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All-electron periodic G0W0 implementation with numerical atomic orbital basis functions:
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We present an all-electron, periodic G0W0 implementation within the numerical atomic orbital (NAO) basis
framework. A localized variant of the resolution-of-the-identity (RI) approximation is employed to significantly
reduce the computational cost of evaluating and storing the two-electron Coulomb repulsion integrals. We
demonstrate that the error arising from localized RI approximation can be reduced to an insignificant level
by enhancing the set of auxiliary basis functions, used to expand the products of two single-particle NAOs. An
efficient algorithm is introduced to deal with the Coulomb singularity in the Brillouin zone sampling that is
suitable for the NAO framework. We perform systematic convergence tests and identify a set of computational
parameters, which can serve as the default choice for most practical purposes. Benchmark calculations are
carried out for a set of prototypical semiconductors and insulators, and compared to independent reference values
obtained from an independent G0W0 implementation based on linearized augmented plane waves (LAPWs) plus
high-energy localized orbitals (HLOs) basis set, as well as experimental results. With a moderate (FHI-aims tier
2) NAO basis set, our G0W0 calculations produce band gaps that typically lie in between the standard LAPW
and the LAPW + HLO results. Complementing tier 2 with highly localized Slater-type orbitals (STOs), we find
that the obtained band gaps show an overall convergence towards the LAPW + HLO results. The algorithms and
techniques developed in this work pave the way for efficient implementations of correlated methods within the
NAO framework.
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I. INTRODUCTION

The electronic band structure determines the behavior
of electrons and consequently a large variety of properties
of periodic materials. Therefore, accurate computations of
electronic band structures are crucial for ab initio quan-
tum mechanical descriptions of materials. Kohn-Sham (KS)
density-functional theory (DFT) [1,2] within its local-density
[3,4] and generalized gradient approximations (LDA/GGAs)
[5,6] offers a relatively inexpensive approach to compute
band structures in solids, and has significantly improved our
understanding of solid materials. However, LDA and GGAs
do not include the correct underlying physics to describe
experimentally relevant band structures, i.e., electron addition
or removal energies and other quasiparticle properties. The
substantial underestimation of the band gaps of insulating
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materials, and occasionally the incorrect description of energy
level orderings have been a major drawback of this approach.
Hybrid density functionals [7], especially those incorporat-
ing a portion of screened exact exchange [8], have gained
increased popularity in condensed matter and materials sci-
ence community, due to their overall improved band structure
description. However, a certain level of empiricism is often re-
quired to tune the mixing and screening parameters to suitable
values, and such functionals still lack the desired predictive
power. Recently there has been progress to determine these
semi-empirical parameters automatically in a self-adaptive
way [9–13].

An alternative, and formally more rigorous approach to cal-
culate electronic band structures is the Green-function-based
many-body perturbation theory [14,15], whereby the band
structure can be determined from the poles of the interacting
Green function G of the system. Via the Dyson equation,
G is linked to a reference, noninteracting Green function
G0 in terms of a non-Hermitian, dynamic self-energy, which
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encompasses all the many-body exchange-correlation effects.
In practice, approximations have to be made to calculate the
self-energy, and a popular choice has been the so-called GW
approximation [16–25], whereby the self-energy is given by
a product of the Green function G and the screened Coulomb
interaction W . Despite its simplicity, the GW approximation
has been shown to yield significantly improved band struc-
tures, compared to their DFT counterparts, for a wide range
of materials. Because the GW band structure is derived from
a dynamical self-energy, and describes correctly the quasipar-
ticle nature of single-particle excitations in materials, the GW
band structure is often called quasiparticle band structure in
the literature.

Since the 1980’s, the GW approach has been imple-
mented within different numerical frameworks, ranging from
the pseudopotential plane wave method [18,26–28], to the
projector augmented wave (PAW) method [29–33], a mixed
representation of plane waves and real-space grid [34,35],
the linearized muffin-tin orbital (LMTO) method [36], the
linearized augmented plane wave (LAPW) method [37–41],
and Gaussian orbital basis sets [42–44]. Needless to say, each
implementation has its own advantages as well as limitations,
but the considerable efforts behind these various implementa-
tions are clear indications of the importance and wide-spread
influence of the GW method. As a matter of fact, the GW func-
tionality is becoming a standard component of many widely
used first-principles computational software packages.

In addition to the significant efforts devoted to its numeri-
cal implementations, the GW methodology itself is also under
active development. In practice, GW calculations are often
done on top of a preceding KS-DFT LDA/GGA calcula-
tion or a hybrid functional calculation within the generalized
KS (gKS) scheme. In this case, the GW band structure is
obtained as a one-shot correction to the KS-DFT one, and
such a computational scheme is termed G0W0 in the lit-
erature. The G0W0 scheme frequently performs very well,
but the obtained results obviously depend on the starting
point, i.e., the approximation used in the preceding (gen-
eralized) KS-DFT calculation. Various schemes beyond the
simple G0W0 approach have been proposed and tested, includ-
ing, e.g., Green-function-only partially self-consistent GW
(denoted as GW0) [45,46], quasiparticle self-consistent GW
(QPscGW) [47,48], and fully self-consistent GW [37,49–54],
but G0W0 remains to be the most widely used approach in
practical calculations.

The GW approach has been the state-of-the-art electronic-
structure method for determining quasiparticle energies in
semiconductors and insulators in the last three decades. In
recent years, GW has become also popular as an approach
to determine ionization energies and electron affinities of
molecules [50,51,55–65]. Aside from its considerable impor-
tance in realistic description of organic materials, applying
GW to molecules allows one to systematically benchmark the
accuracy across different, independent GW implementations,
as was done in the GW 100 test set project [64], and to bench-
mark the accuracy of the GW method against the traditional
quantum chemistry approaches such as the coupled cluster
(CC) method [60,63]. Most recently, an in-depth diagram-
matic analysis has been carried out to compare and contrast
GW with the equation-of-motion CC method [66].

Our own GW implementation [59] has been carried out
within the all-electron numerical atomic orbital (NAO)-based
Fritz Haber Institute ab-initio molecular simulation (FHI-
aims) code package [67–71]. Comprehensive benchmark tests
[72–74] indicate that FHI-aims offers impressive precision
for ground-state DFT calculations. The GW implementation
in FHI-aims was initially done for the G0W0 scheme and
finite systems for nonperiodic boundary condition [59] but
soon extended to the fully self-consistent GW [51,52] scheme.
Like other correlated methods available in FHI-aims, our
GW implementation is based on a technique known as vari-
ational density fitting [75,76] or the resolution-of-the-identity
(RI) approximation [77–79], which expands the products of
molecular orbitals (MOs) in terms of a set of auxiliary basis
functions (ABFs). Our RI-based GW implementation, to-
gether with our special on-the-fly procedure for constructing
the ABFs, turns out to be remarkably accurate, as demon-
strated in the GW 100 project [64].

In this work, we extend our molecular G0W0 implemen-
tation to periodic systems. However, to extend a molecular
GW implementation to periodic systems within the NAO
framework, several numerical obstacles have to be overcome.
Within the family of local orbitals, we are aware of only a few
periodic GW implementations based on the LMTO method
[36] or on Gaussian-type orbitals (GTOs) with the pseudopo-
tential treatment of core ions [42–44], but to our knowledge
there has been no reported NAO-based all-electron periodic
GW implementation. In the case of ground-state KS-DFT, the
numerical techniques for periodic implementations within the
NAO framework have been developed over the years and is
now well established, as can be seen by the availability of a
number of NAO-based DFT codes [67,80–85]. When coming
to correlated methods, which require unoccupied states and
two-electron integrals, NAO-based implementations for peri-
odic systems are still in their infancy. In the latter case, the
major difficulties lie in the computation and storage of a large
number of two-electron Coulomb repulsion integrals. Further
challenges include how to construct efficient and high-quality
NAO basis sets to describe the unoccupied energy states and
how to treat the so-called Coulomb singularity in the Bril-
louin zone (BZ) sampling. In this paper, we will describe
the algorithms and numerical techniques used in our peri-
odic G0W0 implementation, focusing on our strategies to deal
with the aforementioned challenging issues. Systematic con-
vergence tests with respect to the computational parameters,
and benchmarks against independent G0W0 implementations
and experimental values for prototypical three-dimensional
(3D) semiconductors and insulators will be reported as well.
Although not discussed here, we would like to mention that
our G0W0 implementation can be readily applied to one-
dimensional (1D) and two-dimensional (2D) systems, because
our basis functions are strictly localized in space and as de-
tailed in Sec. III B, the Coulomb operator is truncated at the
boundary of the supercell under the the Born–von Kármán
(BvK) periodic boundary condition. Furthermore, our imple-
mentation is highly parallel, scaling up to tens of thousands of
CPU cores. In this paper, we focus on the basic algorithms and
numerical precision aspects, validating our implementation
for 3D insulating systems. A discussion of the scalability and
efficiency of implementation, as well as its performance for
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low-dimensional systems, will be presented in a forthcoming
paper.

This paper is organized as follows. In Sec. II we present
the basic theory and algorithms behind our implementation,
especially the working equations for periodic GW based on a
localized variant of the RI approximation. In Sec. III the com-
putational details will be discussed, including our procedure
to generate the one-electron orbital basis functions and auxil-
iary basis functions, and our algorithm to treat the Coulomb
singularity. Systematic convergence tests with respect to com-
putational parameters are then presented in Sec. IV for Si and
MgO. This is followed by Sec. V where benchmark calcula-
tions for a set of prototypical semiconductors and insulators
are performed, and compared to well-established reference
values. Finally we conclude our paper with an outlook in
Sec. VI.

II. THEORETICAL FRAMEWORK

A. GW equations in real space

In this section, we recapitulate the basic equations of the
commonly used G0W0 approach, where both the Green func-
tion G0 and screened Coulomb interaction W0 are determined
by the orbitals and orbital energies, obtained from a preceding
(g)KS-DFT calculation. In real space, the G0W0 self-energy is

given by

�G0W0
σ (r, r′, iω)

= − 1

2π

∫ ∞

−∞
dω′G0,σ (r, r′, iω − iω′)W0(r, r′, iω′), (1)

where the noninteracting Green function G0 is

G0,σ (r, r′, iω) =
∑
n,k

wk
ψk

n,σ (r)ψk∗
n,σ (r′)

iω + μ − εk
n,σ

. (2)

Here ψk
n,σ and εk

n,σ are KS orbitals and orbital energies, with
n, σ being the orbital and spin indices, and k being a Bloch
momentum vector in the first BZ (1BZ). Furthermore, wk is
integration weight of the k point (for even-spaced k grids,
wk = 1/Nk with Nk being the number of k points in the 1BZ),
ω is a frequency point on the imaginary frequency axis, and
μ is the electronic chemical potential. The screened Coulomb
interaction W0 in Eq. (1) is defined as

W0(r, r′, iω) =
∫

dr′′ε−1(r, r′′, iω)v(r′′, r′), (3)

where ε−1 is the inverse of the microscopic dielectric function
ε. Within the random phase approximation (RPA), ε is fully
determined by the independent particle response function χ0

and the bare Coulomb interaction v,

ε(r, r′, iω) = δ(r − r′) −
∫

dr′′v(r, r′′)χ0(r′′, r′, iω). (4)

The noninteracting response function χ0 can be expressed explicitly in terms of KS orbitals and orbital energies, according to
the Adler-Wiser formula [86,87]

χ0(r, r′, iω) =
∑

m,n,σ

1BZ∑
k,q

wkwq

(
f k+q
m,σ − f q

n,σ

)
ψ

k+q ∗
m,σ (r)ψk

n,σ (r)ψk∗
n,σ (r′)ψk+q

m,σ (r′)

ε
k+q
m,σ − εk

n,σ − iω
. (5)

In Eq. (5) the summations of the Bloch vectors k, q are over
the 1BZ, and f k

n,σ are the orbitals’ occupation factors. In
our formulation and practical implementation to be described
below, we work on the imaginary frequency axis. To get
quasiparticle excitation energies, an analytical continuation of
the self-energy from the imaginary to the real frequency axis
will be carried out [34]. Alternatively, the G0W0 self-energy
on the real frequency axis can also be directly computed via
the contour deformation (CD) approach. For molecules and
clusters this has already been implemented in FHI-aims [88].
It will be extended to the periodic case in the future.

