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Flat bands in twisted bilayers of polar two-dimensional semiconductors
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We investigate the Bloch flat bands in twisted bilayers from nonpolar to polar two-dimensional semiconductors
using first-principles calculations and density functional based tight-binding simulations. First, to delineate the
underlying mechanism of the formation of the flat bands, we rely on a tight-binding model of modified graphene
where a bias between the A-B sublattice of the hexagonal lattice is introduced. By analyzing the evolution of the
valence and conduction band edges of the bilayer of the modified graphene with different stacking patterns, a
mechanism attributed to the splitting of the defect-like band edge states induced by different stacking patterns is
revealed. The magic angle mechanism is no longer needed. Next, guided by the revealed mechanism, we predict
the formation of flat bands in twisted bilayers of a series of two-dimensional systems from nonpolar to polar
semiconductors. Our finding has important implications for exploring the flat band physics in low dimensions.
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I. INTRODUCTION

In condensed matters, an unusual characteristic of Bloch
electrons is the existence of flat bands. Being weakly disper-
sive, a flat band has a vanishingly small band width (W) and
accordingly, high density of states, inducing strong Coulomb
interactions (U) between electrons, i.e., U � W . If the flat
band is at the Fermi level, because the kinetic energy of the
electrons confined by W is much smaller than the Coulomb
interaction, the associated system may exhibit pronounced
correlation effects [1,2], as already seen in various exotic
quantum states. These include superconductivity [3], ferro-
magnetism [4], Wigner crystal [5], and zero-magnetic field
fractional quantum Hall effects (QHE) of Bloch states [6–10].
Since flat bands provide a route to accessing correlated elec-
tronic states, searching for new materials with flat bands is
important and currently under active investigations.

As one of the most important degree of freedom, twist have
been used as an effective strategy to modulate the physical
or chemical properties in low-dimensional materials [11–15].
Recent theoretical and experimental advances have shown
that such flat bands could be obtained in twisted van der
Waals (vdW) heterostructures assembled from atomically thin
two-dimensional (2D) crystals [13–15]. Due to the twist-
induced misalignment between constituent layers, a twisted
vdW heterostructures will develop complex lateral morpholo-
gies usually showing as a moiré pattern with periodicity much
longer than the interatomic distance. This special moiré super-
lattice creates strong modulation on the electronic interlayer
coupling, leading to interesting physics such as the obser-
vation of Hofstadter butterfly [16,17], fractional QHE [18],
gap opening [19], and moiré excitons [20–23]. Particularly,
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the electronic structure of twisted bilayer graphene (TBG)
can be tailored to develop isolated flat bands at some magic
angles [24–27]. Furthermore, it has also been shown that the
value of magic angles relies on the interlayer coupling that
can be tuned by varying the interlayer spacing with hydro-
static pressure [28,29] or by applying bias potential [30].
Experiments have shown that these flat bands are the key to
achieve the correlated insulating and superconductive phases
in graphene systems [13–15].

Different from graphene, 2D polar crystals with a broken
A-B sublattice symmetry usually have a band gap. Conse-
quently, when they form the twisted bilayer, the low energy
electronic states are of different behaviors with respect to
TBG. Therefore it is interesting to explore the formation of flat
bands in this category of materials. Although several studies
on the twisted bilayers of polar systems [31–33] have explored
the possibility of the existence of flat bands, a systematic study
is needed to clarify the impact of the polarity variation on the
formation of flat bands. This is the main purpose of the present
work.

This paper is summarized as follows. First, we illustrate the
mechanism leading to the formation of flat bands in a twisted
bilayer of 2D polar semiconductors. This is achieved by per-
forming the density functional based tight-binding (DFTB)
calculations of twisted bilayer of modified graphene where
a bias between the A-B sublattice of the hexagonal lattice is
introduced. By varying the strength of the bias, we witness the
emergence of the isolated flat bands. This represents a new
mechanism due to the polarity and is different from the magic
angle mechanism of the twisted bilayer graphene. Along this
line, by analyzing the evolution of the valence and conduction
band edge states of the bilayer with different stacking patterns
of the twisted bilayer of biased graphene, we further show
that the formation of flat bands can be understood as the
consequence of the splitting of the defect-like band edge states
induced by different stacking patterns. Second, guided by this
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new mechanism, we successfully predict the existence of flat
bands in twisted bilayers of a series of 2D materials with
polarities vary from weak to strong.

