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PbTe is a leading thermoelectric material at intermediate temperatures, largely thanks to its low lattice thermal
conductivity. However, its efficiency is too low to compete with other forms of power generation. This efficiency
can be effectively enhanced by designing nanostructures capable of scattering phonons over a wide range of
length scales to reduce the lattice thermal conductivity. The presence of grain boundaries can reduce the thermal
conductivity to ∼0.5 W m−1 K−1 for small vacancy concentrations and grain sizes. However, grains anneal at
finite temperature, and equilibrium and metastable grain size distributions determine the extent of the reduction
in thermal conductivity. In the present work, we propose a phase-field model informed by molecular dynamics
simulations to study the annealing process in PbTe and how it is affected by the presence of grain boundaries
and voids. We find that the thermal conductivity of PbTe is reduced by up to 35% in the porous material at low
temperatures. We observe that a phase transition at a finite density of voids governs the kinetics of impeding
grain growth by Zener pinning.
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I. INTRODUCTION

The utilization of thermoelectric devices to convert heat
into electric energy has been seen as a potential way of pro-
ducing power since the discovery of the Seebeck effect in
1822. Thomas J. Seebeck observed that a temperature gra-
dient between two electrical joints could produce a voltage
difference. Twelve years later, Jean Charles A. Peltier ob-
served the reverse process in which a temperature gradient
is created when a current flows between them. Thanks to
these effects, thermoelectric materials can be used as power
generators, thermoelectric coolers, or optoelectronic devices.
However, after nearly 200 years, the efficiency of currently
available thermoelectric materials is still too low for most real-
life applications as recently reviewed by Champier [1] and,
therefore, efforts are underway to improve the performance of
these materials.

One of the most intensely investigated pathways to im-
prove efficiency is the modification of the structure of the
materials at the mesoscale. The thermodynamic efficiency of
a thermoelectric material is proportional to its dimensionless
figure of merit, ZT = S2σT/κT , where S is the Seebeck co-
efficient, σ is the electrical conductivity, T is the absolute
temperature, and κT is the total thermal conductivity, includ-
ing electronic and phonon contributions. Only materials with
ZT > 1 are considered suitable for practical applications at a
given temperature. While all electronic properties are closely
linked, the lattice thermal conductivity can be considerably
reduced and plays an important role in the search for im-
proved efficiency. Engineering the structure of the material
at the micro- and nanoscale (nanostructuring) can lessen the
lattice conductivity considerably [2–5]. One way this can be
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achieved is by controlling the grain size in polycrystalline ma-
terials [6–9]. However, nanostructures might anneal at finite
temperatures and distributions with small mean grain sizes
may not be stable, which results in grain growth. The objective
of the present study is to investigate this grain growth and
the mechanisms by which the growth stops. We study the de-
pendence of the mean grain size on temperature and vacancy
concentration, considering the interaction between vacancies
and grain boundaries as an essential factor.

The use of classical molecular dynamics (MD) simulations
to study large structures is computationally demanding, so
new models are required to analyze phenomena taking place
at the mesoscale. In this work, we implement a phase-field
method whose material-specific parameters are determined
from MD simulations and energy-minimization calculations.
For concreteness, we focus on one material: lead telluride
(PbTe), one of the most widely studied and used thermoelec-
tric material at intermediate temperatures, largely thanks to
its low lattice thermal conductivity, with κ ≈ 2 W m−1 K−1 at
300 K. This thermal conductivity can be reduced in the pres-
ence of vacancies and grain boundaries, which can separately
bring this value down to ∼0.5 W m−1 K−1 [10]. In the regimes
of high densities of point or planar defects, this conductivity
becomes practically independent of temperature, as predicted
by phenomenological models. We observed that grains grow
until they reach a temperature-independent limiting grain size
which depends on the concentration and size of voids. Know-
ing that grain boundaries can be stabilized by voids, and given
that grain boundaries and voids are phonon scattering centers,
we observed that porous polycrystalline samples can reduce
the thermal conductivity of PbTe by up to 35%, and therefore
enhance the thermoelectric efficiency.

In Sec. II, the phase-field model is described to study the
diffusion of the vacancy concentration and the time evolution
of grain boundaries in PbTe. In Sec. III, we present our results.
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(a) (b)

FIG. 1. (a) Schottky pair, formed by a pair of isolated vacancies,
and (b) Schottky dimer, formed by 2 consecutive vacancies, i.e., a
divacancy. The formation energy of a Schottky dimer is smaller, and
therefore this defect is more favorable. Circles stand for atoms while
rectangles stand for vacancies (red for Pb and blue for Te).

We first study grain growth in the presence of immobile voids
of fixed size, and identify a kinetic phase transition as a
function of void fraction. We then analyze the metastability
of voids in the absence of grain boundaries and, by means of
a thermodynamic model, we obtain their most probable size
as a function of temperature. In Sec. III C we combine these
two aspects to study the effect of voids as pinning particles for
grain boundary stabilization, showing that a large number of
small voids can stabilize small grains with low thermal con-
ductivity. Finally, we use these results to obtain the thermal
conductivity of porous polycrystalline PbTe as a function of
temperature. In Secs. IV and V we present a discussion of
these results and elaborate our conclusions, respectively.

II. PHASE-FIELD MODELING

A phase-field model is a method to study the diffusion of
components and the dynamics of interfaces at the mesoscale.
In this model, a system with interfaces and concentration gra-
dients evolves in such a way that the contact surface between
phases is minimized and the concentration tends to adopt the
equilibrium value. We develop a phase-field model to describe
the interaction between vacancies and grain boundaries in
polycrystalline PbTe. We consider the equations of motion
for the concentration of Schottky defects (see Fig. 1) [11],
cv , and for order parameters [12], ηα , describing N grain
orientations. There are as many order parameters as grain
orientations, N , and they take the value 1 inside the grain that
they represent and 0 outside, with a value between 0 and 1
at the grain boundary. If the number of orientations is smaller
than the number of order parameters, N has to be large enough
to ensure that two grains with the same orientation do not
come into contact [13,14]. For simplicity, we only work with
systems where all grains have different orientations.

According to the phase-field method, the temporal evo-
lution of the vacancy concentration, cv , is governed by the
Cahn-Hilliard diffusion equation [11]:

∂cv

∂t
= �∇

[
M �∇

(
∂ flocal

∂cv

− κv∇2cv

)]
+ Sv + ζc(T ), (1)

and the evolution of local order parameters, ηα , is described
by the Allen-Cahn equation [12]:

∂ηα

∂t
= − L

Vm

(
∂ flocal

∂ηα

− γ∇2ηα

)
+ ζη(T ), (2)

where M is the vacancy mobility, L is the interface mobility,
Vm is the molar volume, flocal is the local free energy per
mole, T is the absolute temperature, κv and γ are gradient
energies, and ζ are Gaussian noises that reproduce thermal
fluctuations in the system. These fluctuations will be de-
scribed explicitly in Sec. II E. In the isotropic case, M and L
are constant, while they depend on the interacting grains in the
anisotropic material. The term Sv accounts for the generation
or annihilation rates of vacancies and will be discussed in
Sec. II D. Equation (1) is equivalent to Fick’s law for the
diffusion of components and the total number of vacancies
in the system is conserved if the last two terms, i.e., the
production/annihilation term and the Gaussian noise, are ne-
glected. The vacancy mobility, M, plays an essential role in
the diffusion process and will be discussed in Sec. II C.