B. Auxiliary basis representation of GW equations

In practical calculations, χ0(r, r′, iω) (as well as ε and W )
has to be discretized either on a real-space grid [34] or more
often it is expanded in terms of a suitable basis set. In the latter
case, the basic choice to expand nonlocal quantities (χ0, ε,
and W0) depends on the preceding computational framework
to obtain the single-particle KS orbitals ψk

n,σ . For example,
in the pseudopotential plane-wave [18] or PAW frameworks
[31,33], these basis functions are simply plane waves, and
in the LMTO [89] or LAPW [38,40,41,90] frameworks, the

so-called mixed product basis is used. Our own implementa-
tion employs the NAO basis function framework, whereby a
set of atom-centered auxiliary basis functions is constructed
to expand the products of two KS orbitals. In the molecular
case, this can be expressed as

ψ∗
m,σ (r)ψn,σ (r) ≈

∑
μ

Cμ
m,n,σ Pμ(r) , (6)

where ψn,σ (r) is a molecular KS orbital, Pμ(r) is the μth
auxiliary basis function, and Cμ

m,n,σ is the three-orbital (triple)
expansion coefficient. It follows that χ0, ε, and W can all be
represented in terms of Pμ(r)’s in a matrix form. These Pμ(r)
basis functions are termed ABFs, which are distinct from the
orbital basis sets (OBSs) {ϕi} to expand a single KS orbital,

ψn,σ (r) =
∑

i

ci,n,σ ϕi(r − τ i ). (7)

Here ci,n,σ are the KS eigenvectors, and ϕi is an orbital basis
function (i.e., the NAO basis function mentioned above) cen-
tered at the atomic position τ i. Throughout this paper we use
m, n indices for denoting KS orbitals, i, j, k, l for atomic basic
functions, and μ, ν, α, β for ABFs.
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Our ABFs are also atom-centered, and they are constructed
in a way similar to the mixed product basis in the LAPW
framework, but without the plane-wave component in the
interstitial region. In Ref. [59] we have described how to
make use of the expansion in Eq. (6) to achieve efficient im-
plementations of Hartree-Fock, second-order Møller-Plesset
perturbation theory (MP2), the RPA, and GW within the NAO
basis set framework. Approximations based on Eq. (6) are
known as density fitting [75,76], or RI [77–79] in the con-
text of evaluating two-electron Coulomb repulsion integrals,
as already mentioned above. The RI-based implementation
reported in Ref. [59], though quite accurate for both Hartree-
Fock and correlated methods, is restricted to molecular
geometries under nonperiodic boundary conditions. More re-
cently, we have extended our formalism and implementation
to periodic systems. A periodic, linear-scaling Hartree-Fock
and screened exact exchange implementation was reported in
Ref. [70]. In this paper, we focus on the extension of our GW
implementation to periodic systems, based on the local variant
of the RI approximation used in Refs. [69] and [70].

In periodic systems, the KS orbitals carry an additional k
vector in their indices, and their products can be expanded in
terms of the Bloch summation of the atom-centered ABFs,

ψk+q∗
m,σ (r)ψk

n,σ (r) =
Naux∑
μ

Cμ
m,n,σ (k + q, k)Pq∗

μ (r) , (8)

where Naux is the number of ABFs within each unit cell,

Pq
μ (r) =

∑
R

Pμ(r − R − τμ)eiq·R, (9)

and Cμ
m,n,σ (k + q, k) are the expansion coefficients which now

depend on two independent Bloch wave vectors. In Eq. (9),
τμ is the position of atom from which the μth ABF orig-
inates within the unit cell, and the sum runs over all unit
cells R in the BvK supercell. In our implementation, the
atom-centered ABFs are chosen to be real-valued, and hence

Pq∗
μ (r) = P−q

μ (r). Using Eqs. (5) and (8), one immediately
arrives at

χ0(r, r′, iω) ≈
∑
μ,ν

∑
q

wkPq∗
μ (r)χ0,μν (q, iω)Pq

ν (r′), (10)

where the matrix representation of χ0 is given by

χ0,μν (q, iω) =
∑
σ,m,n

∑
k

wk
Cμ

m,n,σ (k + q, k)Cν
n,m,σ (k, k + q)

ε
k+q
m,σ − εk

n,σ − iω
.

(11)

To obtain the matrix representation of ε and W0 in terms of
ABFs, one still needs to compute the Coulomb matrix given
by expanding the Coulomb operator in terms of the same set
of ABFs,

Vμν (q) =
∫

drdr′ P
q∗
μ (r)Pq

ν (r′)
|r − r′| . (12)

The matrix form of ε and W0 can then be obtained via matrix
multiplication and inversion at each (k, iω) point. For com-
putational convenience, we use the symmetrized dielectric
function ε̃ = v−1/2εv1/2, whose matrix form can be computed
as

ε̃μν (q, iω) = δμ,ν −
∑
αβ

V 1/2
μα (q)χ0,αβ (q, iω)V 1/2

βν (q) , (13)

where V 1/2 is the square root of the V matrix. The ε̃ matrix is
then inverted and the matrix form of W0 can be obtained as

W0,μν (q, iω) =
∑
α,β

V 1/2
μα (q)ε̃−1

αβ (q, iω)V 1/2
βν (q). (14)

Noting that

W0,μν (q, iω) =
∫∫

dr dr′Pq∗
μ (r)W0(r, r′, iω)Pq

ν (r′) (15)

and using Eqs. (1), (2), and (8), one arrives at the following
expression for computing the diagonal matrix element of the
G0W0 self-energy:

�G0W0
n,σ (k, iω) =

∫∫
dr dr′ψk∗

n,σ (r)�G0W0
σ (r, r′, iω)ψk

n,σ (r′) (16)

= − 1

2π

∑
m,q

∑
μ,ν

∫ ∞

−∞
dω′C

μ
n,m,σ (k, k − q)W0,μν (q, iω′)Cν

m,n,σ (k − q, k)

iω − iω′ + μ − ε
k−q
m,σ

. (17)

In this formulation, the equations are well defined and the
quantities can in principle be evaluated straightforwardly ex-
cept at the � (q = 0) point where elements of the V and W
matrices between two nodeless s functions or between one
nodeless s and one nodeless p function will diverge. Simply
avoiding the � point in the BZ sampling is not an optimal so-
lution since this can result in a prohibitively slow convergence
with respect to the summation over the k points. Because of
the localized, nonorthogonal nature of our ABFs, the �-point
correction schemes developed in the context of plane-wave
[91,92] or LAPW basis set framework [38] are not directly
applicable here. We will discuss our treatment of the �-point
singularity in Sec. III B.

C. Localized resolution of identity technique to determine
the expansion coefficients

Obviously, in the above formulation, the key issues are
(1) to construct a proper, sufficiently accurate auxiliary basis
set {Pq

μ (r)} and (2) to determine the expansion coefficients
Cμ

m,n,σ (k + q, k) which are needed in the computation of
both χ0 matrix in Eq. (11) and G0W0 self-energy element
in Eq. (17). Our procedure to construct the ABFs and
the precision that can be achieved in practical calculations
have been discussed in previous works [59,69,70]. We will
come to this point only briefly in Sec. III A, in the context
of periodic G0W0 calculations. In this subsection, we will
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focus on point (2) and discuss how the expansion coefficients
Cμ

m,n,σ (k + q, k) are determined.
In FHI-aims [67] the KS orbitals are expanded in terms of

NAO basis functions,

ψk
nσ (r) =

Nb∑
i=1

ci,n,σ (k)ϕk
i (r)

=
Nb∑

i=1

ci,n,σ (k)
∑

R

ϕi(r − R − τ i )e
ik·R, (18)

where ci,n,σ (k) are the KS eigenvectors, Nb is the number of
basis functions within one unit cell, R is a Bravais lattice
vector, and τ i is the position of the atom (within the unit
cell) on which the basis function i is centered. In Eq. (18),
the atomic function ϕi is given by

ϕi(r) = ua,s,l (r)Ylm(r̂), (19)

where ua,s,l (r) is the radial function, and Ylm(r̂) is a spher-
ical harmonic [in our implementation real-valued harmonic,
i.e., the real (cosine, positive m values) or imaginary (sine,
negative m values) component of a spherical harmonic]. Thus
the atomic orbital i is fully specified by the atom index a, the
radial function index s, and the angular momentum indices
l, m.

The ABFs used in FHI-aims are also atom-centered, but
with different radial functions,

Pμ(r) = ξa,s,l (r)Ylm(r̂), (20)

where ξa,s,l (r) is the radial auxiliary function, and μ is also
a combined basis index of a, s, l , and m. The radial auxiliary
functions are constructed in a way [59,69] that the products
of the KS orbitals ψmσ ψnσ , or equivalently the products of

orbital basis functions ϕiϕ j can be represented by a linear
combination of {Pμ(r)}.

To compute the expansion coefficients Cμ
m,n,σ (k + q, k),

defined in Eq. (8), we first determine the expansion coeffi-
cients of the products of two (Bloch summed) basis functions
ϕ

k+q∗
i (r)ϕk

j (r) in terms of the ABFs,

ϕ
k+q∗
i (r)ϕk

j (r) =
Naux∑
μ=1

C̃μ
i, j (k + q, k)Pq∗

μ (r), (21)

and then transform C̃μ
i, j (k + q, k) to the Cμ

m,n,σ (k + q, k) by
multiplying with the KS eigenvectors,

Cμ
m,n,σ (k + q, k) =

∑
i, j

c∗
i,m,σ (k + q)c j,n,σ (k)C̃μ

i, j,σ (k + q, k).

(22)
Below we shall refer to Cμ

m,n,σ (k + q, k) as molecular or-
bital (MO) triple coefficients and C̃μ

i, j,σ (k + q, k) as atomic
orbital (AO) triple coefficients. Both types of triple coeffi-
cients depend on three orbital indices and in addition on
two independent momentum vectors k and q. Take the AO
triple coefficients, for example: the number of entries scales
as Nb(Nb + 1)/2 Naux N2

k , and it is quite expensive to com-
pute and store them. In FHI-aims we can adopt the LRI
approximation [69] to deal with this issue. Within the LRI
approximation, the ABFs used to expand the product of two
NAOs are restricted to those centering on the two atoms on
which these two NAOs are centered. In quantum chemistry,
such a two-center LRI scheme is also known as pair-atom RI
(PARI) approximation [93,94]. In real space, the two NAOs
i, j in general can originate from two different unit cells,
labeled by two Bravais lattice vectors Ri and R j . The LRI
approximation for periodic systems then implies that

ϕi(r − Ri − τ i )ϕ j (r − R j − τ j ) ≈
∑
μ∈I

C̃μ(Ri )
i(Ri ), j(R j )

Pμ(r − Ri − τ i ) +
∑
μ∈J

C̃
μ(R j )
i(Ri ), j(R j )

Pμ(r − R j − τ j ), (23)

where C̃μ(Ri )
i(Ri ), j(R j )

are the two-center expansion coefficients where the lattice vector in parentheses associated with the basis index
indicates the unit cell from which the basis function originates. Furthermore, I, J in Eq. (23) denote the atoms where ϕi and
ϕ j are centered, and μ ∈ I means the summation over the ABFs is restricted to those centering at the atom I . Because of the
translational symmetry of the periodic system, one has Cμ(Ri )

i(Ri ), j(R j )
= Cμ(0)

i(0), j(R j−Ri )
, where 0 here denotes the unit cell at the origin.

