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Disorder effects of vacancies on the electronic transport properties of realistic
topological insulator nanoribbons: The case of bismuthene
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The robustness of topological materials against disorder and defects is presumed but has not been demon-
strated explicitly in realistic systems. In this work, we use state-of-the-art density functional theory and recursive
nonequilibrium Green’s functions methods to study the effect of disorder on the electronic transport of long
nanoribbons, up to 157 nm, as a function of vacancy concentration. In narrow nanoribbons, a finite-size effect
gives rise to hybridization between the edge states erasing topological protection. Hence, even small vacancy
concentrations enable backscattering events. We show that the topological protection is more robust for wide
nanoribbons, but surprisingly it breaks down at moderate structural disorder. Our study helps to establish some
bounds on defective bismuthene nanoribbons as promising candidates for spintronic applications.
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I. INTRODUCTION

Topological materials have been intensively studied in
recent years [1–6] unveiling interesting new physics and
opening new applications possibilities in spin-based elec-
tronic devices [7]. Of particular interest are large band gap
topological insulators (TIs), that are good candidates for the
realization of the quantum spin Hall (QSH) effect at room
temperature [8,9]. In two-dimensional (2D) QSH insulators,
the edges of the sample carry metallic states that are pro-
tected by time-reversal symmetry (TRS) [10–16] and decay
exponentially into the bulk [17–19]. Moreover, theory predicts
that in nanoribbons these edge states carry dissipationless
helical spin currents. The penetration depth, that quantifies
the edge states exponential decay rate, is (roughly) inversely
proportional to the band gap [18,20] and plays a key role in the
nanoribbon transport properties. As it happens with the length
scales of 3D topological insulators [21], to fully display the
features of a TI, the nanoribbon width must be much wider
than the penetration depth ξ of the edge states, otherwise they
can easily hybridize.

Among several candidates for topological materials, bis-
muthene, also known as buckled or bilayer bismuthene, is of
special interest due to its large electronic band gap of 0.5 eV,
along with its structural stability and large spin-orbit coupling
(SOC) [22–24]. The existence of charge puddles and other
types of defects that could be detrimental for the formation
of a topological phase do not play an important role in bis-
muthene, as experimentally demonstrated [8]. Indeed, since
its experimental realization, it was proposed that even amor-
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phous structures of bismuthene occurring before the annealing
process [25,26], as well as strongly disordered systems [27],
support topological states. The robustness of bismuthene non-
trivial topology makes it ideal for material design, both by
tuning the lattice constant and effective spin-orbit coupling
(SOC) by epitaxial constraint or by substitutional alloying
with lighter elements, such as Sb or As, without causing a
topological transition [22,28]. The presence of nonmagnetic
defects leaves the band topology unchanged in these materials
[24–27].

Two recent works have proposed that vacancies can spoil
the topological (elastic) transport properties of 2D TIs. Study-
ing a generic tight-binding model with a Hubbard mean-field
term, Ref. [29] has shown that vacancy induced localized
states can give rise to local magnetic moments and destroy the
topological protection. In turn, Ref. [30] proposes a very dif-
ferent mechanism. Based on another tight-binding toy model,
Ref. [30] has numerically shown that small concentrations of
vacancy defects do not eliminate the topological edge states
but can cause interedge state hybridization in certain ener-
gies intervals within the topological gap [30]. For the BHZ
model [12], several works have addressed the role of strong
disorder, demonstrating a modification of the local currents
and interedge tunneling effects [31–34]. The dominant mech-
anism depends critically on the choice of the schematic-model
Hamiltonian, which—from the point of view of materials—is
very unsatisfactory. To better understand the interplay be-
tween edge states and defects a material-specific systematic
study using ab initio methods is in order.