On the other hand, Eq. (2) is applied to the order param-
eters and describes the phase separation in a system with
concentration gradients. The order parameters ηα are not con-
served due to the fact that individual grains are allowed to
expand, shrink, and also disappear, and, therefore, the num-
ber of grains is not constant. These order parameters change
only at grain boundaries and these grain boundaries move to
reduce the total free energy of the system. The grain boundary
velocity depends on the interface mobility, L, which will be
described in Sec. II B. This equation is solved for all order
parameters and the following constraint has to be fulfilled at
each point in space:

∑
α

ηα = 1 with ηα ∈ [0, 1] ∀α. (3)

In practice, this constraint is imposed by renormalizing the
amplitude of the phases after the integration step [13]:

ηa
α = ηb

α∑
β ηb

β

, (4)

where the superscripts “b” and “a” stand for the order param-
eters before and after the reassignment, respectively.

Equations (1) and (2) are coupled since they are given as a
function of the local free energy of the system, flocal. A good
description of this free energy is therefore essential to capture
the phase evolution accurately. Our approximation for flocal is
given in Sec. II A.

A. Free energy

The local free energy density, flocal, in Eqs. (1) and (2) is
the sum of the free energy of the homogeneous material, the
excess free energy due to the presence of grain boundaries in
the material, and additional contributions, such as the elastic
free energies or external fields (which are not considered in
this work). We propose a simple model where the local free
energy is the energy inside individual grains supplemented
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FIG. 2. Chemical free energy of a system with vacancies and
voids.

with the excess free energy at the grain boundary:

flocal = f (cv, T )
∑

α

η2
α +

∑
α �=β

Wαβηαηβ, (5)

with

f (cv, T ) = hvcv + f2c2
v + f3c3

v + f4c4
v

+RT [cv ln cv + (1 − cv ) ln(1 − cv )], (6)

where Wαβ is the excess free energy between grains α and
β, hv is the formation enthalpy, and f2, f3, f4 are mixing
terms such that a void-free system and a system with voids
are equally stable. The second term in Eq. (5) corresponds
to the energy cost necessary to move from phase α to phase
β and Wαβ is the energy cost. We will see that this energy
depends on the misorientation angle, θ , between grains α and
β, Wαβ ≡ W (θ ), and that it is related to the grain boundary
energy (see Sec. II B). This misorientation angle is the rela-
tive angle between the lattice vectors of two adjacent grains.
According to the second term in Eq. (5), the lowest free energy
occurs away from the grain boundaries, where the product
ηαηβ is equal to zero, and grain boundaries evolve to remove
this excess grain boundary energy. In the presence of vacancy
concentrations different from equilibrium values, the first term
in Eq. (5) increases and grain growth is slowed down so that
grain boundaries can absorb the excess of vacancies, accord-
ing to the production/annihilation term Sv in Eq. (1) that we
will describe below. This first term in Eq. (5) falls at the grain
boundary, where the vacancy formation energy decreases [15].

The free energy defined in Eq. (6) corresponds to the bulk
free energy of the system in the absence of grain boundaries.
The model parameters hv, f2, f3, and f4 are determined by en-
forcing the following conditions: a void and a region in which
the vacancy concentration is in equilibrium are equally stable
and their local free energy is equal to zero [16,17]. Voids
are defined as structures where the vacancy concentration is
equal to 0.999. These conditions mean that the free energy
and its first derivative are equal to zero when cv = 0.999 and
cv = ceq

v , where cv is the concentration of Schottky defects
and ceq

v is the equilibrium value taken from Ref. [18]. They
result in the profile observed in Fig. 2, where the insets show
the behavior close to the minima.

The presence of vacancies and grain boundaries can also
give rise to additional stresses and strains leading to an elastic
energy contribution. However, the calculation of this free en-
ergy increases considerably the simulation times and it does
not play a relevant role under small defect concentrations or
in the absence of external stresses. Under normal conditions,
the estimated driving pressure associated with grain boundary
motion due to the excess grain boundary energy is higher than
the driving pressure due to the elastic energy by two orders of
magnitude [19].

The gradient coefficient for vacancies, κv , is linked to the
mixing energy according to κv = f2l2

v /2, where lv is the typi-
cal distance between vacancies.

B. Interface mobility and energy barrier

The interface mobility, L, in Eq. (2) is associated with the
grain boundary velocity and proportional to the grain bound-
ary mobility, m:

L = π2m

8�gb
, (7)

where �gb is the grain boundary thickness. We use �gb =
6�x, where �x is the grid spacing, according to conver-
gence tests performed to minimize the error in the steady-state
boundary velocity and optimize the computational accuracy
and cost [20]. Similarly, the parameter W in Eq. (5) is closely
linked to the grain boundary energy, σ , given in J m−2. The
free energy, and therefore W , is given in J mol−1, so the next
equation is extracted:

W = 4σVm

�gb
, (8)

with Vm the molar volume. In the anisotropic case, the grain
boundary mobility and energy are given as a function of the
misorientation angle, as we will see below.

The gradient-free energy defined in Eq. (2) requires the use
of a gradient coefficient, γ . If one considers the free energy
as a whole, it is easy to see that W and γ have to be linked
in order to have stable simulations and to prevent the growth
of third phases in the interfaces [21]. This relation is given
through the grain boundary energy [13]:

γ = 8σ�gbVm

π2
= 2W �2

gb

π2
. (9)

The grain boundary energy and mobility were obtained
from energy-minimization calculations and MD simulations,
respectively. The grain boundary energy, σ , is calculated from
the excess free energy due to the presence of one grain bound-
ary as

σ = E − naE0

A
, (10)

where E is the total energy, E0 is the energy per atom in the
bulk material, A is grain boundary area, and na is the number
of atoms in the simulation cell.