Therefore Eq. (23) becomes

ϕi(r − Ri − τ i )ϕ j (r − R j − τ j ) ≈
∑
μ∈I

C̃μ(0)
i(0), j(R j−Ri )

Pμ(r − Ri − τ i ) +
∑
μ∈J

C̃μ(0)
i(Ri−R j ), j(0)Pμ(r − R j − τ j ). (24)

This means that the two-center expansion coefficients in real space naturally split into two sectors, and each of them depends on
only one independent lattice vector. Now, by Fourier transforming Eq. (24) to k space from both sides, we obtain

ϕ
k+q∗
i (r)ϕk

j (r) =
∑
Ri,R j

e−i(k+q)·Ri eik·R j ϕi(r − Ri − τ i )ϕ j (r − R j − τ j )

≈
∑
Ri,R j

e−i(k+q)·Ri eik·R j

[∑
μ∈I

C̃μ(0)
i(0), j(R j−Ri )

Pμ(r − Ri − τ i ) +
∑
μ∈J

C̃μ(0)
i(Ri−R j ), j(0)Pμ(r − R j − τ j )

]

=
∑
μ∈I

⎡
⎣∑

Ri

e−iq·Ri Pμ(r − Ri − τ i )
∑
R j

eik·(R j−Ri )C̃μ(0)
i(0), j(R j−Ri )

⎤
⎦
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+
∑
μ∈J

⎡
⎣∑

R j

e−iq·R j Pμ(r − R j − τ j )
∑

Ri

e−i(k+q)·(Ri−R j )C̃μ(0)
i(Ri−R j ), j(0)

⎤
⎦

=
∑
μ∈I

C̃μ(0)
i(−k−q), j(0)P

q∗
μ (r) +

∑
μ∈J

C̃μ(0)
i(0), j(k)P

q∗
μ (r). (25)

Here we have introduced the notation

C̃μ(0)
i(k), j(0) =

∑
R

eik·RC̃μ(0)
i(R), j(0) , (26)

C̃μ(0)
i(0), j(k) =

∑
R

eik·RC̃μ(0)
i(0), j(R). (27)

To derive the last line of Eq. (25), we have used Eq. (9), and
realize that τμ = τ i in the first term and τμ = τ j in the second
term.

Comparing Eq. (25) to (21), we arrived at the following
desired result:

C̃μ
i, j (k + q, k) =

⎧⎪⎨
⎪⎩

C̃μ(0)
i(−k−q), j(0), μ ∈ I

C̃μ(0)
i(0), j(k), μ ∈ J

0, otherwise

. (28)

Equation (28) indicates that AO triple coefficients have
only two nonzero sectors, each of which depends on only
one independent k vector instead of two. This property
greatly simplifies the computation and storage of the triple
coefficients, which are the key quantities in our G0W0 imple-
mentation.

The evaluation of two-center expansion coefficients
C̃μ(0)

i(0), j(R) is described in detail in Ref. [69]. Essentially, they
are determined by minimizing the self-Coulomb repulsion of
the expansion error given by Eq. (24). This criterion leads to
the following expression:

C̃μ(0)
i(0), j(R) =

{∑
ν∈{I,J (R)}(i(0), j(R)|ν)(V IJ )−1

νμ, for μ ∈ I
0, otherwise

,

(29)

where ν ∈ {I, J (R)} means that the auxiliary function Pν is
centered either on the atom I in the original cell, or on the
atom J in the cell specified by R. Furthermore (i, j|ν) is the
Coulomb repulsion between the product ϕiϕ j and the ABF Pμ,

(i, j|μ) =
∫∫

dr dr′ ϕi(r)ϕ j (r)Pμ(r′)
|r − r′| , (30)

and V IJ is a subblock of the Coulomb matrix V where the
auxiliary basis indices of the entries belong to either atom
I or atom J . Only an inversion of such a subblock of the
Coulomb matrix is required at a time to determine the two-
center expansion coefficients in Eq. (29). We note that, in
Eq. (29), only two-center integrals (albeit three orbitals are in-
volved) are required, due to the LRI approximation. Efficient
algorithms exist to evaluate two-center integrals over numeric
atom-centered basis functions [95–97]. All these pieces add
together to make an efficient evaluation of the AO triple coef-
ficients possible.

Furthermore, one may observe that C̃μ(0)
i(0), j(R) = C̃μ(0)

j(R),i(0),

and hence according to Eqs. (26) and (27), we have C̃μ(0)
j(k),i(0) =

C̃μ(0)
i(0), j(k). It follows that Eq. (28) can be rewritten as

C̃μ
i, j (k + q), k) = C̃μ(0)

j(0),i(−k−q) + C̃μ(0)
i(0), j(k). (31)

We summarize the computational algorithm described
above in terms of the flowchart in Fig. 1. The key in this
algorithm is that we need only to explicitly store C̃μ(0)

i(0), j(R) and

its Fourier transform C̃μ(0)
i(0), j(k). The memory-intensive C̃μ

i, j (k +
q, k) and Cμ

m,n(k + q, k) are formed on the fly when needed,
within the loop over the k and q points. This efficacy of this
algorithm depends on the accuracy of the LRI approximation,
which further depends on the auxiliary basis set {Pμ(r)}. We
will discuss this issue in the next section.

The algorithm as outlined in Fig. 1 scales as O(N4) with
respect to the number of one-electron basis functions and
quadratically with respect to the number of k points. In the
literature, a O(N3)-scaling GW algorithm has been formu-
lated based on real-space/imaginary-time representation of
the response function [34,35], and is getting popular in recent
years as manifested in several recent implementations within
different basis set frameworks [57,98,99]. Within the NAO

FIG. 1. Flowchart of the G0W0 self-energy calculation for peri-
odic systems within the NAO framework and LRI approximation.
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framework, a similar real-space algorithm can be derived,
which, fostered by the LRI approximation, features an O(N2)
scaling of rate-determining steps of GW self-energy calcula-
tions. The implementation work based on this algorithm is still
going on. The present canonical-scaling implementation pro-
vides the reference results that one should be able to reproduce
with a correct implementation of the aforementioned O(N2)
real-space algorithm.

III. IMPLEMENTATION DETAILS

In the previous section, we presented the basic equations
behind our implementation. Two important aspects that re-
main to be addressed are the procedure to construct the
ABFs, which is crucial for the accuracy of the LRI ap-
proximation and the treatment of the Coulomb singularity
at the � point. We will focus on these two aspects in this
section.

A. Basis sets

In FHI-aims, the basis functions to represent the KS or-
bitals are given by numerically tabulated radial functions
multiplied by spherical harmonics, as indicated by Eq. (19).
The radial functions ua,s,l (r) are usually constructed to satisfy
the radial Schrödinger equation (assuming the Hartree atomic
unit, and abbreviating the indices {a, s, l} by j),

[
− 1

2r2

d

dr
r2 d

dr
+ l (l + 1)

r2
+ v j (r) + vconf(r)

]
u j (r)

= ε ju j (r), (32)

where v j (r) is a radial potential that defines the major behav-
ior of u j (r), whereas vconf(r) is a confining potential, added
here in order to strictly localize u j (r) within a cutoff radius.
The choice of vconf(r) in FHI-aims is discussed in Ref. [67].
The potential v j (r) is set to be the self-consistent free-atom
potential for the atomic species s in question, to obtain the
so-called minimal basis, consisting of core and valence wave
functions of a spherically symmetric atom. Additional basis
functions beyond minimal basis are of ionic or hydrogen type,
obtained by setting v j (r) to the potential of the cations of
the atomic species s, or simply the hydrogen-like potential
Z/r. The effective charge Z , being fractional in general, is
taken as an optimization parameter, which controls the shape
and spatial extension of of the hydrogen-like orbital basis
functions. These additional basis functions (mostly being
hydrogen-type) are selected by optimizing the ground-state to-
tal energy of target systems and grouped into different levels.
In FHI-aims, we have created two types of such hierarchical
NAO basis sets. One type is the FHI-aims-2009 basis sets
(often called tier-n basis), originally optimized for ground-
state DFT calculations for symmetric dimers of varying bond
lengths [67], but proved to be also useful for G0W0 calcu-
lations [52,59,100]. Another type is the NAO-VCC-nZ (n =
2, 3, 4, 5) basis sets [101], generated by optimizing the RPA
total energy of free atoms. The construction of the latter
type of NAO basis sets follows the “correlation consistent”

(cc) strategy of Dunning [102], and hence allows for ex-
trapolations and suitable for correlated calculations (such
as MP2, RPA, and GW ). In this work, we will check the
performance of both types of basis sets for periodic GW
calculations.

The ABFs {Pμ(r)} are not preconstructed and optimized,
but are rather formed adaptively based on a given OBS {ϕi(r)}.
The detailed procedure to construct {Pμ(r)} for a given set
of {ϕi(r)} has been described in Refs. [59,69]. The essential
point is that the radial functions of {Pμ(r)} are generated
from the “on-site” products of the radial functions of {ϕi(r)},
and the Gram-Schmidt procedure is then used to remove the
linear dependence according to a threshold θorth. The standard
ABFs, generated from the OBS used in the preceding self-
consistent field (SCF) calculations, are sufficiently accurate
for post-DFT correlated calculations, if used in the global
Coulomb-metric RI (called RI-V in Ref. [59]) framework.
However, these ABFs alone are not adequate to yield the
needed accuracy when used in the LRI scheme, especially for
correlated methods that require unoccupied orbitals [69]. The
LRI approximation employed in the present work corresponds
to its nonrobust fitting formulation, and the incurred error in
the two-electron Coulomb integrals are linear with respect
to the expansion error of the orbital products [cf. Eq. (6)]
[93,94], in contrast with the RI-V case where the error is
quadratic. One way to remedy this problem is to complement
the OBS with extra basis functions (called OBS+) that are
used only for generating ABFs, but not in the preceding
SCF calculations. It turns out that this is a very efficient
way to improve upon the standard ABF set, rendering the
LRI a sufficiently accurate approximation for practical cal-
culations. In Ref. [69] it was found that adding an extra 5g
hydrogen-like function (with Z = 6) to OBS results in an
ABF set that is sufficiently accurate for both ground-state
exact-exchange and correlated calculations (MP2 and RPA),
for the molecules/clusters tested in that work. It should be
noted though that the resulting ABFs for LRI can reach
quite high angular momenta, e.g., up to l = 8 if the OBS+
basis set includes angular momenta up to l = 4 (see Table
12 in Ref. [69] for an example). These high angular mo-
menta turn out to be important for the success of the LRI
strategy.

In this work, we will test if the strategy of adding a 5g to
OBS+ also works for periodic GW calculations. As will be
demonstrated in Sec. IV A, for the GW case a combined 4 f 5g
OBS+ can yield excellent accuracy, and will be chosen as the
default setting in production calculations.

B. The �-point singularity treatment

For 3D systems, the 1/r nature of the bare Coulomb po-
tential leads to a 1/q2 divergence for q → 0 in reciprocal
space. Within the plane wave basis, the Coulomb operator
has a well-known matrix form VG,G′ (q) = 4πδG,G′/|q + G|2,
and the divergence is present in only the G = G′ = 0 ele-
ment (the so-called “head” term of a matrix with indices G
and G′). With the atom-centered ABFs used in this work,
this divergence carries over to the matrix elements between
two nodeless s-type functions (1/q2 divergence), and between
one nodeless s-type and one nodeless p-type functions (1/q
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divergence). In general we can split Vμν (q) into

Vμν (q) = v(2)
μν

q2
+ v(1)

μν

q
+ V̄μν (q), (33)

where V̄μν (q) is regular as q → 0, and v(2)
μν and v(1)

μν are the
coefficients for elements with 1/q2 and 1/q asymptotic behav-
iors. Simple electrostatic analysis indicates that v(2)

μν and v(1)
μν

are only nonzero for the above-noted pair of basis functions
that have 1/q2 and 1/q divergences respectively.