II. METHODS

In the modified graphene model (see more details in the
Appendix), a bias between the A-B sublattice of the hexagonal
lattice is applied by scaling the on-site p orbital energy Ep of
atoms situated on the A sublattice. Here, a direct first-principle
calculation of the band structure of the modified TBG to
observe the formation of flat bands is difficult because of the
huge number of atoms in the unit cell of the moiré superlattice.
For example, at the first magic angle, θ ≈ 1.08◦, there are
11 164 atoms inside the unit cell. However, it is known that
the magic angle varies with the interlayer distance of the
TBG [28,29], such as at an interlayer distance of 2.80 Å,
the corresponding magic angle increases to θ ≈ 2.28◦ and the
size of the unit cell is substantially reduced to 2524 atoms,
which is treatable using the DFTB method (where local orbital
basis [34,35] was employed for the band structure calcula-
tions). Therefore, in the modified graphene model, we will
adopt d = 2.80 Å to carry out the qualitative study of the
evolvement of the flat band formation as a function of the
twisted angle and asymmetry of the A-B sublattice.

Except for the modified graphene model, all the other
2D systems were treated by first-principles approaches [36]
as implemented in the VASP [37] code. The interactions of
the valence electrons with the ionic cores were described
by the projector augmented wave (PAW) [38] method. For
the exchange-correlation functional, we use the generalized
gradient approximation of Perdew, Burke, and Ernzerhof [39].
The Brillouin zone of various simple stacking bilayers were
sampled with a dense k-point mesh of 31 × 31 × 1 and an
energy cutoff of 500 eV were used for the cut-off of the basis
functions. While for twisted moiré superlattice, the Brillouin
zone is sampled at the � point to obtain the self-consistent
charge density. All the electronic iteration was converged
to 10−5 eV. The lattice constant and the atomic position of
the monolayer unit cell were fully relaxed by the conjugate
gradient method until all the residual force components were
less than 0.01 eV/Å. All these parameters have been carefully
examined to ensure good convergence. The twisted moiré
superlattice were constructed based on the fully relaxed unit
cell and kept rigid during the band structure calculation. For
the interlayer distance, the vdW interaction is depicted by
adding extra dispersive forces. Unless otherwise specified, the
layer distance was fixed to be at the averaged value of the
minimum and maximum of the layer distance of various sim-
ple stacking patterns included in their corresponding moiré
superlattice, for instance, d = 1

2 (dAB + dAA), where dAB is the
layer distance of AB stacking and dAA is the layer distance of
AA stacking appeared in the moiré superlattice.

III. RESULTS AND DISCUSSION

A. The formation of flat bands in a modified graphene model

Here, we illustrate the mechanism leading to the formation
of flat bands in a twisted bilayer of 2D polar semiconductors
by carrying out DFTB calculations of a modified graphene

FIG. 1. Energy bands of the modified TBG at twist angle θ =
2.88◦ with different scaling factor x for the on-site p orbital energy
(Ep) of the elements for A sublattice.

model. In this model, a gradually increased bias between the
A-B sublattice of the hexagonal lattice is introduced to mimic
a polar system with a polarity change from weak to strong.
Such a bias breaks the A-B sublattice symmetry and thus
opens a band gap in the whole Brillouin zone of the monolayer
graphene.

Specifically, the bias between the A-B sublattice is im-
posed by scaling the on-site p orbital energy Ep of atoms
situated on the A sublattice with a factor x, where 0.70 � x �
1.00. Consider a non-magic twist angle θ = 2.88◦, we exam-
ine the evolution of the band structure of TBG with x. In this
paper, we define the flat band as the band have a bandwidth
less that 15 meV. Because θ = 2.88◦ is not a magic angle,
the band structure at x = 1.00 (no bias) does not have flat
bands, Fig. 1. The band structures of the TBG with x = 0.90,
x = 0.80, and x = 0.70 are also shown, revealing that as x
decreases (i.e., the difference in on-site energy between A and
B sublattices increases), the band gap increases and the bands
around the Fermi level are now isolated and display a gradual
flattening behavior. At x = 0.70, these bands are nearly flat
with a small bandwidth of 12 meV. This result reveal that the
formation of flat bands is due to the presence of a bias, or
equivalently, the presence of polarity.