The calculation of grain boundary mobilities requires the
study of the grain boundary velocity during grain boundary
motion as a function of the driving pressure. For this study,
we ran MD simulations using a bicrystal, the force field of

014604-3



JAVIER F. TRONCOSO et al. PHYSICAL REVIEW MATERIALS 5, 014604 (2021)

Ref. [10], and an additional artificial potential, uξ , applied
to the atoms of one of the grains forming the simulation
box. This artificial potential corresponds to predefined forces
added to the atoms at the grain boundary to favor the growth
of one grain. Although this potential has no physical mean-
ing, it has been proved that the mobilities do not depend on
the driving force [3,22]. In a bicrystal formed by two grains
where one of them presents a higher free energy per atom, the
interface always moves toward the grain with the higher free
energy to reduce the overall free energy of the system [3]. The
artificial potential used to provide the driving force has been
proposed by Janssens [22] and later adapted in the LAMMPS
code [23,24] to describe a lattice with 6, instead of 12, first
neighbors. The potential energy added to each atom in one of
the grains is given by

uξ (�ri ) =

⎧⎪⎨
⎪⎩

0, for ξi < ξl ,

V
2 [1 − cos(2ωi )], for ξl < ξi < ξh,

V, for ξh < ξi,

(11)

where ξi is the order parameter of each atom i given by a sum
over its six first neighbors:

ξi =
6∑
j

∣∣�r j − �rI
j

∣∣. (12)

Here, �rI
j is the nearest ideal lattice site of crystallite I to �r j .

Crystallite I is the grain whose atoms will not experience the
additional potential. Atoms with ξi < ξl belong to this grain,
atoms with ξh < ξi belong to the other grain and receive the
extra potential energy, and atoms with intermediate values are
at the grain boundary and are subject to an artificial force. The
limits ξh and ξl take the values 0.25 and 0.75, respectively, to
ensure that forces are only added to atoms located at the grain
boundary. The parameter ωi is defined as

ωi = π

2

(
ξi − ξl

ξh − ξl

)
. (13)

According to this definition, the atoms of one of the grains
experience an additional potential that goes to zero once they
migrate into the other grain. The parameter V determines the
energy per atom added associated with a specific element
type [22] and is set to V = 1 kcal/mol per atom. The bicrystal
is equilibrated without the artificial potential for 250 ps and
then the mobility is calculated from the grain boundary veloc-
ity once the artificial potential is applied, between 200 ps and
1 ns, depending on the relative misorientation.

The grain boundary energy and mobility calculated in
LAMMPS were compared with phenomenological models
proposed in the literature. The energy of one grain boundary
between two grains with relative misorientation θ is approxi-
mated as [25,26]

σ (θ ) =
{
σ0(θ/θm)

[
1 − ln

(
θ
θm

)]
, θ < θm,

σ0, θ > θm,
(14)

where the parameters σ0 and θm are independent of misori-
entation and temperature. This equation is obtained directly
from dislocation theory [26], where a grain boundary is con-
sidered as an array of dislocations. This energy saturates to σ0

at large angles, except for special angles in which the lattices

FIG. 3. Grain boundary energy and mobility as a function of
the misorientation angle in a 〈100〉 tilt boundary. Red dots repre-
sent the relative grain boundary energy and were calculated using
Eq. (10) in a bicrystal containing 2 grains with different misorien-
tation angles. The red line corresponds to Eq. (14) with θm = 20◦

and σ0 = 2410 mJ m−2. The blue line corresponds to Eq. (15) with
θm = 20◦, m0 = 1.5 m s−1 MPa−1, and qm = 0.027 eV. The relative
grain boundary mobility as a function of the misorientation is plotted
with blue squares. Results for the mobility were obtained from MD
simulations using the artificial potential described by Eq. (11) and are
compared with the model described by Eq. (15) (blue line). These
results show a distinction between low-angle and high-angle grain
boundaries [3].

match (coincidence site lattices, CSLs [3,19,26,27]). For sim-
plicity, these cases are not taken into account in the present
study. θm is the angle at which the grain boundary energy
becomes constant and equal to σ0. It is obtained, together
with σ0, by fitting the data reported in Fig. 3 (red circles),
with Eq. (14). The fitted values are σ0 = 2410 mJ m−2 and
θm = 20◦. The effect of the inclination angle, i.e., the angle
between the grain boundary and the plane perpendicular to the
misorientation axis between adjacent grains, on grain growth
is negligible in comparison with the effect of the misori-
entation angle [28]. Therefore, σ0 is often considered also
independent of inclination [28,29].

Similarly, the mobility of a grain boundary also depends on
the misorientation angle [30]:

m(θ, T ) = m̄(T )
(
1 − e−5(θ/θm )4)

, (15)

where m̄(T ) = m0 exp(−qm/kBT ) is temperature-dependent.
The temperature-independent mobility, m0, and the corre-
sponding activation energy, qm, are obtained by fitting m̄(T )
for temperatures in the range 300–1000 K. The fitted values
are m0 = 1.5 m s−1 MPa−1 and qm = 0.027 eV. These mod-
els are in good agreement with our results, as can be seen
in Fig. 3. While the dependence of mobility and energy on
the misorientation angle is important for small angles, the
dependence on the misorientation axis is small. Therefore, in
practice, we use the same value, averaged over bicrystals with
different misorientation axes, for all axes.

C. Diffusion coefficient

The parameter M in Eq. (1) is the vacancy mobility and is
associated with the vacancy velocity in bulk PbTe. M is related
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to the diffusion coefficient Dv by the Nernst-Einstein relation:

M = Dvcv

RT
. (16)

The diffusion coefficient was calculated from the mean
square displacement of atoms in classical MD simulations, in
the presence of a Schottky defect [31,32],

Dv = 1

6nt

n∑
i

[�ri(t ) − �ri(0)]2. (17)

In an MD simulation at constant temperature, the diffusion
coefficient is calculated from the mean square displacements
of the closest atom to each of the n vacancies in the simulation
box for a time t . �ri(t ) is the position of the atom i at time t . All
MD simulations performed in the present study were run using
the force field of Ref. [10]. These simulations were run for up
to 10 ns, with the longest simulations at lower temperatures,
where the number of vacancy jumps is smaller, as in this case
the diffusion coefficient may be overestimated. Nevertheless,
this would not have a strong impact on grain growth due to
the high production of vacancies due to external sources. The
diffusion coefficient is calculated at high and intermediate
temperatures.

In the study of grain growth in porous polycrystalline
PbTe we will consider voids, which are regions of very high
vacancy concentration. In Secs. III A and III C, voids will
be taken as immobile, and hence the diffusion constant of
vacancies belonging to these voids will be Dv = 0. The size
of these voids will be fixed. On the other hand, in Secs. III B,
voids will be allowed to evolve according Eq. (1) to study
void growth. In practice, voids block grain boundary motion
and grain boundaries continue their movement by surrounding
them.

D. Grain boundaries as vacancy sources/sinks

Grain boundaries can act as vacancy sources/sinks in the
presence of radiation or external stress [15,33,34]. More-
over, grain boundaries act as vacancy sinks during quenching,
and therefore the vacancy concentration falls at grain bound-
aries [35]. However, although these effects are observed, the
way in which defects interact with grain boundaries is not
fully understood [36].