The above diverging behavior of Vμν (q) carries over to
the screened Coulomb matrix W0,μν (q, iω) for nonmetallic
systems. Consequently, in the integration over BZ to obtain
the G0W0 self-energy, the integrand has a 1/q2 divergence as
q approaches the � point. This is an integrable divergence.
However, when the BZ is discretized in terms of a uniform k
mesh, the � point contributes to the integrated quantity, the
G0W0 self-energy, by an amount that is proportional to the
discretization length �q, i.e., the length of the small cube
enclosing the � point. Since �q ∼ N−1/3

k , simply neglect-
ing the � point will incur a so-called “finite-size error” that
decreases only linearly with N−1/3

k . This is a very slow con-
vergence. Therefore, to achieve a sufficiently fast convergence
of the BZ integration in Eq. (17), a special treatment of this
singularity is needed. For semiconductors and insulators, the
(properly treated) dielectric function is nondiverging around
q = 0, which means that W0,μν (q, iω) has the same asymp-
totic behavior as Vμν (q) for q → 0. Thus, the experience
gained to treat the singularity of the bare Coulomb potential
in periodic Hartree-Fock (HF) calculations is also useful here.
In the literature, two schemes are widely adopted to deal with
the Coulomb singularity in periodic HF implementations. One
is the Gygi-Baldereschi scheme [103] which adds an analyti-
cally integrable compensating function to cancel the diverging
term and subtracts it separately. The other is the Spencer-Alavi
scheme [104] which uses a truncated Coulomb operator that
is free of Coulomb singularity; yet the scheme guarantees a
systematic convergence to the right limit as the number of
k points increases. Both schemes have been implemented in
our own periodic HF module [70] of the FHI-aims code. In
practice, we found that a modified version of the Spencer-
Alavi scheme converges faster with respect to the number
of k points than the “compensating function” approach
does. Similar observations have been made in Ref. [105],
in terms of another variant of the Coulomb operator trun-
cation scheme—the so-called Wigner-Seitz cell truncation
scheme [105].

In our modified Spencer-Alavi scheme, the truncated
Coulomb operator is given by

vcut (r) = erfc(γ r)

r
+ 1

2
erfc{[ln(r) − ln(Rcut )]/ln(Rw )}

× erf(γ r)

r
, (34)

where the short-range part of the Coulomb potential is kept,
and the long-range part is quickly suppressed beyond a cutoff
radius Rcut. Rcut is chosen to be the radius of a sphere inscribed
inside the BvK supercell. As the k point mesh gets denser,
Rcut gradually increases and the full bare Coulomb operator is

restored. The screening parameter γ and the width parameter
Rw in Eq. (34) can be tuned to achieve the best performance,
but the default choice of γ = 5.0/Rcut Bohr−1 and Rw =
1.092 Bohr works sufficiently well for all systems we have
tested so far.

By replacing 1/|r − r′| by the truncated form vcut (|r − r′|)
in Eq. (12), one obtains the truncated Coulomb matrix within
the auxiliary basis, V cut

μν (q), which is regular for q → 0. A cor-
responding truncated screened Coulomb matrix W cut

0 (q, iω)
can then be defined via Eq. (14) by replacing the full V (q)
matrix by the truncated one V cut (q) in the numerator. As
described below, in doing so, one should be careful that
the symmetrized dielectric function in the denominator of
Eq. (14) should not be affected by the truncation procedure,
i.e., it should still be determined using the full Coulomb
operator. For semiconductors and insulators, which are our
concerns in the present work, the symmetrized dielectric
function ε̃ matrix is finite and invertible everywhere in the
BZ. The ε̃ matrix can be directly computed using Eq. (13)
for all q points except at q = 0. Because of the diverging
behavior of Vμν (q) for q → 0, as indicated by Eq. (33),
the asymptotic behavior of the χ0 matrix [Eq. (11)] needs
to be taken care of in order to cancel the divergence in
the V matrix, similar to what is done in the plane-wave
representation [91,92].

To this end, we adopt the scheme widely used in the con-
text of the LAPW framework, which represents the dielectric
function in terms of the eigenvectors of the Coulomb matrix
[38–40]. At q = 0, instead of diagonalizing the diverging
full Coulomb matrix V (k = 0), we diagonalize the truncated
Coulomb matrix V cut (k = 0),∑

ν

V cut
μ,ν (k = 0)Xν,λ = Xμ,λvλ, (35)

where vλ and Xμ,λ are its eigenvalues and its eigenvectors,
which are real-valued for k = 0. Within its broad eigen-
spectrum, there is one eigenstate standing out, with an
eigenvalue that is significantly larger than all others, corre-
sponding to the G = 0 plane wave (i.e., the constant 1/

√
�

with � being the volume of the crystal). We shall denote this
eigenstate as λ = 1, and order the rest eigenstates accord-
ing to their eigenvalues (vλ with λ > 1) in an energetically
descending manner. Naturally, vλ=1 goes to infinity as Nk
increases, whereby V cut approaches the full V . Analyzing the
components of the eigenvector Xμ,1 reveals that this state has
a predominant contribution from the nodeless s functions—
the only ABFs representing nonzero net charges—consistent
with the nature of the G = 0 plane wave. For the Coulomb
matrix with a small q, we can diagonalize both the full
Coulomb matrix V (q) and its regular part V̄ (q) [cf. Eq. (33)],
and find that their eigenvectors are nearly the same. This
is because the diverging part of the Coulomb matrix orig-
inates entirely from the λ = 1 eigenvector, and removing
this part from the Coulomb matrix amounts to shifting the
value of v1 downwards, but not changing the eigenvector
Xμ,1. Based on the above understanding, and inspired by
the prescription of the LAPW basis set [38–40,106], we
arrive at the following expression for the symmetrized di-
electric function matrix within the Coulomb eigenvector basis
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representation:

ε̃λ,λ′ (q → 0, iω)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 4π

�

∑
k,σ

{∑
n

f ′(εk
n,σ )|pk

n,n,σ · q̂|2
ω2

+ ∑
m<n

2( f k
m,σ − f k

n,σ )|pk
m,n,σ · q̂|2[

(εk
m,σ − εk

n,σ )2 + ω2
](

εk
m,σ − εk

n,σ

)}
, λ = λ′ = 1

−
√

4π

�Nk

∑
k,σ

∑
m<n

∑
ν

f k
m,σ − f k

n,σ

εk
m,σ − εk

n,σ

[(
pk

m,n,σ · q̂
)
Cν

n,m,σ (k, k)

εk
m,σ − εk

n,σ − iω
+ c.c.

]
Xν,λ′

√
vλ′ , λ = 1, λ′ > 1

−
√

4π

�Nk

∑
k,σ

∑
m<n

∑
μ

√
vλXμ,λ

f k
m,σ − f k

n,σ

εk
m,σ − εk

n,σ

[
Cμ

m,n,σ (k, k)
(
pk

n,m,σ · q̂
)

εk
m,σ − εk

n,σ − iω
+ c.c.

]
, λ > 1, λ′ = 1

δλ,λ′ − 1

Nk

∑
k,σ

∑
m<n

∑
μ,ν

√
vλXμ,λ

(
f k
m,σ − f k

n,σ

)[Cμ
m,n,σ (k, k)Cν

n,m,σ (k, k)

εk
m,σ − εk

n,σ − ω
+ c.c.

]
Xν,λ′

√
vλ′ , λ > 1, λ′ > 1

, (36)

where pk
m,n,σ = 〈ψk

m,σ | p̂|ψk
n,σ 〉 = −i〈ψk

m,σ |∇|ψk
n,σ 〉 is the so-

called momentum matrix, q̂ = q/q is the unit vector along
the direction of q, and c.c. denotes the complex conjugate.
Furthermore, f ′(ε) is the energy derivative of the Fermi-Dirac
function,

f ′(ε) = δ f (ε)/δε = − exp[(ε − μ)/�]

�{1 + exp[(ε − μ)/�]}2 , (37)

which becomes a δ-function, i.e., −δ(ε − μ), when the broad-
ening parameter � (introduced to stabilize the calculations for
metals or narrow-gap insulators) approaches zero. Equation
(36) indicates that the head and wing terms [λ = 1 or λ′ = 1
in Eq. (36)] of the dielectric function matrix in general de-
pend on the direction along which q approaches zero. This is
indeed the case for anisotropic systems. The first term in the
first line of Eq. (36) corresponds to the so-called intraband
contribution, which is present only for metals. For insulators
and semiconductors, this term is zero and doesn’t need to be
considered.

Now we have a computable formalism for the dielectric
function in the basis representation of Coulomb eigenvectors.
After its computation, we can transform it back to the basis of
ABFs,

ε̃μ,ν (q → 0, iω) =
∑
λ,λ′

Xμ,λ.ε̃λ,λ′ (q → 0, iω)Xν,λ′ . (38)

The matrix form of the truncated screened Coulomb inter-
action W cut

0,μ,ν (q, iω) can then be computed in the entire BZ,
and the GW self-energy can be calculated by standard BZ
sampling techniques.

Note that our scheme to deal with the Coulomb singular-
ity in G0W0 calculations as outlined above is different from
what is usually done in the literature. In the usual practice
[33,40,43,107,108], once the symmetrized dielectric function
is properly treated at q = 0, one can compute ε̃−1 by perform-
ing a blockwise inversion and proceed to obtain the screened
Coulomb interaction W0(q, iω). W0(q, iω) has a similar 1/q2

singularity behavior as the bare Coulomb interaction V (q)
for the so-called “head” term, and additionally a 1/q singular
behavior for the wing terms. One can then subtract two ana-
lytic compensating functions from the integrand to smooth out
these singular behaviors a q → 0, and the BZ integration over
these compensating functions can be done separately in an
analytical way. In the end, the entire procedure boils down to

performing an usual BZ summation (whereby the �-point can
be omitted), and then adding two correction terms afterwards.
Thus, the usual procedure can be viewed as the G0W0 analogy
of the Gygi-Baldereschi scheme in HF calculations, whereas
our above-described scheme follows the spirit of the Alavi-
Spencer scheme. A systematic comparison of the performance
of these two schemes is of high academic interest, but goes
beyond the scope of the present work.

IV. CONVERGENCE TESTS

Let us now investigate the precision and convergence
behavior of our G0W0 implementation with respect to the nu-
merical settings, including the ABF basis set, the one-electron
basis set, and the k point summation in 1BZ.

A. Convergence test with respect to the number and
shapes of ABFs

As discussed in Sec. II C, our G0W0 implementation relies
on the LRI approximation, whose accuracy further depends
on the quality of the ABF basis set. In FHI-aims, the standard
ABFs are constructed on the fly from the one-electron OBS
employed in the preceding (g)KS calculations. As demon-
strated in Ref. [69], within LRI, typically a larger number
of ABFs, especially those with higher angular momenta, is
needed to achieve similar accuracy as in the standard RI-V
scheme [59]. As mentioned already in Sec. III A, one practical
way to improve the accuracy of LRI is to complement the
OBS with additional functions of high angular momenta. The
crucial point is that these additional functions are used only
to construct ABFs, but not used in Eq. (7) or (18) to expand
the eigen-orbitals. Namely, they don’t enter the preceding
self-consistent KS-DFT calculations. In this way, the orbital
products ψ∗

m,σ (r)ψn,σ (r) on the left side of Eq. (6) does not
change, but the {Pμ} set on the right side gets increased. This
can lead to improved accuracy of the expansion in Eq. (6),
and thus the final results of the ground-state energy and/or
quasiparticle band structure. In the FHI-aims input file, these
additional functions are labeled with a tag for_aux, signifying
that these functions are used only to generate auxiliary func-
tions. We follow the nomenclature of Ref. [69] by terming
these additional for_aux functions as enhanced orbital basis
set (OBS+).
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In Ref. [69], it has been shown that, for an OBS that
contains at least up to f functions, adding an additional 5g
hydrogenic function to the OBS+ can yield an ABF set that
is sufficiently accurate for both HF and correlated methods
like MP2 and RPA in molecular calculations. The shape and
spatial extension of the 5g hydrogenic function u(r) depend
on the effective nuclear potential, v(r) = Z/r, with Z being
an effective charge, which governs the spatial extent of the
solution of the radial Schrödinger equation [Eq. (32)]. The
smaller the value Z is, the more extended the radial function
u(r). It was found [69] that the HF or MP2 results are not
very sensitive to the precise value of Z , and an additional
5g function defined by Z = 6.0 is usually sufficiently good,
yielding an accuracy that is comparable to the standard RI-V
approximation.