Vacancies on bismuthene show small formation energies
where sp2 bismuth dangling bonds can be distributed around
the vacancy leading to resonances in the band gap, modify-
ing the electronic properties of the host material. Theoretical
calculations on bismuthene show no evidence of magnetic
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moments induced from vacancies [23], preserving TRS and
retaining its nontrivial topological band structure. Recent ab
initio calculations demonstrate that transport along the edges
is insensitive to vacancies created in ultranarrow TI zigzag
nanoribbons [35]. Even though these vacancies allow the de-
velopment of magnetic moments, the perfect conductance for
energies within the bulk gap is recovered provided the vacan-
cies are passivated by hydrogen. Our study, in turn, addresses
more realistic system sizes, namely, both much wider and
much longer, unveiling a different kind of disordered-induced
transport mechanism.

In this work, we investigate the electronic transport prop-
erties of buckled bismuthene nanoribbons of realistic sizes
using the full Hamiltonian in the orbital representation
obtained from density functional theory (DFT) [36–38] cal-
culations combined with recursive nonequilibrium Green’s
functions (NEGFs) [39–42]. First, we explore the backscatter-
ing mechanism due to interedge hopping mediated by vacancy
localized states in different nanoribbon widths and discuss the
detrimental effects in transport properties caused by single
vacancies in narrow nanoribbons. We proceed to investi-
gate the robustness of the topological properties by studying
the conductance of ribbons as a function of their widths,
lengths (up to 157 nm), and vacancy concentration. We show
that narrow ribbons, whose widths w are comparable with the
edge states penetration depth ξ , present the onset of Anderson
localization effects already at low vacancy concentrations. In
distinction, for wide nanoribbons, where w � ξ , the edge
states maintain a quantized conductance in the topological
gap at low disorder concentrations. Surprisingly, we find that
topological protection is destroyed already at modest vacancy
concentrations.

II. COMPUTATIONAL METHODS

Our calculations combine the flexibility of a plane-wave
basis set to obtain the optimized structures with a local-
ized basis for electronic transport. In both cases, we use the
Perdew-Burke-Ernzerhof (PBE) [43,44] exchange-correlation
functional. We perform the geometry optimizations with a
plane-wave basis as implemented in the VASP package [45,46].
In these calculations, we employ 400 eV for the plane-wave
expansion cutoff and ionic potentials are described using
the projector augmented-wave (PAW) method [47]. Vacan-
cies are modeled by removing an atom from the bulk and
performing the geometry optimization with force criterion of
5 × 10−3 eV Å−1.

The transport calculations use full ab initio DFT Hamil-
tonian matrices obtained directly from the SIESTA code [48],
employing atom-centered single-ζ plus polarization (SZP)
basis sets. We use the energy cutoff for real-space mesh of
350 Ry, sampling the reciprocal space with 10 k points along
the periodic direction of the presented nanoribbons, which
edges were hydrogen-passivated. We add 20 Å of vacuum
in both nonperiodic directions to avoid spurious interactions
between periodic images. The self-consistent SOC is intro-
duced via an on-site approximation [49] using fully relativistic
norm-conserving pseudopotentials [50]. The system Hamilto-
nian and overlap matrices are obtained after performing a full
self-consistent cycle.
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FIG. 1. Schematic representation of the two-probe setup studied
in this work. (a) The electrodes are located at the left (L) and right
(R) sides of the device. (b) Zoomed-in view of the scattering region
(S), illustrating some of its building blocks containing vacancies.

The electronic transport calculations are implemented fol-
lowing the standard NEGF approach [39–41]. We consider
a two-probe terminal setting, as illustrated in Fig. 1(a). The
left (L) and right (R) electrodes are modeled by semi-infinite
pristine zigzag bismuthene leads.

Our approach employs a decimation technique [51–56] that
allows us to address large system sizes. The scattering region
is partitioned into building blocks connected by first neighbor
interactions. Each building block is computed through DFT.
The procedure takes into account all degrees of freedom of
the system comprised of all the building blocks. The parti-
tion scheme is depicted in Fig. 1(b). Accordingly, the system
Hamiltonian is expressed in the localized basis by the block
matrix

H =

⎛
⎜⎝

HL HC 0

H†
C HS HC

0 H†
C HR

⎞
⎟⎠, (1)

where HL and HR are the Hamiltonian matrices describing the
left and right electrodes, while HC is the coupling between the
leads and the central region, and HS is the tridiagonal block
matrix

HS =

⎛
⎜⎜⎜⎜⎜⎝

H1 HC 0 . . . 0

H†
C H2 . . . . . .