The production/annihilation of vacancies at the grain
boundary is modeled by the term Sv in Eq. (1) as follows:

SGB
v = −sGB

v

(
cv − ceq

v

)(
1 −

∑
α

η2
α

)
, (18)

where sGB
v is the sink strength in t−1 units, meaning that it

is related to the relaxation time; i.e., sGB
v is the inverse of

the time required by the vacancy concentration to drop to the
equilibrium concentration at the grain boundary. This relax-
ation time is in the range of 1–50 ns [37], and the dependence
on the grain boundary type (continuous: low angle, or sharp:
high angle) is neglected. We observed that this relaxation
time affects how fast equilibrium is reached, but not the final
configuration. The model in Eq. (18) is defined such that the
production/annihilation of vacancies occurs at grain bound-
aries but not far from them, where the term in parentheses

falls to zero. According to the model in Eq. (18), grain bound-
aries act as vacancy sinks in oversaturated systems, where
cv > ceq

v , and as vacancy sources in undersaturated systems,
where cv < ceq

v .
A system with a vacancy concentration far from the equi-

librium value tends to adopt the equilibrium value. Vacancies
would tend to recombine with interstitials and reach the
equilibrium values after a long—and unknown—time. This
mechanism would depend on the concentration of both in-
terstitials, ci, and vacancies as cv · ci. However, the diffusion
coefficients of vacancies are orders of magnitude larger than
those of interstitials [38], so vacancies and interstitials pro-
duced simultaneously are annihilated at the grain boundaries
at different times. The formation energy of interstitials is
higher than that of vacancies [39], so ci is usually much
smaller than the vacancy concentration. In the present work,
only the interaction between vacancies and grain boundaries is
studied, so ci is not considered. We are interested in systems
with high vacancy concentrations since their lattice thermal
conductivity falls considerably. Therefore, the vacancy con-
centration inside individual grains is set roughly constant.
This effect can be produced by continuous irradiation and
enters into Eq. (1) as follows:

SG
v = −sG

v

(
cv − c0

v

)(∑
α

η2
α

)
, (19)

where c0
v is the initial vacancy concentration and sG

v is the
inverse relaxation time, which is set to sG

v = 1 n s−1, and
vacancies are loaded into the grains, especially. c0

v is the
concentration that the system tends to adopt in the pres-
ence of external sources, e.g., radiation. In their absence, this
value corresponds to the equilibrium vacancy concentration.
The term Sv in Eq. (1) corresponds to Sv = SGB

v + SG
v .

E. Thermal fluctuations

At finite temperature vacancies and grain boundaries are
subject to thermal fluctuations. These fluctuations can be rep-
resented in Eqs. (1) and (2) by Langevin Gaussian noises
which satisfy the fluctuation-dissipation theorem [40,41]:

〈ζc(T, �ri, t )〉 = 0, (20)

〈ζc(T, �ri, t ) · ζc(T, �r j, t ′)〉 = 2
MRT

�t (�x)2
δ(�ri, �r j )δ(t, t ′),

(21)

〈ζη(T, �ri, t )〉 = 0, (22)

〈ζη(T, �ri, t ) · ζη(T, �r j, t ′)〉 = 2
LkBT

�t (�x)3
δ(�ri, �r j )δ(t, t ′), (23)

where �t and �x are the time step and grid spacing, respec-
tively, and δ(�ri, �r j ) is the Kronecker delta between grid points
�ri and �r j . Similarly, δ(t, t ′) corresponds to the discrete times t
and t ′.

However, Eq. (2) is only solved at the grain boundary and
its vicinity. Additionally, we observed that the presence of
thermal fluctuations does not have a strong impact on the grain
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TABLE I. PbTe properties used in the simulations. The statistical uncertainties of the diffusion coefficient and grain boundary mobility
are 7% and 2%, respectively. The uncertainty in the grain boundary energy, σ0, is negligible. The diffusion coefficient, D, and grain boundary
mobility, m̄, follow the Arrhenius law in temperature, Dv (T ) = D0e−qD/kBT and m̄(T ) = m0e−qm/kBT [44], where D0 and m0 are the temperature-
independent parameters and qD and qm are activation energies, respectively. These were obtained by fitting the values calculated via MD
simulations to the above expressions, in the temperature interval of 300–1000 K.

Property Value

Temperature-independent diffusion coefficient, D0 3.80 × 10−3 cm2 s−1

Activation energy of the diffusion coefficient, qD 0.46 eV
Formation enthalpy, hv 1.21 eV
Mixing term f2 0.07 eV
Mixing term f3 −3.47 eV
Mixing term f4 2.19 eV
Grain boundary energy, σ0 2410 mJ m−2

Temperature-independent grain boundary mobility, m0 1.5 m s−1 MPa−1

Activation energy of the grain boundary mobility, qm 0.027 eV
Molar volume, Vm 41.03 cm3 mol−1

Sink strength at grain boundaries, sGB
v 0.02 ns−1

Vacancy generation/annihilation rate, sG
v 1 ns−1

boundary velocity, and therefore they can be ignored to speed
up simulations.

III. RESULTS

A. Mean grain size distribution

Equations (1) and (2) were solved using the model pa-
rameters listed in Table I to study grain growth in porous
polycrystalline PbTe and void stability. The three-dimensional
simulation box was discretized in a Cartesian grid under pe-
riodic boundary conditions and these equations were solved
at each grid point after each time step using finite differences
and the forward Euler time integration method. A 27-point
stencil for discrete Laplacian approximations is used [42]. In
the study of grain growth, the grid spacing is set to �x =
6.43 nm and the simulation box is formed by a randomly
generated polycrystalline structure which follows the Voronoi
tessellation [43] and a distribution of equally spaced voids.
The grid spacing is reduced to �x = 6.43 Å in the study of
void stability in a simulation box containing one void at the
center and in the absence of grain boundaries. These results
will be shown in Sec. III B.

The objective of this section is to study grain growth and
the mean grain size distribution in the presence of immobile
voids fixed in size which block grain motion. Simulation
boxes of different sizes and number of grains were used to
confirm the independence on the box size and the final re-
sults were obtained from the statistical average over different
simulations. The evolution of the mean grain size, 〈r(t )〉, is
described by the general equation [45]

d〈r(t )〉
dt

= k

n〈r(t )〉n−1
, (24)

where k is the kinetic coefficient and depends on the material
and temperature. The exponent n depends on the material
and is around 2 in pure materials [45,46]. According to this
equation, the mean grain size grows until the single crystal is
reached:

〈r(t )〉n − 〈r(t0)〉n = k(t − t0). (25)

We analyzed grain growth at different void fractions, dv , in
polycrystalline PbTe using phase-field simulations at 500 K
and 300 K. We found that n is 1.94 in void-free polycrystalline
PbTe (dv = 0), with k following an Arrhenius law in temper-
ature [44]. The grain size follows Hillert’s distribution [47] in
the steady-state regime. At bulk vacancy concentrations above
the equilibrium concentration, n remains constant and grain
growth does not stop.