Here we will examine the influence of the additional func-
tions included in OBS+ on the band gaps of the periodic
G0W0 calculations. To this end, we take Si and MgO crystals
as the benchmark systems. The experimental lattice param-
eters (a = 5.431 Å for Si and 4.213 Å for MgO) are used
in all calculations. Si is a covalently bonded semiconductor
with a medium, indirect band gap, whereas MgO is an ionic
crystal with a wide, direct band gap. Thus the two systems
can be taken as representative examples for semiconductors
and insulators, well suited for benchmark purposes.

In Fig. 2 we present the calculated G0W0 band gaps as a
function of effective charge Z , for different for_aux functions
and their combinations included in OBS+. For the tests to be
systematic, we have here checked not only the influence of
5g functions but also of 4 f and 6h functions. The reference
state for G0W0 calculations in Fig. 2 is generated from KS-
DFT under the generalized gradient approximation (GGA) of
Perdew, Burke, and Ernzerhof (PBE). The FHI-aims tier 2
basis and a 8 × 8 × 8 k grid were used in the PBE calculation.
Note that the tier 2 basis set contains basis functions up to g
for Si and O, and up to f for Mg. The G0W0 band gap was
determined from full band structure calculations along high
symmetry lines in the BZ.

The for_aux functions are added in the following manner.
We first add a hydrogen-like 4 f function, generated with an
effective potential Z/r; by varying the value of Z , we check
the influence of the shape of the added 4 f function on the
calculated G0W0 band gap. Next we fix the 4 f function with an
“optimal” Z value, and add an additional 5g function governed
by its own Z value. Then we repeat this process by fixing both
the 4 f and 5g functions, and check the influence of an addi-
tional 6h function of varying spatial extent. Our rule to choose
the “optimal” Z value at each step is somewhat arbitrary, but
here we pick the value in a window of 1.0 <= Z <= 8.0
that gives the biggest increase of the band gap. Figure 2(a)
shows that, for Si, adding a 4 f for_aux function can enlarge
the calculated G0W0 gap roughly from 0.01 eV to 0.03 eV,
depending on the chosen Z value. Smaller Z values (more
extended 4 f functions) tend to bring bigger corrections. Now,
fixing the 4 f function at Z = 1.0, and adding a 5g function
in addition with varying Z [denoted as 4 f (1.0) + 5g], one can
see that the band gap increases by about 2 meV, regardless
the value of Z . This is because once the 4 f function is added,
the largest part of the LRI error is removed, and the remaining
error is not sensitive to the shape of the ABFs anymore. This is

FIG. 2. The G0W0@PBE band gaps for Si (a) and MgO (b) as
a function of the effective charge Z of the added hydrogen-like
for_aux function used to generate additional ABFs. The legend
4 f (1.0) + 5g means that in the OBS+, a 4 f function with effective
charge Z = 1.0 and a 5g function with varying effective charge Z
are added. Likewise, 4 f (2.0)5g(4.0) + 6h means a 4 f with Z = 2.0,
a 5g function with Z = 4.0, and a 6h function with varying Z . The
dashed lines illustrate the behavior if the default Z parameters for
4 f /5g for_aux functions are used. The FHI-aims tier 2 basis and a
8 × 8 × 8 k grid were used in the preceding PBE calculations. The
G0W0 band gaps are determined from full band structure calculations.
The horizontal dashed lines mark the results without including any
for_aux functions.

exactly the kind of effect we would like to achieve. Similarly,
fixing 4 f and 5g functions both at Z = 1, and adding one 6h
function [denoted as 4 f (1.0)5g(1.0) + 6h], one gets a further
increase of 2 meV of the band gap, independent of the Z value
of the 6h function. Such a convergence behavior with respect
to the for_aux functions in OBS+ strongly suggests the re-
maining error arising from LRI is minor, and the G0W0 band
gap for Si is well converged within 0.01 eV with respect to the
ABFs.

Similarly, for MgO, the change of the G0W0 band gap after
adding a single 4 f for_aux function (to both elements) is quite
sensitive to the Z value. As can be seen in Fig. 2(b), the 4 f
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functions with smaller Z values lead to bigger increases of
the band gap (as large as 0.04 eV), while those with larger
Z values bring smaller increases (or even slight decreases) of
the band gap. Fixing the 4 f function at Z = 2.0 and adding a
5g function with varying Z , the band gap shows very little
change for small Z’s and a slightly larger increase for big
Z values. The overall effect is that the dependence of the
obtained G0W0 band gap on the shape of the 5g function
is much reduced, although a remaining variation within a
window of 0.01 eV can still be observed. Finally, fixing 4 f
and 5g functions, and adding a 6h function with varying Z ,
the dependence of the obtained band gap on the Z value of
6h function is further reduced. In contrast to the case of Si,
for MgO the calculated band gap does not always get in-
creased upon adding more for_aux functions. Instead, a slight
decrease of the band gap can happen occasionally, indicating a
more complex convergence behavior of the G0W0 calculation
with respect to the ABFs. Nevertheless, the overall variation
of the band gap values upon including additional 5g or 6h
for_aux functions with varying Z never exceed a range of
0.02 eV. Such an uncertainty does not affect our subsequent
convergence tests with respect to other computational param-
eters and the final benchmark calculations.

In the above tests, the chosen “optimal” Z values for 4 f /5g
for_aux functions are different for Si and MgO, but impor-
tantly, the above discussed convergence behavior, as well as
the final results are not sensitive to the actual Z values over
a wide range. For example, using 4 f (3.0)5g(3.0) instead of
the “optimal” 4 f (1.0)5g(1.0) for Si and 4 f (2.0)5g(4.0) for
MgO, one finds a difference of only 0.2 meV for Si and
2 meV for MgO in the calculated G0W0@PBE band gap. The
dashed lines in Fig. 2 illustrate what happens if one starts with
4 f (3.0) and 4 f (3.0)5g(3.0) for_aux functions. Furthermore,
adding 6h for_aux functions to the OBS+ leads to a factor of 2
increase of the computational cost but the accuracy gain is mi-
nor (the band gap changes below 0.01 eV). It should be noted
that, in our present implementation, the computational cost is
governed by only the size of the auxiliary basis set, but not the
shape of the ABFs generated from the for_aux functions. That
is, the computational cost is not affected by the Z values of the
for_aux functions. Under such circumstances, instead of using
different settings for different systems, we use a universal
4 f (3.0)5g(3.0) for_aux basis setting in the following conver-
gence tests and benchmark calculations for all materials.

Finally, to demonstrate that the error incurred by LRI has
indeed been made insignificantly small by adding for_aux
functions as outlined above, we compare our calculated
full G0W0 band structure to independent reference results
as obtained by the all-electron, LAPW-based FHI-gap code
[40,109], using MgO as an example. In Fig. 3 the calcu-
lated band structure of MgO are presented for both PBE and
G0W0@PBE. The calculations employ the FHI-aims tier 2
one-electron basis set, a fairly dense 8 × 8 × 8 k grid, and the
above-noted 4 f (3.0)5g(3.0) for_aux functions. For compar-
ison, the PBE and G0W0@PBE band structures, as obtained
respectively by the LAPW-based WIEN2k code [110] and
the FHI-gap code, are shown as blue dashed lines in Fig. 3.
With its recent extension to complement the standard LAPW
basis set with high-energy local orbitals (HLOs) [111] in its
GW calculations, the FHI-gap code, interfaced with WIEN2k

FIG. 3. The PBE (left panel) and G0W0@PBE (right panel) band
structures for MgO. Full lines are FHI-aims results (this work),
obtained using tier 2 basis set, the 4 f (3.0)5g(3.0) for_aux functions,
and a 8 × 8 × 8 k point mesh. The blue dashed lines in the right
panel are the G0W0 band structure produced by the LAPW-based
FHI-gap [40,109] code, based on the PBE band structure determined
by WIEN2k (blue dashed lines in the left panel).

[110], has been shown to deliver highly accurate GW band
gaps [90] for a range of semiconductors and insulators. These
include a set of 24 semiconductors and insulators that are
typically used to benchmark the accuracy of theoretical ap-
proaches to electronic band structure of materials [90], as well
as copper and silver halides (CuX and AgX with X=Cl, Br,
I) [112], and several d- and f -electron oxides [113]. From
Fig. 3, it can be seen that the FHI-aims results agree with
those of FHI-gap very well over the entire BZ, not only for the
valence-band maximum (VBM) and conduction-band mini-
mum (CBM), but also for quasiparticle energy levels much
higher and lower in energy. Such close agreement between
two very different G0W0 computational frameworks is remark-
able. In fact, excellent agreement has also been achieved at the
PBE level between the two all-electron codes – FHI-aims and
WIEN2k, as can be seen in the left panel of Fig. 3. More de-
tails can be found in Refs. [72,74]. Furthermore, from Fig. 3,
we see that with the standard NAO tier 2 basis set, we can
describe not only the occupied quasiparticle bands, but also
the unoccupied bands up to 40 eV with acceptable accuracy.

As shown above, compared to Si, MgO is a somewhat
more challenging system to control the error associated with
LRI approximation, used in our G0W0 implementation. Yet, an
excellent agreement between our NAO-based implementation
[with an universal 4 f (3.0)5g(3.0) for_aux function setting]
and the LAPW-based implementation – here the FHI-gap code
can be achieved. A systematic benchmark study for a range of
materials will be given in Sec. V. In the remaining part of this
section, we continue to examine how our our G0W0 implemen-
tation converges with other numerical settings.

B. Convergence test with respect to k points

In the above subsection, we discussed the convergence
behavior of our G0W0 results with respect to the ABFs (more

013807-11



XINGUO REN et al. PHYSICAL REVIEW MATERIALS 5, 013807 (2021)

FIG. 4. The G0W0@PBE band gaps for Si (a) and MgO (b) as a
function of the k point mesh in the BZ summation. A uniform mesh
including the � point is used. The FHI-aims tier 2 is employed for
the one-electron basis set, and the for_aux 4 f (3.0)5g(3.0) functions
are used to generate additional ABFs.

precisely the for_aux functions used to generate additional
ABFs), for a given k point mesh. With errors arising from
the LRI approximation under control, we next examine how
our G0W0 calculations converge with respect to the k point
summation in evaluating the self-energy.

As discussed in Sec. III B, the summand in Eq. (17) has
an integrable divergence around q = 0, and the convergence
behavior of a finite summation over q crucially depends
on how we treat this singularity. In Fig. 4 we present the
G0W0@PBE band gap for Si and MgO as a function of the
k point mesh in the BZ summation. Calculations are done
with tier 2 one-electron basis set, and 4 f (3.0)5g(3.0) for_aux
functions. For Si, the calculated band gap varies smoothly
as the number of k points increases. Initially, it drops for
increasing the k point density, but quickly saturates at around
1.09 eV for k meshes of 7 × 7 × 7 and denser. For MgO,
the convergence of the band gap with respect to the k point
mesh follows a similar behavior. The band gap essentially
remains constant for a k point mesh beyond 7 × 7 × 7, and
saturates at a value between 7.31 and 7.32 eV, with a tiny
remaining variation of 0.01 eV. The origin of this additional
complication is likely related to our special way of treating

the � point singularity: the truncated bare Coulomb operator
together with an explicit evaluation of the dielectric function
at q = 0 within the Coulomb eigenvector basis representation,
as described in Sec. III B. Investigating the origin of this
issue is beyond the scope of this paper, which focuses on the
numerically converged k grid setting.