...

0
...

. . .
... 0

... . . . . . . HN−1 HC

0 . . . 0 H†
C HN

⎞
⎟⎟⎟⎟⎟⎠

(2)
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representing the scattering region (S). We take HC also as the
coupling between each building block. We consider a uniform
distribution of vacancies within the building blocks repre-
sented in Fig. 1(b), except for a small region of 2.175 Å at
the simulation box boundaries in the periodic direction. This
is necessary to properly connect successive building blocks by
HC as in Eq. (2).

The scattering region spin resolved retarded Green’s func-
tion [41,57] reads

Gr
S (E ) = (

E+SS − HS − �r
L − �r

R

)−1
, (3)

where E+ = limδ→0+ E + iδ, SS is the overlap matrix, and
�r

R/L(E ) = (E+SC − HC )Gr
0,R/L(E+S†

C − H†
C ) are the em-

bedding self-energies that account for the system decay width
due to the coupling with the leads. Here Gr

0,R/L is the retarded
surface Green’s function of the R/L electrode [51,58]. The
block structure of HS allows for a very efficient computation
of Gr

S (E ) using the recursive Green’s function method (see,
for instance, Ref. [55] for a review).

In the linear response, at small bias, the zero-temperature
conductance is given by the Landauer formula G(EF ) =
(e2/h) T (EF ), where the transmission T reads [39–41]

T (E ) = Tr
[
�L(E )Ga

S (E )�R(E )Gr
S (E )

]
, (4)

where Ga
S = [Gr

S]† and the decay width matrices �L/R are
given by �L/R = i(�r

L/R − �a
L/R).

III. RESULTS AND DISCUSSION

In this section, we analyze the effect of vacancies on
the transport properties of bismuthene zigzag nanoribbons.
We begin by discussing the topological properties of pristine
nanoribbons of different representative widths. Next, we in-
vestigate the effect of a single-vacancy on the electronic and
transport properties of these systems. Finally, we study the
conductance of these systems for different vacancy concen-
trations and nanoribbon widths.

Let us first investigate the effect of the ribbon width on
pristine systems. Due to translation invariance these sys-
tems can be viewed as having infinite length. In Fig. 2, we
show the electronic band structure and the conductance for
bismuthene nanoribbons with three different representative
widths. To help the discussion, the bulk-topological gap �TG,
corresponding to −0.1 eV < E < 0.4 eV, is indicated in grey.
Figure 2(a) shows the results for a narrow nanoribbon, w20 of
width 20 Å, comparable to those of ref. [35]. The electronic
states bridging the bulk-topological �TG are split and the sys-
tem displays a small gap, in distinction to the standard picture
of topological protected metallic edge states in very large
systems. Figure 2(b) shows an intermediate width nanoribbon,
namely w65, of 65 Å width. Here, there is still a small gap at
the � point, though the edge states are degenerate as expected
for a topological insulator. In addition, the top of the valence
and bottom of the conduction trivial state bands approach
the corresponding bulk energies, indicating that finite width
quantization effects are much smaller than in the previous
case. Finally, Fig. 2(c) shows a wide nanoribbon, w110 of
width 110 Å, with no gap and degenerate edge states with
helical texture, as expected for a TI. Here, the bulk-topological
gap corresponds very closely to the energy interval where one

(a)

(b)

(c)

FIG. 2. Electronic band structure along the � − X direction (left
panels) and the corresponding conductance G (right panels) for pris-
tine (infinite length) bismuthene nanoribbons of widths (a) w20 =
20 Å, (b) w65 = 65 Å, and (c) w110 = 110 Å. The gray energy win-
dows correspond to the bulk topological gap.

finds only edge states. In all cases, the conductance G(E ) is
quantized and the conductance steps are observed as expected
for pristine systems [41].