We observed that the exponent n in Eq. (25) depends on
void fraction, as can be seen in Fig. 4 for a fixed void size of
45 nm. For void fractions dv = 0–1.2%, grain growth does not
differ from the void-free system and n = 1.94 is the best fit in

FIG. 4. Evolution of the mean grain size over time at different
void fractions, dv , at 500 K with constant void radius, rv = 45 nm,
at the steady-state regime where Eq. (25) is valid. The void fraction
is defined as the percentage of grid points occupied by voids and
the vacancy concentration in bulk is cv = 10−4. Lines correspond to
Eq. (25). Inset: the exponent n [Eq. (25)] depends on dv and shows
a transition from the regime where voids are sufficiently separated
(�2%) to a regime where the spacing between voids becomes com-
parable to grain size (�5%). The dependence of n on dv is the same
at 300 (blue squares) and 500 K (red dots).

014604-6



THERMAL CONDUCTIVITY OF POROUS … PHYSICAL REVIEW MATERIALS 5, 014604 (2021)

FIG. 5. Evolution of the grain size distribution at the initial
configuration (red) and the steady-state regime (blue), when it can
be described by Hillert’s distribution with ρ̄ = 1.0 ± 0.05 and γ̄ =
2.12 ± 0.03. This simulation corresponds to the polycrystal under
the equilibrium vacancy concentration at 500 K after 50 μs.

Eq. (25). However, n increases with void fraction for 2% <

dv < 5%, asymptotically reaching n → 3 for the largest dv;
we found n = 2.77 for dv = 8%. The same dependence is
found at 300 K. Furthermore, as the exponent changes, the
mean grain size distribution shifts from Hillert’s distribution
when n ≈ 2 to a log-normal distribution at n ≈ 3. Hillert’s
distribution is given by [47]

f

(
r

〈r0〉
)

=
3γ̄ 3/2ρ̄ r

〈r0〉[(
ρ̄ r

〈r0〉
)2 − γ̄ ρ̄ r

〈r0〉 + γ̄
]5/2

× e− 3
√

γ̄√
4−γ̄

[
arctan

( 2ρ̄ r
〈r0〉 −γ̄

√
γ̄ (4−γ̄ )

)
+arctan

(
γ̄√

γ̄ (4−γ̄ )

)]
, (26)

where r is the grain size, 〈r0〉 is the mean grain size, and γ̄

and ρ̄ are fitting parameters. This model describes normal
grain growth, as we can see in Fig. 5 in the absence of
voids (dv = 0%). In Fig. 6, we observe that the log-normal
distribution is a better fit in the presence of voids. Dispersion
and secondary peaks at the tail can be due to the presence of
voids and anisotropic grain boundaries. This deviation from
Hillert’s distribution is most likely caused by the breaking of
scale invariance shown in Fig. 4 (inset), on which Hillert’s
distribution relies. Since Hillert’s distribution was derived
assuming that it converges to a self-similar fixed point, this
departure signals a characteristic size in the higher dv regime.
The power-law growth in time, observed upon scale-invariant
phase-field simulations, can be associated with the universal
exponent ν = 1/n. Therefore, Fig. 4 reveals a change in the
critical exponent from ν = 1/2, characteristic of a Gaussian
fixed point, toward an interacting theory with ν ≈ 1/3. This
implies a finite void-void interaction in the high-dv fixed
point. By Widom-Rushbrooke scaling relations we expect
all other critical exponents to be modified and other mea-
surable quantities, e.g., thermal conductivity, to be affected.
Most importantly, a change in n highlights that the kinetics
of impeding grain growth by Zener pinning is a collective
phenomenon governed by a phase transition. The existence
of a tentative critical point suggests that this mechanism may

FIG. 6. Evolution of the grain size distribution in the steady-
state regime in the presence of voids (dv = 8%) at 300 K. This
simulation corresponds to the saturated polycrystal at 300 K after
100 μs. Different distribution functions found in the literature are
compared: Hillert’s [47], log-normal [49], normal, and Weibull’s
distribution [50]. The best match is obtained with the log-normal
distribution.

be at play in more general situations, and sheds light on the
question of why polycrystals are so abundant in nature [48].

B. Void stability

In the present section, the phase-field model introduced in
Sec. II is used to study the stability of voids in bulk PbTe.
In a vacancy-saturated regime, vacancies can form vacancy
clusters (unstable) or voids (stable). If the cluster is smaller
than a critical size, then it shrinks and disappears, while it
grows when its radius is larger than a critical size and becomes
a void. This critical size depends on temperature and vacancy
concentration.

The free energy required to form a spherical void of radius
rv is given by classical nucleation theory (CNT) [51]:

�GCNT
V = 4πr2

vσv − 4πr3
v

3�
kBT ln

(
CV

Ceq
V

)
, (27)

where σv is the interfacial energy, � is the volume per for-
mula unit, CV is the total vacancy concentration, and Ceq

V is
the equilibrium value at temperature T . This total vacancy
concentration includes both vacancies in bulk and vacancies
forming voids. In contrast with cv , CV corresponds to the
total concentration over the whole system, whereas cv is the
local concentration at one specific grid point. If the simulation
box is large enough, the total vacancy concentration can be
approximated by the vacancy concentration in bulk. The first
term in Eq. (27) corresponds to the increase in energy due
to the formation of the void/solid interface and the second
term is related to the work performed to relocate vacancies
inside a new void. Interactions between voids and vacancies
with vacancy sources, dislocations, and grain boundaries are
not considered in CNT. The critical or cutoff void radius
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FIG. 7. Critical radius (void size) at different temperatures and
different vacancy concentrations. Voids smaller than this cutoff size
dissolve, while voids with a radius larger than the cutoff are stable
and can grow. At higher temperatures, the vacancy diffusion coef-
ficient is higher and vacancies annihilate faster. Hence, small voids
are destabilized, and the cutoff radius is larger. On the other hand,
at higher vacancy concentrations, smaller concentration gradients
promote the existence of smaller voids. Lines correspond to Eq. (28).

corresponds to d (�GCNT
V )/drv = 0, i.e.,

rcr
v = 2�σv

kBT ln
( CV

Ceq
V

) . (28)

The Cahn-Hilliard equation [Eq. (1)] was solved nu-
merically using finite differences and the forward Euler
time integration method to study the stability of voids in
vacancy-saturated PbTe, i.e., in a system where the vacancy
concentration in bulk is higher than its equilibrium value. A
single void was placed in the center of the simulation box and
we observed how its size evolved over time. This study was
repeated using different initial void sizes. The critical radius
rcr
v was determined by identifying the largest initial radius

for which the voids dissolve [16]. Simulations were run at
different temperatures (300–900 K) and under different bulk
vacancy concentrations (cbulk

v = 0.1, 0.05, 0.01). We observed
that voids are stable at intermediate temperatures but not at
high temperatures because then the high vacancy mobility
promotes diffusion and can more easily destabilize voids,
especially small ones. At low temperatures, below 300 K, the
mobility is very low and vacancies take longer to accumulate.
On the other hand, it is observed that if the number of vacan-
cies is low, it is more difficult to create voids and their cutoff
radius is larger.