Below we will use 8 × 8 × 8 k point grid for further con-
vergence studies with respect to other parameters and final
benchmark calculations for crystals with a zinc-blende struc-
ture. For wurzite structure we use a 8 × 8 × 5 k grid instead,
due to the larger size of the unit cell along the z direction.

C. Convergence test with respect to one-electron orbital
basis sets

In the above two subsections, we have examined the con-
vergence behavior of our G0W0 implementation with respect
to the for_aux functions and k point meshes for Si and MgO.
We demonstrate that the numerical errors stemming from the
LRI approximation and finite k point sampling can be well
controlled and the uncertainties of the calculated G0W0 band
gap due to these factors are within 0.01–0.02 eV. In this
section we will check how our G0W0 results converge with re-
spect to the one-electron OBS. Here we emphasize again that
the one-electron OBS discussed in this subsection should be
distinguished from the for_aux functions (included in OBS+)
discussed in Sec. IV A. While the former is used to expand
the SCF molecular eigen-orbitals that enter the subsequent
G0W0 calculations, the latter (OBS+) is employed only to
generate additional ABFs so as to reduce the numerical error
incurred by the LRI approximation, instead of improving the
description of one-electron eigen-orbitals.

The convergence to the complete basis set (CBS) limit us-
ing local atomic orbitals for correlated methods has long been
considered a challenging problem. In quantum chemistry, ex-
perience has been gained to reach the CBS limit when using
correlation consistent or balanced GTO basis sets [102,114]
combined with the Helgaker extrapolation procedure [115].
Such a procedure works nicely for small molecules, but cannot
be directly applied to solids, due to a tendency to encounter
linear dependence when using the standard GTOs in close
packed structures. In this regard, NAOs are expected to be
better behaved due to their strict locality in real space. Here
we will first examine how the G0W0 band gaps converge with
respect to the standard NAOs utilized in FHI-aims, and then
further investigate the influence of highly localized Slater-type
orbitals (STOs).

1. G0W0 calculations with one-electron NAO basis sets

For NAO basis sets, remarkable all-electron precision can
be obtained for ground-state DFT calculations involving only
occupied states [67,73]. However, similar to the GTO case, the
situation gets more involved for correlated calculations, like
MP2 and RPA. The FHI-aims-2009 (“tier”) basis sets, origi-
nally developed for ground-state DFT calculations, can yield
acceptably accurate results for MP2 and RPA binding energies
if the basis set superposition errors (BSSEs) are corrected
[59]. Better accuracy can be achieved when using NAO-VCC-
nZ basis sets [101], via which results can be extrapolated
to the CBS limit using a two-point extrapolation procedure
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[115]. However, it was found that the original NAO-VCC-
nZ basis sets developed for molecules are not optimal for
close-packed solids, due to their relatively larger radial extent
(compared to the FHI-aims-2009 basis sets). Zhang et al.
[116] reoptimized these basis sets by removing the so-called
“enhanced minimal basis” and tightening the cutoff radius of
the basis functions. The resultant basis sets, called localized
NAO-VCC-nZ (loc-NAO-VCC-nZ) here, have been shown in
Ref. [116] to be able to yield accurate MP2 and RPA binding
energies for simple solids, with an appropriate extrapolation
procedure.

The basis-set convergence of G0W0 energy levels is again
different from MP2 and RPA for NAO basis sets. The
FHI-aims-2009 basis sets are usually used in FHI-aims
G0W0 calculations for molecules. When using the tier 4 basis
set plus some additional diffuse GTOs, the G0W0 calculations
yield results comparable to those obtained with a very large
aug-cc-pV5Z GTO basis sets [59,63,100]. In the G0W0 case,
the advantage of NAO-VCC-nZ basis sets is therefore less
obvious, with a typically comparable or even slower conver-
gence behavior. Also, a reliable and easy-to-use procedure
to extrapolate G0W0 results to the CBS limit is not yet es-
tablished. The different convergence behavior of NAOs for
G0W0 and for MP2/RPA is due to the fact that these meth-
ods are used to calculate different energetic properties. While
G0W0 deals with individual states for which the error due to
inaccurate unoccupied orbitals is not significant, MP2 and
RPA calculate total energies for which relatively small errors
for individual states can accumulate to an unmanageable level.

Now we are at a stage to test the convergence behavior
of both loc-NAO-VCC-nZ and FHI-aims-2009 basis sets for
periodic G0W0 calculations. In Fig. 5 we present the calcu-
lated G0W0 band gaps for Si and MgO as a function of the
basis set size. The k point mesh is fixed at 8 × 8 × 8 and
the 4 f (3.0)5g(3.0) for_aux functions are used to generate
additional ABFs. For Si, the band gap only slightly decreases
from 1.098 eV to 1.091 eV from tier 1 to tier 3. On the
other hand, when the loc-NAO-VCC-nZ basis sets are used,
the band gap starts with a high value of 1.178 eV with the
loc-NAO-VCC-2Z basis, but quickly drops to 1.083 eV for
the loc-NAO-VCC-3Z basis set and slightly increases back to
1.093 eV for the loc-NAO-VCC-4Z basis set. Thus, with the
largest NAO-VCC-4Z and tier 3 basis sets, we can achieve a
satisfying agreement within 2 meV for the G0W0@PBE band
gap. It is also interesting to see that the tier 1 and tier 2 basis
sets can already yield band gaps that differ from the tier 3
result only by a few meV. From Fig. 5(a) it can be seen that
only the loc-NAO-VCC-2Z basis set appears to be out of the
general trend. This is because, by eliminating the “enhanced
minimal basis,” the loc-NAO-VCC-2Z is not yet sufficient to
accurately describe the occupied states in the preceding SCF
calculations. Nevertheless, the overall convergence behavior
indicates that, using either the FHI-aims-2009 or loc-NAO-
VCC-nZ basis sets, we can safely converge the G0W0 gap for
Si within 0.01 eV.

For MgO, using the FHI-aims-2009 basis sets, the
G0W0@PBE gap increases from 7.31 eV to 7.35 eV. When
the loc-NAO-VCC-nZ basis sets are used, the calculated band
gap quickly drops by about 0.4 eV from loc-NAO-VCC-
2Z to loc-NAO-VCC-3Z. Further increasing the basis set to

FIG. 5. The G0W0@PBE band gaps for Si (a) and MgO (b) as
a function of the size of the one-electron basis set per formula unit
cell. Two types of hierarchical basis sets, the loc-NAO-VCC-nZ (blue
squares) and the FHI-aims-2009 (“tier”) basis sets (red circles), are
used for the convergence test calculations. The “loc-NAO-VCC-nZ”
is abbreviated as “loc-NnZ” to label the data points. A combined set
of 4 f (3.0)5g(3.0) hydrogen-like for_aux functions and a 8 × 8 × 8 k
grid were used in the calculations.

loc-NAO-VCC-4Z results in a slight decrease of the band
gap from 7.33 to 7.31 eV. As such, the band gap values
obtained with the tier 2 and loc-NAO-VCC-nZ basis sets
are already very close, but the difference becomes slightly
larger when both types of basis sets get further increased.
This behavior may reflect the presently achievable level of
basis set convergence, since the basis set sizes of tier 3
and loc-NAO-VCC-4Z are already rather large and the basis
functions in a close-packed solids becomes linear dependent.
In practical calculations, if the linear dependence becomes
severe, we perform singular-value decomposition (SVD) to
remove the redundant components, specifically by eliminating
the eigenfunctions of the overlap matrix below a threshold
of 10−4. We note that the SVD procedure, while making it
possible to run calculations with large and linearly dependent
basis sets, introduces some numerical uncertainty since the
final G0W0 result will noticeably depend on the choice of the
threshold value. This issue is more pronounced for MgO than
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Si, since MgO has a smaller lattice constant and Mg has a
larger basis cutoff radius. For example, when tier 3 basis set is
used, the G0W0@PBE gap for MgO may range from 7.22 eV
to 7.44 eV, depending on the choice of the SVD threshold.
Such an uncertainty is too large to be acceptable. Thus for
MgO, we take our tier 2 result (7.32 eV) as the most accurate
G0W0@PBE gap value that our present numerical framework
could offer.

2. Complementing the one-electron NAOs with highly
localized STOs

With the standard NAOs, we face the problem that the
quality of the convergence of the G0W0 results with respect
to one-electron OBS cannot be rigorously assessed, because
systematically increasing the size of NAOs to the complete
basis set limit is difficult due to their nonorthogonal nature.
Already for MgO, the reliability of the results obtained with
tier 3 or loc-NAO-VCC-4Z basis sets is limited by the numer-
ical instability arising from the linear dependence of the basis
functions. In the LAPW framework, it has been observed that
adding high-energy localized orbitals within the muffin-tin
sphere to the standard LAPW basis can significantly improve
the band gap values for materials such as ZnO [41,90,117].
Inspired by this experience, we test here the possible impact
by complementing the standard NAOs with highly localized
orbitals. As a first numerical test, highly localized Slater-type
orbitals (STOs) are used. The reason to use STOs instead of
NAOs here is that it is easier to control the spatial extent
of STOs by a single parameter. Furthermore, they can be
deployed in an even-tempered way to systematically span the
Hilbert space. The even-tempered STOs [118] are given by

φSTO
κ,n,l,m(r) = N rn−1e−ζl,κ rYlm(r̂), (39)

where N = (2ζ )n√2ζ/2n!) is a normalization factor, and

ζl,κ+1 = αlβ
κ−1
l 2ζl,κ , κ = 1, 2, 3, . . . . (40)

That is, the exponents of the different STOs of the same l
follow a straight line on the logarithmic scale. In quantum
chemistry, the even-tempered STOs and GTOs are the most
popular choice for constructing systematic and efficient AO
basis sets. It can be shown that the overlap between two ad-
jacent STOs or GTOs stays constant, leading to an even cov-
erage of the Hilbert space [119,120]. In this work, we employ
four STOs for each l channel, and for simplicity we set n =
l + 1 and βl = 2. Thus, for a given l , the STOs with ζl,1 and
ζl,4 correspond to the most extended and the most localized
functions, respectively. With these choices, the set of STOs
is fully specified by the highest angular momentum lmax and
the smallest component ζl,1 = αl for l <= lmax. The parame-
ters αl are chosen such that the overlaps between the STOs
centering on neighboring atoms are vanishingly small, and
thus including them in the one-electrons OBS does not cause
numerical problems associated with linear dependencies.

In the following, we choose ZnO as the test example to
check the possible influence of these highly localized STOs in
our NAO framework, since previous experience accumulated
in the LAPW community [41,90,117] showed that the local-
ized orbitals have substantial impact on the band gap of ZnO.
In Fig. 6 we present the indirect G0W0@PBE band gap for

FIG. 6. The variation of the G0W0@PBE band gaps for zinc-
blende ZnO upon adding STOs of increasing angular momenta to
FHI-aims-2009 NAO tier 2 basis set. The chosen ζl,1 values for l =
0, . . . , 5 are 2.5, 5,5, 7.5, 7.5, 10 for Zn and 5, 10.10, 10, 15, 20 for
O, respectively. The horizontal dashed line marks the band gap value
obtained with tier 2 basis set. A combined set of 4 f (3.0)5g(3.0)
hydrogen-like for_aux functions and a 8 × 8 × 8 k grid were used
in the calculations.