The lack of topological protection in narrow ribbons is a
result of strong overlap between the states at the opposite
system edges. This can be understood in terms of the spatial
localization of edge states or, more precisely, their so-called
penetration length ξ . The latter can be roughly estimated from
the mass term in the k · p Dirac Hamiltonian describing the
inverted bulk band gap as [20,59–61]

ξ ≈ h̄vF /�TG, (5)

where vF is the Fermi velocity corresponding to the topo-
logical bands, namely, h̄vF = dεk/dk. By estimating the
Fermi velocities from Figs. 2(b) and 2(c), we find that
for the w65 nanoribbon vF = 4.58 × 105 m s−1, that renders
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FIG. 3. Local density of states (LDOS) at the Fermi level
(EF = 0) for pristine (infinite length) w110 nanoribbon. The LDOS
is averaged over the x and z directions and the y axis corresponds to
the transverse direction along the ribbon width. The gray dashed line
shows the exponential fit. The geometry below the LDOS shows the
bismuthene w110 nanoribbon view perpendicular to the x-y plane.

ξ = 0.6 nm, while for w110 the Fermi velocity is 5.79 ×
105 m s−1 and ξ = 0.8 nm. These estimates of ξ for buck-
led bismuthene are slighlty larger than the values reported
in experiments [8,62] that obtain ξ ≈ 0.4 nm in SiC(0001)
supported flat bismuthene. We stress that these are different
material systems. The discrepancy can be explained by recall-
ing that �TG of the buckled bismuthene is smaller than the
band gap of the flat one.

A more quantitative estimate of ξ is taken from the local
density of states (LDOS) averaged over the x, z directions as
a function nanoribbon transversal axis y, see Fig. 3. Fitting
an exponential function, we estimate the penetration length
as ξ = 0.9 nm for the w110 ribbon, in good agreement with ξ

obtained using Eq. (5). Using ξ , we can also estimate a thresh-
old length for the LDOS decay for which the interedge states
hybridization becomes negligible. For instance, at distances
�y � 2.8 nm from the edges, the LDOS decays by ∼95%.
Hence, we expect that narrow nanoribbons with w � 2�y
lack topological protection due to the strong overlap of states
localized at opposite system edges. The w65 nanoribbons are
at the crossover between nonprotected and topologically pro-
tected phases.

Next, we investigate ribbons containing a single-vacancy.
For a slab geometry, we calculate the formation energy EV of
these single vacancies systems using the following expression
[63]

EV = Etot − (Epristine + μV NV ), (6)

where Etot is the total energy of the single-vacancy system
given by a fully relaxed DFT calculation, Epristine is the energy
for the pristine ribbon, NV is the number of vacancies (in our
case NV = 1), and μV is the chemical potential to remove a
bismuth atom. Here, we take μV as the energy per atom of the
pristine bismuthene monolayer. For purposes of comparison,
we simulate a 5 × 5 supercell containing a vacancy. By doing
so, we avoid that theses vacancies interact with their periodic
images obtaining a formation energy of 1.04 eV, which is in
agreement with previous reports [23].

Figure 4 shows the conductance of the w20 and w110 rib-
bons in the presence of a single vacancy placed close to one
of the system edges. For this calculation, the scattering region
corresponds to a single building block N = 1 containing the

FIG. 4. Single-vacancy close to the edge of a bismuthene
nanoribbon: (a) lattice structure and conductance for (b) w20 nanorib-
bon and (c) w110 nanoribbon. The gray region indicates the bulk
topological gap. The black dashed line corresponds to the conduc-
tance in the pristine case. All structures consist of a single building
block N = 1 containing the vacancy coupled to semi-infinite pristine
ribbons.

vacancy. For the w20 ribbon, the quantized conductance is
destroyed, showing that the edge states are not robust against
disorder. In turn, the w110 ribbon shows no deviation from
perfect conductance G0 = 2e2/h within the topological gap.

Several studies on a variety of 2D materials indicate that
single-vacancies give rise to localized states [29,64]. It has
been further shown that such disorder-induced localized states
cause the formation of local magnetic moments [64–68] that,
if close to the system edges, can be detrimental for the topo-
logical protection, differently from dual topological insulators
[69]. Let us study the relevance of these findings to bis-
muthene.