To understand the mechanism of formation of flat bands in
TBG, we analyze the stacking effect of the moiré superlattice.
For the TBG with x = 0.70, there are one AA stacking area
and two Bernal BCC′

stacking areas, see Figs. 2(a) and 2(b).
We have calculated the band structures of pure AA and BCC′

graphene bilayers. For the convenience of comparison with
the TBG, these calculations were performed with a cell size
comparable with the moiré superlattice.

Compared to BCC′
stacking, the valence (conduction) band

edge of AA stacking is higher (lower) in energy, Fig. 2(c). As
a result, the valence band maximum (VBM) and conduction
band minimum (CBM) states of the TBG should energeti-
cally prefer to reside within the AA stacking region of the
moiré superlattice. This can be demonstrated by visualizing
the spatial charge distribution of the band edge states. As
shown in Figs. 2(d) and 2(e), the charge distributions of both
VBM and CBM states at the high-symmetry k = K are both
localized within the AA stacking area. Such localized behavior
of electrons further reveals that the obtained flat band states
are defectlike localized states.

The above analysis hints that the formation of flat bands
is essentially due to the interlayer stacking-induced state
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FIG. 2. (a) Modified graphene bilayers with AA stacking and
two Bernal stackings. (b) Modified TBG with breaking sublattice
symmetry (x = 0.70) at the twist angle θ = 2.88◦. (c) Energy bands
of graphene bilayers with AA stacking, Bernal stacking BCC′

, and
modified TBG with θ = 2.88◦. [(d) and (e)] Electronic density dis-
tribution of the valence band edge and conduction band edge state at
k = K as marked by circles in (c)[right].

localization. This fact reminds us that we can predict the
existence of flat bands in a twisted bilayer system by only
examining the energy order of the VBM and CBM states in
the bilayers with different stacking patterns. With the polarity
of the system change, the energy order of the VBM and
CBM states between different stacking patterns may have a
significant difference, which could largely influence the ap-
pearance of the flat band. With this as a guidance, we study
the formation of flat bands in the twisted bilayers of various
2D systems, with a polarity vary from weak to strong.

B. Energy bands in weak polar twisted bilayer ZnO

2D binary compound ZnO has a planar structure, with a
band gap, and has been confirmed as a novel weak polar
structure [40]. Thus it can be exactly used to check the validity
of our theory evolve with the system polarity. In Fig. 3(a),
three representative stacking patterns (AB, BZnZn, and BOO)
appear in the twisted moiré superlattice are presented with
both the top and side view. And their corresponding energy
band structures calculated by the first-principle simulation are
also shown in Fig. 3(b). We can see that the energy order
difference δE [color shaded in Fig. 3(b)] between different
stacking patterns (AB, BZnZn, and BOO) is very small, such
as 79 meV for CBM state. This is a sign that the interlayer
stacking effect has little impact on the electronic structure for
ZnO layers.

FIG. 3. (a) ZnO bilayers with AB stacking and two Bernal stack-
ings, BZnZn and BOO. The red and light blue atoms corresponding
to O and Zn atoms, respectively. (b) Energy bands of ZnO bilayers
with AB stacking, BZnZn Bernal stacking, BOO Bernal stacking, and
twisted ZnO bilayer with a twist angle θ = 5.09◦. The color shaded
rectangle mark the energy order difference δE between different
stacking patterns.

These features hint that the states corresponding to differ-
ent stacking patterns may not be separate. As a result, there
may be no isolated flat band formed. To check this, we use
the twisted bilayer of ZnO with θ = 5.09◦ as an example. The
band structure displayed in Fig. 3(b) shows that there is no
isolated flat band formed neither in VBM nor CBM states,
indeed.