ZnO (in its zinc-blende structure) obtained by adding STOs
to the tier 2 basis set. It can be seen that, as more STOs
of increasing angular momenta are included, the obtained
band gap gradually increases, evolving from 2.29 eV obtained
with the tier 2 basis set to 2.51 eV obtained with “t ier2 +
STO-spdf gh” basis set (i.e., adding STOs with lmax = 5 to tier
2). Although the band gap value is not yet saturated for lmax =
5, the fully converged band gap is rather unlikely to exceed
2.6 eV, as can be judged from the convergence plot shown
in Fig. 6. Thus, this study suggests that complementing the
standard NAO basis set with highly localized STOs enlarges
the G0W0 band gap of ZnO by 0.2 to 0.3 eV. On the one hand,
this behavior is in qualitative agreement with what is found
in the LAPW framework. On the other hand, the magnitude
of the correction brought out by the localized orbitals in the
NAO framework is more than a factor of 2 smaller than the
LAPW case.

We also performed a similar study as outlined above for
Si and MgO. For these systems, adding the highly localized
STOs up to lmax = 5 gives rise to only a minor increase of
the G0W0@PBE band gap of just 0.04 eV. In Sec. V we
will present benchmark band gap results for a set of crystals
computed with both the standard tier 2 and the “t ier2 +
STO-spdf gh” basis sets. This will allow us to arrive at a more
complete picture of the effects that localized orbitals can bring
about in the NAO context. However, adding STOs up to lmax =
5 significantly enlarges the size of one-electron basis set. For
example, for ZnO the number of orbital basis functions (Nb)
per unit cell drastically increases from 91 to 378, and this
makes the entire calculation 20 times more expensive.

In a recent paper [108], Zhu and Chan showed that, with
relatively small Dunning’s cc-pVTZ or even cc-pVDZ GTO
basis sets, they can obtain fairly good band gaps for a range of
insulating solids, including ZnO. Our preliminary tests with
GTOs indicate that the most extended (diffuse) functions in
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TABLE I. PBE and G0W0@PBE band gaps calculated with FHI-aims, in comparison to the results obtained by FHI-gap [40,109] and the
experimental values. The FHI-aims calculations were done with NAO tier 2 and 4 f (3.0)5g(3.0) for_aux basis functions. An 8 × 8 × 8 k point
mesh was used for all crystals except for wurzite structures, whereby a reduced 8 × 8 × 5 k grid was used. The WIEN2k PBE results and
FHI-gap G0W0@PBE results [with both standard LAPW basis (nLO = 0) and LAPW+HLOs basis (nLO = 5)] are mostly taken from Ref. [90].
The mean deviation (MD) and mean absolute deviation (MAD) for the FHI-aims G0W0 results and the LAPW-based (nLO = 0) G0W0 results
are obtained with reference to the LAPW+HLOs (nLO = 5) results. The experimental values are directly cited from Ref. [90], originally taken
from Refs. [125,126]. Systems with a prefix “WZ” in their names mean the wurzite structure was used in the calculation; otherwise the zinc
blende structure was used instead. In all calculations the experimental lattice constants were used. The experimental band gaps are corrected
for the ZPR effect, i.e., E corr

g = Eg(T = 0) − �EZPR
g with the ZPR contribution �EZPR

g given in parentheses. Unless otherwise noted, the ZPR
term is estimated from a linear extrapolation of the experimental gap Eg(T ) to T = 0, as collected in Ref. [127].

FHI-aims WIEN2K 2cFHI-gap

Crystals Exp. (�EZPR
g ) PBE G0W0 (tier2) G0W0 (tier2+STO) PBE G0W0 (nLO = 0) G0W0 (nLO = 5)

AlAs 2.27(−0.039) 1.34(0.10) 2.03 2.23 1.34(0.10) 1.94 2.06
WZ-AlN 6.44(−0.239) 4.21 5.75 5.86 4.14 5.60 5.80
AlP 2.53(−0.023) 1.58 2.32 2.43 1.57 2.25 2.37
AlSb 1.73 (−0.039) 0.95(0.25) 1.47 1.70 1.03(0.22) 1.40 1.50
BAs 1.65(−0.151a) 1.19 1.85 1.91 1.19 1.78 1.83
BN 6.66(−0.262b) 4.46 6.32 6.31 4.46 6.04 6.36
BP 2.5,2.2 (−0.106d) 1.24 1.95 1.99 1.34 2.01 2.11
C 5.85(−0.370) 4.13 5.61 5.60 4.16 5.49 5.69
CdS – 1.16 1.98 2.06 1.14 1.94 2.06
WZ-CdS 2.64(−0.068) 1.17 1.97 2.05 1.20 2.02 2.19
GaN 3.64(−0.173) 1.61 2.70 2.96 1.68 2.78 3.00
GaP 2.43(−0.085) 1.64 2.15 2.14 1.66 2.05 2.21
LiCl 9.8 (−0.436d) 6.33 8.55 8.64 6.30 8.56 8.71
LiF 14.48(−0.281b) 9.20 13.79 13.49 9.28 13.36 14.27
MgO 7.98(−0.154b) 4.73 7.32 7.36 4.75 7.08 7.52
NaCl 8.6(−0.098c) 5.10 7.69 7.80 5.12 7.67 7.92
Si 1.23 (−0.064) 0.61 1.09 1.13 0.56 1.03 1.12
SiC 2.57 (−0.145c) 1.37 2.38 2.52 1.36 2.23 2.38
ZnO – 0.69 2.29 2.51 0.70 2.05 2.78
WZ-ZnO 3.60(−0.156) 0.82 2.46 2.70 0.83 2.24 3.01
MD −0.16 −0.08 −0.28
MAD 0.17 0.15 0.28

aTheoretical estimates in Ref. [121].
bTheoretical estimates in Ref. [122].
cTheoretical estimates in Ref. [123].
dTheoretical estimates in Ref. [124].

cc-pVDZ/TZ basis sets have to be excluded to circumvent
the linear-dependent problem noted above. On the other hand,
when this is done, the obtained G0W0@PBE band gap for
ZnO with such modified cc-pVTZ basis set is on par with
the more expensive “t ier2 + STO-spdf gh” basis set. This
observation points to the possibility of developing compact
and efficient NAO basis sets that are more suitable for all-
electron G0W0 calculations. More investigations along this
line are needed to arrive at more faithful conclusions.

V. BENCHMARK RESULTS

In the previous section, we have examined the convergence
behavior of the G0W0 band gaps with respect to three nu-
merical factors in our NAO-based implementation. Based on
the above convergence tests, it appears that 4 f (3.0)5g(3.0)
for_aux functions to generate extra ABFs guarantee a good
accuracy under the LRI approximation, and that a 8 × 8 ×
8 �-inclusive k point grid is adequate for the BZ sampling
(for insulators) in cubic structures. Regarding the one-electron

OBS, the FHI-aims-2009 tier 2 basis set seems to be adequate
for “simple” systems like Si or MgO, but for systems like
ZnO, complementing tier 2 with highly localized STOs gives
rise to to an increase of the band gap of 0.2 to 0.3 eV. In this
section, we will perform benchmark G0W0 calculations for a
set of semiconductors and insulators. For these calculations,
the 4 f (3.0)5g(3.0) for_aux functions are used throughout.
As for the k grid, an 8 × 8 × 8 mesh is used for all crystals
with cubic [zinc blende (ZB) for binary compounds] structure,
whereas a reduced 8 × 8 × 5 mesh is used for the wurzite
(WZ) structure. For one-electron OBS, both the “tier 2” and
“tier 2 + STO-spdf g” basis set will be used. This enables one
to assess the overall influence of the highly localized orbitals
on the computed G0W0 band gaps. Our results calculated in
this work will be compared to the reference values obtained
using the FHI-gap code [40,109].

In Table I we present our calculated PBE and G0W0@PBE
band gaps of 21 crystals, covering systems from small gap
semiconductors to wide gap insulators, formed with a wide
variety of chemical elements. For AlN, CdS, and ZnO,
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FIG. 7. Calculated G0W0 band gaps versus the experimental ones
for the materials presented in Table I. For materials where results of
both the ZB and WZ structures are calculated, only results for the WZ
structure results are presented. The experimental values are corrected
for the ZPR effect.

results for both ZB and WZ crystal structures are shown.
Also presented are the reference PBE and G0W0@PBE band
gap results obtained respectively by the WIEN2k [110] and
FHI-gap [40,109] codes, as well as the experimental band gap
values. The presented experimental values are corrected for
the zero-point renormalization (ZPR) effect,

E corr
g = Eg(T = 0) − �EZPR

g , (41)

with Eg(T = 0) being the experimental value extrapolated to
zero temperature, and �EZPR

g being the ZPR contribution. The
calculated G0W0@PBE gap values versus the experimental
ones are further presented graphically in Fig. 7. The WIEN2k
plus FHI-gap results are mostly taken from Ref. [90], except
for CdS and LiCl, which are computed for the first time in this
work. The FHI-gap calculations were done with 6 × 6 × 6 k
grid, but tests show that the G0W0 band gaps are well con-
verged with their own k point convergence strategy [40]. For
heavy elements where the spin-orbit coupling (SOC) effect is
significant, both the PBE and G0W0 band gaps are corrected by
a SOC term given in parentheses along with the PBE value.
In FHI-aims calculations, the SOC effect is treated using
the non-self-consistent second variational method following
a self-consistent scalar relativistic calculation [74]. Again the
PBE gaps show a remarkable level of agreement between FHI-
aims and WIEN2k. The FHI-gap G0W0 results were obtained
both with the standard LAPW basis set (nLO = 0) and with the
newly developed LAPW + HLOs prescription [111,117]. In
Ref. [90], Jiang and Blaha demonstrated the influence of the
addition of HLOs in the LAPW framework to the GW band
gaps of a sequence of materials. It was shown that both the
G0W0 and GW0 band gaps get enlarged when adding HLOs,
but the magnitude of the correction varies from system to
system, ranging from less than 0.1 eV to more than 0.7 eV.

From Table I, one may observe that, with few exceptions,
the FHI-aims G0W0@PBE results obtained with tier 2 basis
set are found in between the FHI-gap results obtained respec-
tively with the standard LAPW basis set and with the highly

TABLE II. Recently reported G0W0 band gaps for WZ-ZnO from
various implementations. In the “Framework” column, “AE” means
“all-electron” and “NCP” means norm-conserving pseudopotential.

G0W0 gap (eV)

Code Framework @LDA @PBE Ref.

FHI-aims AE + NAO 2.78 2.70 This work
FHI-gap LAPW – 3.01 [90]
Jüliech LAPW 2.99 – [117]
Exciting LAPW 2.94 – [41]
VASP PAW + PW 2.87 2.76 [32]
Yambo NCP + PW 2.8 – [130]
Abinit NCP + PW 2.8 – [130]
BerkeleyGW NCP + PW 2.8 – [130]
PySCF AE + GTO – 3.08 [108]

converged LAPW + HLOs basis set. This behavior can also
be clearly seen from the graphical presentation of the data in
Fig. 7. Actually, for about half of the materials, the FHI-aims
tier 2 results are fairly close (within 0.1 eV) to the FHI-gap
results with the LAPW + HLOs basis prescription, taken to
be the reference here. As indicated in Table I, the mean
deviation (MD) and mean absolute deviation (MAD) of the
FHI-aims tier 2 G0W0 results with respect to those obtained
from the LAPW + HLOs(nLO = 5) basis set (last column
in Table I) are substantially smaller than the corresponding
MD and MAD values for the standard LAPW G0W0 results.
However, for systems where the addition of HLOs has a
substantial influence, the FHI-aims tier 2 results also show
an appreciable underestimation of band gaps, as compared to
the LAPW + HLOs results. This is particularly true for ZnO,
LiF, NaCl, and GaN. A common feature of these materials is
that they have a strong ionic character and a direct band gap
at the � point. For ionic solids, the VBM and CBM originate
from different chemical elements (and orbital characters) and
hence may evolve differently as one increases the basis size,
leading to an overall slower convergence of the band gaps.