These effects can be seen in Fig. 7, where we report the
critical radii determined as explained above, as a function
of concentration and temperature (symbols with error bars).
Since the simulation box is large enough for the vacancy
concentration in bulk to be roughly constant, we have fitted
the simulation results with Eq. (28) (lines in Fig. 7). The fitting
parameters are σv (T,CV ) and CV (T ). The time required to
equilibrate voids in the presence of small vacancy concen-
trations can be hours or days. Therefore, in order to access

FIG. 8. Free energy of a system containing two voids of radius rv

at 500 K. Comparison between the standard model given by Eq. (27)
(red), in which there is no metastable finite void size, and Eq. (29)
(blue), where a metastable size appears at 15 nm.

the experimentally realistic regime, we adopted the following
strategy: we first calculated rcr

v (T ) for a set of larger concen-
trations (0.1, 0.05, and 0.01), and then extrapolated to a bulk
vacancy concentration cbulk

v = 10−4 using Eq. (28) (red curve
in Fig. 7) using σv and CV obtained at higher concentrations.
At 500 K, the critical radius would be around 5 nm.

Equation (27) predicts either dissolution or nucleation of
voids, but not metastable finite void sizes. However, multi-
ple metastable finite-size voids are found in experiments [9],
and this expression needs to be modified to account for this.
Assuming that deviations from CNT arise from the presence
of multiple voids, we study a system containing two voids
and introduce an additional phenomenological term in the free
energy to account for the effect of interactions between voids:

�GV = 2 · 4πr2
vσv − 2 · 4πr3

v

3�
kBT ln

(
CV

Ceq
V

)
+ γvrs

v, (29)

with γv and s constants. The first two terms are the same as
in Eq. (27) but doubled as this expression corresponds to two
voids. Terms like the last one in Eq. (29) have been proposed
for other systems exhibiting nucleation of secondary particles
where s is in the range 3–5 [52–54]. If γv is chosen such that
a second minimum with �GV = 0 emerges at finite rv , then
systems containing no voids and systems containing voids of
this metastable size are equally favorable.

We used the phenomenological Eq. (29) to gain insight
into the behavior of metastable voids in real applications. In a
system with a bulk vacancy concentration of cbulk

v = 10−4, the
critical radius at 500 K is approximately 5 nm (see dashed red
line in Fig. 7). This critical radius corresponds to a maximum
in the free energy, as shown by the red line in Fig. 8, which
corresponds to noninteracting voids [Eq. (29)]. Keeping pa-
rameter σv in Eq. (29) the same as in CNT [Eq. (27)] and
choosing a suitable value of γv , we can observe the emergence
of a minimum in the free energy at a finite size, appearing
at 15 nm in the blue line in Fig. 8. This minimum repre-
sents a metastable void size, meaning that voids created with
this size should neither dissolve nor nucleate. In addition,
the critical size (location of the maximum in the blue line)
increases from 5 to 8 nm due to the presence of multiple voids
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FIG. 9. Free energy of a system containing two voids of radius
rv at different temperatures according to Eq. (29). Inset: evolution of
the metastable void size with temperature.

simultaneously, i.e., due to void-void interactions. Experimen-
tal studies confirm the presence of such metastable voids in
real-life PbTe samples [9].

The dependence of the metastable size on temperature is
shown in Fig. 9, for a bulk vacancy concentration of 10−4

and an interfacial energy σv , determined via Eq. (28), using
the critical radius extracted from Fig. 7. These metastable
sizes, which increase with temperature as shown in the inset
to Fig. 9, correspond to the formation of voids when the
metastable size is forced to be at �GV = 0. Metastable sizes
with �GV �= 0 may also be feasible, although these sizes
would not be as energetically favorable as the void-free sys-
tem.

C. Zener pinning by voids

In Sec. III A voids were considered as immobile second-
phase particles whose size was fixed. The results in Fig. 4
were obtained in the presence of voids with a fixed radius,
rv = 45 nm. In contrast, in Sec. III B we studied void sta-
bility in the absence of grain boundaries, and showed, using
a phenomenological model, that metastable voids of finite
dimensions can be stabilized due to void-void interactions.
Inspired by this model we performed phase-field simulations
of grain growth as in Sec. III A, but now in the presence of
voids of varying size. The rationale is that voids tend to act
as effective pinning particles if the local radius of curvature
of the grain boundary is relatively large and the void fraction
is high enough [33]. If pZ is the reduced pinning pressure,
in units of inverse distance, exerted by Zener particles in a
saturated system, grain growth in the presence of voids can be
modeled by Eq. (24) with n = 2 [45,46], which corresponds to
the ideal case, and the effect of voids is incorporated through
the pinning pressure as [33]

dr

dt
= k

(
1

2r
− pZ

)
, (30)

where the pinning pressure depends on the void fraction, dv ,
and void radius, rv , as [33]

pZ = da(dv )
v

αrv

, (31)

with rv the void radius and α a constant that accounts for
deviations observed in experiments. Values of α between 2.7
and 3.6 were reported in experiments in alloys [33] at high
void fraction. The exponent a(dv ) changes from a(dv ) = 1
at low void fraction, where voids act as independent scat-
tering centers, to a(dv ) = 1/3 at high dv , where voids act
collectively. While Eq. (24) is a good approximation for small
deviations from the ideal grain growth through the parameter
n, Eq. (30) studies grain growth when it is slowed down in the
presence of voids until a limiting grain radius, RZ , is reached
and then it stops when the right-hand side vanishes. Using pZ

as defined in Eq. (31), Eq. (30) leads to an equilibrium grain
radius RZ in the saturation limit of

RZ = αrv

2da(dv )
v

. (32)

According to Eq. (32), the stabilization of small mean grain
sizes is associated with the presence of small voids; i.e., to
this end it is better to have many small voids than a few large
voids. The study of large, slowly growing grains carries a
large associated computational cost. We therefore focused our
research toward the study of grain growth in the presence of
relatively small void radii and high void fractions. In addition,
very small grains cannot be studied due to the finite resolution
of the simulation grid (�x = 0.643 nm). In Sec. III A, the void
size studied (rv = 45 nm) was relatively large, corresponding
to a limiting grain size RZ ≈ 260 nm. The grain sizes observed
in these simulations, shown in Fig. 4, did not reach this size
due to time limitations and the size of the simulation box. The
fact is that, under these conditions, the second term in Eq. (30)
is much smaller than the first one, and hence the dynamics
is dominated by an ideal diffusive behavior. In Eq. (24) in
Sec. III A we assumed that the Zener pressure was negligible.
However, this approximation is not valid when the grain size
is close to its limiting value. There, pZ is relatively large and
cannot be ignored. In Sec. III A we remedied the absence of
the pZ term by allowing for deviations from the ideal case
(n = 2) through the variation of the exponent n in Eq. (24),
finding that n increases with the void fraction.