Due to the small energy order difference between different
stacking patterns, there is no flat band formed in the moiré
superlattice with a twist angle θ = 5.09◦. The natural question
is, if we continually reduce the twist angle, what will the edge
state evolve? To elucidate this issue, we calculated the band
width of a series of twist angles, such as θ = 5.09◦, 4.41◦,
3.89◦, 3.48◦, and 3.14◦, et al. Our simulations confirm that
the VBM states always tangle with other near energy bands.
While the CBM state gradually isolated from other bands.
Such as for θ = 5.09◦ and 4.41◦, the CBM state still tangle
with its nearest high level energy bands, while for θ = 3.89◦,
the CBM state isolated from the other conduction energy
bands (Eisolate) of 7 meV, and for θ = 3.14◦, Eisolate increase
to 15 meV. Additionally, the band width of the CBM state
change from 182, 136, 104, 81 to 64 eV for θ = 5.09, 4.41◦,
3.89◦, 3.48◦, and 3.14◦, respectively, see Table I. Even smaller
θ would generate very flat isolated VBM bands, however this
exceed the efficient simulation of DFT, due to the rapidly
increase number of atoms in the supercell, Table I. From the
above modified graphene and ZnO examples, we can predict
that the formation of flat bands closely related to the energy
order difference δE of the edge states between different stack-
ing patterns, or the system polarity.

C. Flat bands in twisted bilayer of transition
metal dichalcogenides

Transition metal dichalcogenides MX2 (M = Mo, Cr, W;
X = S, Se) represent an important class of 2D materials. Using
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TABLE I. Information of the moiré superlattice and its corre-
sponding band structure properties. θ , N, (m, n), Eisolate, and W
are the twisted angle, the total number of atoms in the superlat-
tice, the moiré superlattice index [41,42], the CBM state isolated
from the other conduction energy bands, and the CBM band width,
respectively.

θ (◦) N (m, n) Eisolate (meV) W (meV)

5.09 508 (6,7) – 182
4.41 676 (7,8) – 136
3.89 868 (8,9) 7 104
3.48 1084 (9,10) 12 81
3.14 1324 (10,11) 15 64

twisted bilayer MoS2 as an example, we analyze the existence
of flat bands. Being a polar system, the ground state of the
MoS2 bilayer adopts a AB stacking where the Mo atoms in one
layer are on top of the S atoms in another layer, and vice versa,
Fig. 4(a). The twisted moiré superlattice obtained by twisting
this AB stacking consists of three different regions character-
ized by different stacking patterns, labeled as AB, BMoMo, and
BSS, Figs. 4(a)–4(c). However, different from single atomic
layer such as ZnO, the monolayer MoS2 unit cell has two S

FIG. 4. [(a)–(c)] MoS2 bilayers with AB stacking and two Bernal
stackings, BMoMo and BSS. (d) Energy bands of MoS2 bilayers with
AB stacking, BMoMo Bernal stacking, BSS Bernal stacking, and twisted
MoS2 bilayer with a twist angle θ = 5.09◦. (e) Energy bands of
MoS2 bilayers with AA stacking, BMoS Bernal stacking, BSMo Bernal
stacking, and twisted MoS2 bilayer with a twist angle θ = 5.09◦.

FIG. 5. Electron density distribution of (a) the valence band edge
state and (b) the conduction band edge state at k = K . The top and
bottom panels correspond to the top and side views, respectively.

atoms reside out of the Mo plane with inversion symmetry.
This has consequence on the interlayer interaction.

For the BMoMo stacking, we find one Mo atom in one layer
that is on top of the other Mo atom in the other layer. The
distance between these two Mo atoms is dMo-Mo = 6.15 Å
[Fig. 4(b)]. For the BSS stacking, we identify one S atom in one
layer on top of the other S atom in the other layer. The distance
between these two S atoms is dS-S = 3.02 Å [Fig. 4(c)]. For
the AB stacking, we identify one Mo atom in one layer on
top of one S atom in the other layer. The distance between
these two atoms is dMo-S = 4.58 Å [Fig. 4(a)]. Therefore, due
to the relatively large interatomic separations of dMo-Mo and
dMo-S, the interaction between these atoms is rather weak. On
the contrary, dS-S is relatively small such that the interlayer
interaction between S atoms in both layers is more significant.