Figure 5 shows the local density of states (LDOS) for the
w20, w65, and w110 nanoribbons calculated for the energy
window 0.2 eV < E < 0.3 eV. The strong enhancement of
the LDOS centered around the vacancy corresponds to expo-
nentially decaying orbitals paired after the atom relaxation.
Figure 5(a) shows that the vacancy states increase the overlap
between interedge states, whereas for the w65 nanoribbon, the
overlap is small even in the presence of a vacancy. For the
w110 ribbon shown in Fig. 5(c) the overlap between the edge
states and the vacancy localized states is negligible.

Our ab initio fully relativistic calculations show that, re-
gardless of the superlattice size, type of basis set used in the
calculation, and position of the vacancy (bulk or nanoribbon
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FIG. 5. Top (x-y axis) and lateral (y-z axis) projections of the
local density of states (LDOS) for single vacancy in (a) w20, (b)
w65, and (c) w110 nanoribbons. The isosurface value for the LDOS
is of 0.025 Å−3 eV−1, corresponding to an energy range 0.2 eV <

E < 0.3 eV. All structures consist of a single building block N = 1
containing the vacancy coupled to semi-infinite pristine ribbons.

edge), there is no indication of a defect-induced magnetic
moment, more precisely, we find μ < 10−4μB. Interestingly,

when the SOC is artificially turned off, our spin polar-
ized calculations give a magnetic moment of 0.8 μB around
the vacancy. This suggests that the local orbital hybridiza-
tion, mainly s and p, caused by the spin-orbit interaction
is probably responsible for the spin-polarization quench in
bismuthene. Besides, the low energy electronic properties of
bismuthene are dominated by p orbitals, and in this material,
there is no evidence of strong interaction effects due to lo-
calized electrons; therefore the nonmagnetic ground state is
adequately described by DFT [17,23,70,71]. Based on these
results, we rule out vacancy induced magnetic moments as a
mechanism [29] to hinder the topological protection in bis-
muthene.

We now study the conductance G as a function of vacancy
concentration. This is done by modeling nanoribbons as a
sequence of N building blocks with a given concentration nV

of randomly placed vacancies, as described in Sec. II. The
calculation of the electronic properties of the individual build-
ing blocks is the main computational bottleneck of our study.
Smaller building blocks optimize the computation time, but
their lengths � have to be large enough to correctly describe
the vacancy-induced localized states. We find that � = 17.4 Å
gives accurate results with a feasible computational time even
for the wider ribbon. We choose N = 90 to address nanorib-
bons of realistic sizes. Here, the considered scattering region
has a total length of 156.6 nm.

Figure 6 shows that vacancies, even in small concentra-
tions, have a strong effect on the transport properties of
bismuthene nanoribbons. In all cases, the pristine conduc-
tance quantization is destroyed outside the topological gap
�TG. For instance, for nV ≈ 0.2%, one observes the onset of
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FIG. 6. Conductance G (in units of e2/h) as a function of the energy E (in eV) for several vacancy concentrations for the w20, w65, and
w110 nanoribbons. The ribbon widths and vacancy concentrations are indicated in each panel. The blue line corresponds to G in the presence
of disorder, while the black dashed one stands for G in the pristine case. The gray region indicates the topological gap. In all cases the length
is 157 nm.
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localization (G/G0 � 1) for w20 and a very strong suppres-
sion of G for w110, when compared to the pristine case.
For energies outside �TG, bismuthene is an ordinary mate-
rial and the results can be interpreted in terms of standard
disorder-induced backscattering mechanisms. In what follows
we discuss the behavior of G for energies within the topolog-
ical phase.

Figures 6(a) to 6(d) correspond to the narrow width
nanoribbon w20 with vacancy concentration nV ranging from
0.22% to 0.72%. As discussed above, these systems are not
topological insulators. Interestingly, for increasing nV the w20

ribbons behave as trivial insulators for energies outside the
topological gap, but the conductance is less suppressed inside
�TG. A similar behavior has been studied in graphene [72,73]
and MoS2 nanoribbons [74,75]. The large momentum transfer
necessary to enable backscattering processes, as inferred from
the trivial pristine nanoribbon electronic band structure in
Fig. 2(a), preserves the conductance in narrow energy inter-
vals. See, for instance [72,73] for detailed discussions.