In this section we used Eq. (30) instead, which keeps n = 2
but includes the Zener pressure. We used smaller void sizes
at high void fractions to be able to observe the grain growth
slowing down, eventually reaching the limiting grain size.
The timescale for observing this limiting behavior depends
strongly on temperature. At low temperatures it can take hours
to attain, and hence it is out of reach for the present simula-
tions. For this reason we have focused on higher temperatures.
In Fig. 10 we show the time evolution of the mean grain size
at 900, 700, and 500 K for the two smallest void sizes. The
inset shows this evolution for a wider range of sizes, between
26 and 51 nm, at 500 K. Notice that, at 500 K, only for the
smallest void size of 26 nm the simulations show the grains
stopping growing in the timescale of the simulations (0.3 ms).
According to Fig. 10, limiting sizes of RZ ≈ 180 and RZ ≈
155 nm are obtained for void radii rv = 32 and rv = 26 nm,
respectively. Comparing with Eq. (32), we obtain a value
of α ≈ 5 at high void fraction, which is comparable to the
values observed experimentally (2.7–3.6) [33]. The difference
may arise because these equations assume that all pinning
particles interact with grain boundaries in the same way, but
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FIG. 10. Evolution of the mean grain size over time at constant void fraction, dv = 8%, at different void radii and temperatures in the
steady-state regime. The vacancy concentration in bulk is cv = 10−4. Dashed red line corresponds to Eq. (30) for the data plotted using blue
diamonds, where k and pZ are fitting parameters. The grain size would keep growing for hours until reaching an equilibrium value at low
temperatures. In the inset, we can see the evolution of the mean grain size over time for different void sizes at 500 K. Due to the limitations in
size and time associated with our simulations, the limiting grain size is not reached for the largest void sizes.

this is not the case. Voids can reduce the free energy much
more than interstitial clusters formed by different chemical
species in alloys, and their impact on the elastic free energy
is considerable. Although voids are known to be efficient
pinning particles, the applicability of this equation has not
been validated in their presence. Moreover, the materials used
in experiments are not pure and can contain several pinning
particles at the same time.

The presence of voids in the polycrystalline material re-
sults in an intervoid interaction mediated by grain boundaries,
which can have a stronger effect in the presence of higher
void densities. The force on each void associated with Zener
pinning scales as FZ ∼ pZ r2

v ∼ rv , where we used Eq. (31). If
we assume that the void oscillation is related to phonons with
characteristic energy ω0, the strength of the coupling for each
void is given by AV = FZ xc/ω0, where xc is the characteristic
interaction distance. The energy of an elastic domain wall
scales like R2

Z [55], and from Eq. (32) we see that RZ ∼ rv .
Therefore, the indirect interaction energy between voids via
grain boundaries is given by the energy of the elastic domain
wall multiplied by the strength of the coupling squared, hence
scaling as Ev−v ∼ A2

V R2
Z ∼ r4

v , where we used Eq. (32). This
dependence is validated in Fig. 11 (right panel), where we
show the attractive force between voids mediated by the grain
boundary, −dE/dlv−v , where lv−v is the distance between two
voids pinned at the grain boundary. The observation that the
force is approximately linear with the logarithm of the void
radius indicates a power-law behavior with rv . The red lines
in Fig. 11 correspond to a fit with r4

v . Apart from some small
deviations, the good quality of this fit supports the argument
that void-void interactions are mediated by grain boundaries
and introduce a term of the form γ r4

v in the phenomenolog-
ical expression for the free energy given by Eq. (29). For
comparison, we also report this force between voids in the
absence of grain boundaries (left panel). It it clear that that
this power-law scaling is not valid in this case. The intervoid
interaction mediated by grain boundaries, in addition to the

grain boundary-void interaction, is likely to be responsible for
grain growth stagnation.

D. Lattice thermal conductivity of porous polycrystalline PbTe

As a thermoelectric material, the efficiency of PbTe can
be enhanced by reducing the lattice thermal conductivity.
Voids and grain boundaries reduce the thermal conductiv-
ity by themselves, but small grains have to be stabilized to
stop grain growth. We observed that this grain growth could
be stopped in the presence of voids at grain boundaries, so
now we are going to quantify the reduction of the thermal
conductivity in the presence of metastable voids and grain
boundaries. To obtain a solvable model, we assume that the
majority of voids are at grain boundaries and rv and dv retain
their values at TCR. TCR is the coarsening temperature, defined
as the maximum temperature to which the sample has ever
been exposed. From our phase-field model, we obtain not only
the mean grain size 〈r(t )〉 or diameter 〈d (t )〉, but also the
distribution of grain sizes, ω(di/〈d〉; TCR), which, according to
the results of Sec. III A, follows approximately a log-normal
law, where d is the grain diameter. This enables us to com-
pute the effective lattice thermal conductivity, κeff , of porous
polycrystalline PbTe. Assuming phonon confinement and av-
eraging over grain sizes, the effective thermal conductivity of
the ensemble is given by the following summation over all
grain sizes present in the sample:

κeff (T, χv; TCR)−1

=
∑

i

ω

(
di

〈d〉 ; TCR

)[
di

di + δgb(T )

1

κb(T )
+ RK(χv )

di + δ(T )

]
,

(33)

where κb(T ) is the thermal conductivity of the bulk material,
d is the grain diameter, 〈d〉(TCR) is the mean grain diameter,
δ is the grain boundary width, RK is the Kapitza resistance,
ω is the log-normal weight for grain size di, and T is the
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(a) (b)

FIG. 11. Analysis of the void-void interaction energy in (a) bulk and (b) polycrystalline PbTe for different void sizes, rv , and intervoid
distances, lvv

, calculated using LAMMPS via energy minimization. Two voids with equal size, rv , are placed in the simulation box separated by
a distance lvv

. In the polycrystalline material, both voids are at the grain boundary. Red lines correspond to the functional form −dE/dlvv
= ar4

v ,
where a is a fitting parameter. The force on each void associated with Zener pinning scales as ∝r4

v (b), while this dependence is not observed
in the absence of grain boundaries (a). This implies the existence of a void-void interaction mediated by the grain boundary.

working temperature. 〈d〉(TCR) has memory as it depends on
the thermal history of the sample. Given the metastable void
size, rv , from Fig. 9 at temperature TCR, the limiting grain
diameter can be calculated by Eq. (32), d = 2RZ . Thus, the
mean grain size of the sample is determined by TCR, the
maximum temperature to which the sample has ever been
subjected. This TCR is not necessarily equal to the working
temperature in a thermoelectric device, T . Note that while
κb(T ) depends on the fast phonon dynamics, the processes of
grain growth happen on much longer timescales described by
our phase-field simulations and are irreversible.