Figure 4(d) shows the band structures of the bilayer MoS2

with AB, BMoMo, and BSS stacking patterns, respectively. We
can see that the valence band edge at � point of BSS stacking is
higher than those of AA or BMoMo stacking patterns. Therefore,
flat bands in the twisted bilayer MoS2 should originate from
these states located around the BSS stacking region. As a
demonstration, we have calculated the band structure of the
twisted bilayer MoS2 with a twist angle θ = 5.09◦, as shown
in Fig. 4(d). Indeed, we see the VBM bands are isolated and
flat with a band width W = 11 meV. Moreover, Fig. 5(a)
shows that the charge distribution of the VBM state at high-
symmetry k = K point is localized within the BSS stacking
region. Fig. 5(a) [lower panel] shows that these states are from
S atoms, also confirming that these flat band states are due to
the stacking effect from BSS stacking regions. It is also useful
to point out that compared to the localized VBM states, the
CBM states of the twisted bilayer MoS2 are extensive. They
essentially stay on Mo atoms, Fig. 5(b). As aforementioned,
the distance between Mo atoms in both monolayers are rather
large. The weak interlayer interaction via Mo atoms has a little
impact on the electronic states.

The twisted bilayer MoS2 can be also obtained by twisting
the MoS2 bilayer with AA stacking where S atoms in one
layer are on top of the S atoms in the other layer. Similarly,
by comparing the band alignments of the VBM states at �

point for the MoS2 bilayers with AA stacking, BMoS stacking,
and BSMo stacking, Fig. 4(e), we conclude that flat bands
may emerge near the VBM of the twisted bilayer MoS2. This
is confirmed by our band structure calculations of a twisted
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FIG. 6. Energy bands of (a) MoSe2, (b) WS2, and (c) WSe2

bilayers with AB stacking, two Bernal stackings, and twisted moiré
superlattice with a twist angle θ = 5.09◦.

bilayer MoS2 with a twist angle θ = 5.09◦, Fig. 4(e) [right].
Similar results can be also obtained in the twisted bilayers of
other transition metal dichalcogenides MX2 (M = Mo, Cr, W;
X = S, Se), Fig. 6.

Here we notice that at very small twist angles (such as
θ < 1◦) TMD homo- and heterobilayers will relax into large
domains with commensurate stacking patterns separated by
narrow domain walls [43–45]. The width of the domain walls
are about 3 nm, which are still large enough to separate differ-
ent stacking patterns. Thus the defectlike flat band mechanism
maybe still valid in this situation, while this need to be further
confirmed.

D. Flat bands in twisted bilayers of other 2D materials

The binary group IV-IV and group III-V compounds may
also form layered materials. For example, Sahin et al. [46]
predicted that the binary IV-IV compounds and the group
III-V compounds can form various layered honeycomb struc-
tures. These materials are of potential applications in various
areas. Here, we take SiC and GaAs as examples to elucidate
the formation of flat bands in the twisted bilayers of these
systems. For SiC, the possible stacking patterns of the bilayer
form is shown in Fig. 7(a). The corresponding band structures
are shown in Fig. 7(c). We find that the VBM (CBM) states at
k = K of the BCC (BSiSi) bilayer is higher (lower) than those
of AB and BSiSi (BCC) bilayers. Accordingly, the VBM (CBM)
states of the twisted bilayer form flat bands, Fig. 7(c)[right].
On the other hand, for GaAs, the possible stacking patterns
of the bilayer form is shown in Fig. 7(b). The corresponding
band structures are shown in Fig. 7(d). We find that the CBM

FIG. 7. (a) Planar SiC bilayers with AB stacking and two Bernal
stackings. (b) Low-buckled GaAs bilayers with AB stacking and
two Bernal stackings. (c) Energy bands of SiC with AB stacking,
two Bernal stackings, and twisted moiré superlattice with a twist
angle θ = 5.09◦. (d) Energy bands of GaAs with AB stacking, two
Bernal stackings, and twisted moiré superlattice with a twist angle
θ = 5.09◦.

states at k = K of the BGaGa bilayer is lower than those of
AB and BAsAs bilayers, and the VBM states at k = K of the
BAsAs bilayer is higher than those of AB and BGaGa bilayers.
Therefore both CBM and VBM states of the twisted bilayer
form flat bands, Fig. 7(d) [right]. In general, we see that in
these polar system, the flat band near the CBM is formed
with charge localized in the Bcation-cation region because the
cation-cation bonding state has the lowest energy than other
unoccupied states, whereas the flat band near the VBM is
formed with charge localized in the Banion-anion region, because
the anion-anion antibonding state has the highest energy than
other occupied states.