Figures 6(e) to 6(h) correspond to w65 nanoribbons of
intermediate width and nV ranging from 0.06% to 0.36%. For
energies outside �TG the conductance is strongly suppressed
with respect to the pristine case, as expected for a trivial disor-
dered system. In contrast to the w20 case, for nV � 0.36% the
system does not display any Anderson localization features.
More interestingly, the conductance is close to G0 within the
topological band gap. The edge states are not fully protected
by topology: There are several energy intervals where G is
strongly suppressed. The size of such intervals and the G sup-
pression grow with increasing nV . Interedge backscattering
processes are induced by disorder due to the hybridization of
the edge states with the randomly distributed vacancy-induced
localized states in the ribbon. For weak disorder, G/G0 < 1
only in narrow energy windows that depend on the disorder
configuration. This mechanism has already been shown to
destroy topological protection for such narrow nanoribbons
[35] and for wide ones in a tight-binding toy model with much
larger vacancy concentrations, nV � 2% [30].

Let us now address the case of wide nanoribbons, namely,
w � ξ . Figures 6(i) to 6(l) correspond to w110 nanoribbons
with nV ranging from 0.13% to 0.48%. As in the previous
cases, G decreases with increasing nV for energies outside
�TG. In distinction, the edge states are topologically protected
by time-reversal symmetry and G = G0 over most of the bulk
band gap energies. Although topological protection is more
robust than in the previous cases, when nV � 0.30%, G/G0 is
strongly suppressed for certain energy intervals within �TG,
see Figs. 6(k) and 6(l), indicating the presence of vacancy-
induced interedge backscattering processes.

These results suggest that the number of vacancy-induced
states necessary for an effective interedge hybridization of the
system edge states increases with the nanoribbon width w. For
different building block assemblies we also observe a similar
qualitative behavior, namely, a perfect conductance G0 over
most of the topological gap with a strong suppression on nar-
row energy intervals as a function of vacancy concentration.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the robustness of the con-
ductance quantization against vacancy disorder in large scale
nanoscopic buckled bismuthene nanoribbons at the QSH
phase.

We have found that vacancies in bismuthene give rise
to nonmagnetic mid-gap localized states, ruling out local
magnetic moments as a mechanism to destroy topological pro-
tection as suggested by Ref. [29]. We have shown that these
vacancy-induced mid-gap states can give rise to interedge
scattering processes: Elastic backscattering is enabled when
such states are close in energy and the defect concentration is
sufficiently large so that the vacancy-induced states overlap,
creating an interedge backscattering channel. The backscat-
tering processes depend on the edge state penetration depth,
vacancy concentration, and nanoribbon width. The interplay
of these quantities has been qualitatively discussed in QSH
tight-binding models [30] and within DFT for narrow systems
[35]. Here, we have established the presence of vacancy-
induced interedge backscattering processes in bismuthene
nanoribbons of realistic sizes using ab initio techniques.

Our calculations show different transport behavior for bulk
and edge states, the first demonstrating localization effects and
the latter showing robust topological response for low vacancy
concentrations. At moderate nV values, topological protection
is destroyed even for wide ribbons w � ξ .

Our findings are also applicable to other materials in the
QSH regime. Since the penetration depth is material depen-
dent, we conclude that it is possible to engineer different
samples with QSH electronic transport behavior by a suitable
tuning of the vacancy concentration. Our findings suggest
an interesting application for a spintronic device, the level
of doping or the width of the device modulates the edge
states degeneracy, therefore providing the ON/OFF states
for a transistor switch. This might be obtained by changing
the chemical potentials on different leads or by applying a
gate voltage. In particular, for the topological w65 and w110

nanoribbons, characterized by a pronounced drop in the con-
ductance becoming broader for energies around the valence
band as the level of vacancy concentration increases, allowing
the possibility of reaching high ON/OFF ratios. The mecha-
nism to modify the conduction in these nanoribbons does not
rely on changing the topology of its band structure as it would
happen by applying an electric or magnetic field.
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