The grain boundary width δgb and Kapitza resistance RK

were studied using MD by the direct method with voids at
the grain boundary [10,56]. δgb increases with temperature
as δgb = δ0(Tm − T )−1/2, where Tm = 924 ◦C is the melting
temperature [57] and δ0 = 289 nm K1/2 is a fitting parameter
for data collected from Ref. [10]. RK is inversely proportional
to the heat capacity and is constant above the Debye temper-
ature [58]. MD simulations show that RK in the presence of
voids at the grain boundary depends on void coverage, χV , as
RK = Rnv

K (1 − χV )−1, where Rnv
K refers to the void-free case.

We plot the result of Eq. (33) in Fig. 12 at dv = 8%.
We show a family of curves κeff (T ) for different thermal
coarsening temperatures TCR. This provides information about
the thermal conductivity necessary to design thermoelectric
devices with the only assumption that we work in thermo-
dynamic equilibrium, where there is a well-defined phonon
temperature T at each point of the sample. We consider a
constant working temperature along the length of the sample
and TCR � T since the variation of the last quantity may be
optimized separately. A comparison between curves shows
the effect of nanostructuring. The lattice thermal conductivity
can be reduced nearly in half by grain boundaries pinned by
voids. κeff (T ) varies slower than in bulk, so the differences
are largest at the lowest temperatures. Furthermore, our study
shows the potential of introducing a coarse-graining profile
TCR(x) inside the sample, going from blue to green to brown
curves in different zones of the sample. This should reduce
κeff (T ) even more, enabling the design of some desired tem-

perature profile. The regime at low void densities has not been
studied here, but the validity of the existence of a limiting
grain size at low densities of voids can be inferred from
Eq. (32). Equation (33) was evaluated assuming that voids are
at the grain boundary, in which case their effect on the thermal
conductivity enters through a change in the Kapitza resistance.
This assumption is valid when the void fraction is high and
the grain size is small. Additionally, energy calculations using
the classical force field proposed in Ref. [10] were performed
to validate this assumption. Results are reported in Fig. 13.
It is clear that the energy is larger when voids are located
farther away from the grain boundary (large dGB−v), implying
that configurations where voids are at the grain boundary

FIG. 12. Effective thermal conductivity, κeff , of porous polycrys-
talline PbTe as a function of temperature. Different curves are at
different coarse-graining temperatures, TCR, where TCR is defined
as the maximum temperature to which the sample/device has been
exposed. For the highest TCR, we approach the limit of the bulk κb(T )
(dashed line), so comparing the curves allows assessing immediately
the importance of the grain-size growth saturation at lower tempera-
tures. The void fraction is dv = 8%. Inset shows the relative loss of
conductivity due to nanostructuring.
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FIG. 13. Void-GB interaction energy as a function of the void-
GB distance, where GB stands for grain boundary and rv is the
void radius. The interaction energy is defined as the excess energy
divided by the void cross section, πr2

v , when the void is far from
the grain boundary and was calculated using LAMMPS after energy
minimization. Systems in which voids are at the grain boundary are
lower in energy and hence more stable.

(small dGB−v) are more favorable, thus supporting the above
assumption.

IV. DISCUSSION

Control over growth conditions is crucial to develop nanos-
tructures for industrial purposes. PbTe is a semiconductor
often used as a thermoelectric device, and its efficiency in-
creases with reduced lattice thermal conductivities. As seen
in Ref. [10], the effective lattice thermal conductivity of
PbTe falls in the presence of vacancies and grain boundaries,
so special attention is given to these intrinsic defects. The
vacancy concentration of single vacancies in PbTe can be
estimated from electrical transport methods [59] and optical
measurements [60], and vacancy concentrations of up to 10−3

are found to be stable in bulk PbTe [61]. However, the de-
termination of the minimum mean grain size is not easy, as
small grains tend to anneal at finite temperatures until the
single crystal is reached. Nevertheless, polycrystalline struc-
tures are found to be stable in experiments, and the reason is
still unclear. This observation is not exclusive to PbTe, or to
thermoelectric materials. Polycrystallinity is a very common
phenomenon, and a full explanation for it is still lacking. Here
we have shown that the presence of interfaces with reduced
mobility (anisotropy) and the pinning pressure exerted by
second particles (Zener effect), in this case voids, but it could
be another second phase, e.g., as present in alloys, play an
essential role in the grain-growth stagnation [48,62].

In our simulations, we observed that nanostructures of
dimensions on the order of hundreds of nanometers could be
stable at intermediate temperatures, as seen in different exper-
iments [7,63], in the presence of voids as small as 20–50 nm.
The fabrication of nanostructured PbTe containing voids with
these sizes (porous polycrystalline PbTe) is experimentally
feasible [64]. Small void sizes and high void fractions allow
for the existence of small grains, as described by the limiting

grain size given by Eq. (32). This study sheds light on the gen-
eral question of the metastability of polycrystalline samples
against the single crystal. We have shown that grain growth is
arrested by voids pinned at grain boundaries, with the size of
voids and grains being determined by vacancy concentration
and temperature. A similar phenomenon may be induced by
impurities, instead of, or in addition to, voids [33].

V. CONCLUSIONS

The effect of Zener pinning by voids on the main grain
size is investigated by computer simulations using the phase-
field method. The main conclusions can be summarized as
follows:

(i) In the presence of voids, the mean grain size follows
approximately a log-normal distribution during the steady-
state regime. This is in contrast with Hillert’s distribution
observed in normal grain growth. This deviation in the distri-
bution is likely to be due to the breakdown of scale invariance
shown in Fig. 4.

(ii) Grain growth in polycrystalline PbTe can be stopped
by immobile, spherical voids until the mean grain size reaches
a limiting value (see Fig. 10). Consequently, polycrystalline
materials can reach stable structures and can be used to reduce
the lattice thermal conductivity, as the latter drop for decreas-
ing grain size.

(iii) The limiting grain size is proportional to the void ra-
dius at constant void fraction [see Eq. (32)]. Therefore, small
void sizes are desired to stabilize samples with small mean
grain sizes, and hence low thermal conductivity. Additionally,
voids can reduce the thermal conductivity by themselves, so
the presence of grain boundaries and voids in thermoelectric
devices results in efficiency enhancement.

(iv) The metastable void size, rv , and hence the mean
grain size, RZ , grows with temperature (see inset to Fig. 9).
Therefore, due to this coarsening phenomenon, also thermal
conductivity should increase with temperature, thus casting
doubts, in general, in the effectiveness of nanostructuring as
a strategy for improving the thermoelectric figure of merit.
Since the growth process is irreversible, the void size is de-
termined by the coarsening temperature, i.e., the maximum
temperature to which it has been exposed. PbTe, in particular,
is a leading thermoelectric material at intermediate tempera-
tures and is not usually exposed to high temperatures, so PbTe
structures with small voids and a relatively small mean grain
size can remain stable under operational conditions.

(v) The lattice thermal conductivity of porous polycrys-
talline PbTe can be reduced by 35% by anisotropic grain
boundaries pinned by metastable voids (see Fig. 12). The
reduction in conductivity is larger when the sample has not
first been exposed to higher temperatures.
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