IV. CONCLUSION

In summary, using a modified graphene model and DFTB
calculations, we illustrate that the emergence of flat bands in
twisted bilayer of 2D polar semiconductors is due to the polar-
ity. The polarity mechanism, combining the effect of stacking
patterns, induces the splitting of the defect-like band edge
states, giving rise to the formation of isolated bands in the
twisted bilayer. As long as the distance between the localized
region is larger than the localization radius, i.e., the twist angle
is sufficiently small, these isolated bands will become very flat
and no magic angles are needed. With this new mechanism,
using first-principles calculations, we successfully predict the
existence of flat bands in twisted bilayers of a series of polar
2D materials, with polarities vary from weak to strong. For
weak polar system, a small twist angle is needed to form flat
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bands; while for strong polar system, even larger twist angle
is needed. This is because the weak polar corresponding to
shallow potential well always need a larger size of spacial
distance to separate the different states. Our results, open a
new route to explore the flat bands and the associated many-
body physics in 2D materials.
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APPENDIX: MODIFIED GRAPHENE MODEL

Under the framework of a tight-binding approximation, the
π electron energy levels or bands calculation is simple and can
largely represent the transport or other solid state properties.
In this model, the Bloch function of each atom in the unit
cell can be wrote as the linear combination of atomic wave
function. By solving the secular equation det[H − ES] = 0,
we can easily obtain the eigenvalue of any given k point in the
first Brillouin zone [47].

For native graphene with real space unit cell vectors a1 =
(
√

3
2 a, a

2 ), a2 = (
√

3
2 a,− a

2 ) and reciprocal lattice vectors b1 =
( 2π√

3a
, 2π

a ) and b2 = ( 2π√
3a

,− 2π
a ), we have [47]

H =
[

ε2p t f (k)

t f (k)∗ ε2p

]
, S =

[
1 s f (k)

s f (k)∗ 1

]
. (A1)

where H and S are the transfer and overlap matrix, ε2p is
the orbital energy of the 2p level, which is also the on-site
energy of the C atom. t and s are the transfer and overlap
integral which can be empirically parameterized. f (k) is a
function of k points which is also correlated with the atomic
coordinates in the unit cell. By solving the secular equation
det[H − ES] = 0, we get

(ε2p − E )2 − | f (k)|2(t − Es)2 = 0 (A2)

and then,
ε2p − E = ±ω(k)(t − Es). (A3)

In the nearest-neighbor approximation, where

ω(k) =
√

| f (k)|2

=
√

1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
(A4)

so,

E = ε2p ± tω(k)

1 ± sω(k)
. (A5)

At K point,

k =
(

2

3
b1 + 1

3
b2

)
=

(
2π√

3a
,

2π

3a

)

thus we obtain w(K) = 0, and E (K) = ε2p for both π bonding
band and π∗ antibonding band, which is symmetrical around
the K point, and no energy gap is presented.

In the modified graphene model, we artificially modify on-
site 2p orbital energy to ε′

2p of one atom in the unit cell and
keep all the other parameters untouched, then in the modified
graphene model the Hamilton matrix can be written as

H =
[

ε2p t f (k)

t f (k)∗ ε′
2p

]
(A6)

thus,

(ε2p − E )(ε′
2p − E ) − |ω(k)|2(t − Es)2 = 0. (A7)

There is no analytical solution. Luckily, here we only need
to consider the K point situation. Substitute w(K) = 0 into
Eq. (A7), we get two bands at K with E = ε2p and ε′

2p, thus
a gap Egap = |ε2p − ε′

2p| is opened in the modified graphene
model around the K point.

In our simulation code DFTB+ [34,35], the modified
graphene model with a bias between the A-B sublattice of
the hexagonal lattice can be realized by scaling the on-site
2p orbital energy ε2p of atoms situated on the A sublattice,
which can be easily achieved by modifying the on-site energy
parameter in the Slater-Koster files.
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