated
fracture of a-C with three different densities ρ = 2.5, 3.0, and
3.5 g/cm3. The fracture mechanism for all samples is void
creation, growth, and coalescence. However, due to the small
distance between voids, the fracture toughness remains in the
usual range for brittle fracture. Both calculated Kc

I and extrap-
olated Kss

I are in the range of experimentally measured values,
which is an indication that the fracture process depends on

localized effects near the crack tip that are captured in our
atomic-scale simulations.

We want to emphasize that the quantitative predictive
power of the atomic-scale simulation results of the fracture of
a-C is very encouraging and the methodology and insights are
applicable for other glassy materials with similar properties.
Other than that, atomic-scale simulations allow controlled
testing of various assumptions underlying fracture mechanics;
for example, one could test mixed-mode fracture scenarios or
test different fracture path selection criteria such as the max-
imum energy release rate or the principle of local symmetry.
We also propose more accurate experimental methods, such
as the microbeam bending experiment that was performed on
hydrogenated a-C [64], to better understand fracture of a-C.
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