In particular, for ZnO, the G0W0 calculation is notoriously
difficult to converge with respect to the unoccupied states.
Since the remarkable finding of Shih et al. [128] that the ear-
lier GW calculations of ZnO were severely underconverged,
different GW implementations [32,41,90,117,129,130] have
been tested for this system. Although differing in details, most
GW codes yield a substantial increase of the band gap for
ZnO if the calculation is carefully converged with respect to
the unoccupied states. As already discussed above, within the
LAPW framework, adding the HLOs in the LAPW framework
increases the ZnO band gap by more than 0.7 eV [41,90,117].
Regarding the NAO basis set, Table I shows that, for both
ZB- and WZ-ZnO, our G0W0@PBE gap obtained with the
FHI-aims-2009 tier 2 basis set are larger by more than 0.2 eV
than the corresponding values obtained with the standard
LAPW basis set, but are about 0.5 eV smaller than the values
obtained with the fully converged LAPW + HLOs basis set.
As demonstrated in Sec. IV C 2, within our G0W0 imple-
mentation, complementing tier 2 with highly localized STOs
leads to an enlargement of 0.2 to 0.3 eV of the band gap for
ZB-ZnO. In Table II we accumulate the G0W0 band gap values
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for ZnO in wurzite structure from various implementations,
as reported in the literature recently. One can see that, despite
of the recent efforts, a scatter of 0.2–0.3 eV from different
G0W0 implementations is still visible.

We then perform G0W0@PBE calculations with the
“t ier2 + STO-spdf gh” basis set for all systems and the
obtained results are also presented in Table I. Close inspection
reveals that the actual impact brought by the localized STOs
varies from system to system. For most of the materials,
adding the STOs to tier 2 leads to an increase of the band gaps,
similar to the LAPW + HLOs case. Among these, there are
materials where the addition of STOs improves the FHI-aims
G0W0 band gaps towards the “reference” LAPW + HLOs
values. This is in particular true for ZnO, NaCl, GaN, LiCl,
and CdS where the improvement is substantial (∼0.1 eV or
bigger). However, there are also cases (i.e., AlAs, AlP, AlSb,
and SiC) where, after including the STOs, the FHI-aims
G0W0 band gap values exceed the LAPW + HLOs ones, and
the agreement between the two codes de facto deteriorates.
Finally, we note that in a couple of cases, the addition of
STOs leads to essentially no correction (C, BN, GaP) or a
negative correction (LiF). Due to the varying impacts of the
STOs, the MAD of the FHI-aims G0W0 band gaps obtained
with the “t ier2 + STO-spdf gh” basis set with reference to
the LAPW + HLOs ones does not show an appreciable im-
provement, although the MD value gets significantly reduced.

In the GW community, obtaining fully converged G0W0 re-
sults with respect to the one-electron OBS is of high academic
interest. In the NAO framework, complementing the standard
NAOs with highly localized STOs seems to offer a viable
route towards this goal. However, a systematic addition of
the STOs to the OBS, as described in Sec. IV C 2, leads to
a very large number of one-electron basis functions, and as a
consequence, the entire G0W0 calculation becomes one order
of magnitude more expensive (nine times more expensive in
case of NiO). This renders the combination of standard NAO
with highly localized STOs not a preferable scheme suitable
for routine calculations. Developing computationally more
affordable schemes to correct the basis set incompleteness
error for G0W0 calculations is of current interest [131–134].
In particular, correction schemes that account for the response
of the basis functions to the change of the effective potential
can significantly improve the level of convergence towards
the complete basis set limit [131–133]. This is because one
effectively goes beyond the Hilbert space defined by the one-
electron basis set by taking into account their variations upon
responding to perturbations. For practical purposes, we sug-
gest that the tier 2 basis set be used as the default choice
for periodic G0W0 calculations using FHI-aims. When nu-
merically highly accurate results (band gap values converged
within 0.1 eV or better) are needed, one can then check the
quality of the obtained G0W0 results by further adding STOs
to the OBS. Our preliminary investigations indicate that it is
highly possible to develop more compact NAO basis sets for
performing high-precision G0W0 calculations, especially if the
responses of basis functions can be efficiently included in the
computational scheme.

From this benchmark study, one may also judge that, al-
though the overall agreement of the two all-electron G0W0 im-
plementations based on different numerical techniques is

rather encouraging, the discrepancies for certain materials are
still too large to be acceptable. The level of agreement seen
for the DFT-PBE band structures has not been achieved yet
for G0W0 calculations. More investigations will be needed to
clarify the possible origins.

Finally one may notice that f -electron materials are not in-
cluded in the test set presented in Table I. Our implementation
is all-electron, and the core electron are included explicitly in
the calculation. Hence the materials containing f -electrons do
not pose formal difficulties. However, the convergence with
respect to one-electron NAO basis set, as discussed above,
will be even more challenging. We are currently testing our
implementation on such materials, and the results will be
reported in separate publications. The basis function response
correction as mentioned above will be of great help there.
In this paper, we described in detail the formulation and
algorithms of an all-electron periodic G0W0 implementation
within the NAO framework. To our knowledge, this is the
first all-electron NAO-based G0W0 implementation that works
with periodic boundary conditions. Our implementation was
carried out within the FHI-aims code package [59,67]. With
the achievement reported in this work, FHI-aims becomes a
code that allows one to carry out both molecular and periodic
G0W0 calculations, in an all-electron fashion, within a unified
numerical framework. We performed systematic convergence
tests, and identified a set of computational parameters that
can be used as default settings in G0W0 calculations to obtain
reliable results. With such a default setting, we benchmarked
our implementation by computing G0W0@PBE band gaps for
a set of semiconductors and insulators, and compared the
obtained band gaps to the independent Wien2k plus FHI-gap
[40,109] results. We found that, with the standard NAO tier 2
basis, one can obtain band gaps that are already in fairly good
agreement with those obtained by FHI-gap with highly accu-
rate LAPW + HLOs basis set. Challenging situations do exist,
like the famous ZnO example, where NAOs suffer from a sim-
ilar one-electron basis under-convergence issue as other basis
frameworks do, though to a somewhat less extent. Comple-
menting the FHI-aims-2009 tier 2 NAO basis set with highly
localized STOs, one obtains appreciable improvements of the
band gap value for a fraction of the materials, including ZnO.
However, the computational scheme by complementing NAOs
with highly localized STO is extremely expensive and is not
suitable for routine calculations. For most practical purposes,
we recommend to use the FHI-aims-2009 NAO tier 2 basis
set, which delivers useful accuracy. Importantly, even this
level of G0W0 calculations can significantly improve over the
computationally cheaper but more empirical hybrid density
functional approximations. While hybrid DFT calculations
are much more readily convergeable to the complete basis set
limit, they cannot be parameterized to fully represent the local
electronic structure variations in hybrid materials with con-
ceptually different components (e.g., organic-inorganic inter-
faces). In contrast, G0W0 , with practically affordable basis set,
can provide a much more uniform level of theory that encom-
passes the locally relevant screening effects in a natural way.

The compactness and locality of NAOs in principles enable
efficient periodic GW implementations, allowing for tackling
complex materials at reduced cost. Our benchmark calcula-
tions show that high-quality GW results can be obtained using
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modest NAO basis sets, except for some challenging sys-
tems. Generating compact NAO basis sets that can efficiently
represent unoccupied Hilbert space is highly desirable, but re-
quires considerably more efforts that goes beyond the scope of
the present work. In this endeavor, independent implementa-
tions using systematic basis sets such as LAPW + HLOs will
provides invaluable reference results for benchmark purposes.

Our implementation is massively parallel. Due to the local
nature of our basis set, our implementation can be readily
applied to 1D and 2D systems. Benchmark calculations for
the efficiency and scalability of our implementation, as well
as its performance for systems with lower dimensions, will
be presented in a future paper. Finally we are also working to
extend our implementation to treat metallic systems.

VI. CONCLUSION AND OUTLOOK

In this paper, we described in detail the formulation and
algorithms of an all-electron periodic G0W0 implementation
within the NAO framework. To our knowledge, this is the
first all-electron NAO-based G0W0 implementation that works
with periodic boundary conditions. Our implementation was
carried out within the FHI-aims code package [59,67]. With
the achievement reported in this work, FHI-aims becomes a
code that allows one to carry out both molecular and periodic
G0W0 calculations, in an all-electron fashion, within a unified
numerical framework. We performed systematic convergence
tests, and identified a set of computational parameters that
can be used as default settings in G0W0 calculations to obtain
reliable results. With such a default setting, we benchmarked
our implementation by computing G0W0@PBE band gaps for
a set of semiconductors and insulators, and compared the
obtained band gaps to the independent Wien2k plus FHI-gap
[40,109] results. We found that, with the standard NAO tier 2
basis, one can obtain band gaps that are already in fairly good
agreement with those obtained by FHI-gap with a highly accu-
rate LAPW + HLOs basis set. Challenging situations do exist,
like the famous ZnO example, where NAOs suffer from a sim-
ilar one-electron basis under-convergence issue as other basis
frameworks do, though to a somewhat less extent. Comple-
menting the FHI-aims-2009 tier 2 NAO basis set with highly
localized STOs, one obtains appreciable improvements of the
band gap value for a fraction of the materials, including ZnO.
However, the computational scheme by complementing NAOs

with highly localized STO is extremely expensive, and is not
suitable for routine calculations. For most practical purposes,
we recommend using the FHI-aims-2009 NAO tier 2 basis
set, which delivers useful accuracy. Importantly, even this
level of G0W0 calculations can significantly improve over the
computationally cheaper but more empirical hybrid density
functional approximations. While hybrid DFT calculations
are much more readily convergeable to the complete basis
set limit, they cannot be parameterized to fully represent the
local electronic structure variations in hybrid materials with
conceptually different components (e.g., organic-inorganic in-
terfaces). In contrast, G0W0 , with practically affordable basis
set, can provide a much more uniform level of theory that
encompasses the locally relevant screening effects in a natural
way.

The compactness and locality of NAOs in principles enable
efficient periodic GW implementations, allowing for tackling
complex materials at reduced cost. Our benchmark calcula-
tions show that high-quality GW results can be obtained using
modest NAO basis sets, except for some challenging systems.
Generating compact NAO basis sets that can efficiently repre-
sent unoccupied Hilbert space is highly desirable, but requires
considerably more efforts that goes beyond the scope of the
present work. In this endeavor, independent implementations
using systematic basis sets such as LAPW + HLOs will pro-
vides invaluable reference results for benchmark purposes.

Our implementation is massively parallel. Due to the local
nature of our basis set, our implementation can be readily
applied to 1D and 2D systems. Benchmark calculations for
the efficiency and scalability of our implementation, as well
as its performance for systems with lower dimensions, will
be presented in a future paper. Finally we are also working to
extend our implementation to treat metallic systems.
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[121] I. Bravić and B. Monserrat, Phys. Rev. Mater. 3, 065402

(2019).
[122] G. Antonius, S. Poncé, E. Lantagne-Hurtubise, G. Auclair,

X. Gonze, and M. Côté, Phys. Rev. B 92, 085137 (2015).
[123] Y. Zhang, Z. Wang, J. Xi, and J. Yang, J. Phys.: Condens.

Matter 32, 475503 (2020).
[124] Honghui Shang, Jin Zhao, and Jinlong Yang (unpublished).
[125] T. Chiang, K. Frank, H. Freund, A. Goldmann, F. J. Himpsel,

U. Karlsson, R. Leckey, and W. Schneider, Landolt-Börnstein,
New Series, III/23a: Electronic Structure of Solids: Photoemis-
sion Spectra and Related Data (Springer, Berlin, 1989).

[126] O. Madelung, Semiconductors: Data Handbook, 3rd ed.
(Springer-Verlag, New York, 2004).

[127] M. Cardona and M. L. W. Thewalt, Rev. Mod. Phys. 77, 1173
(2005).

[128] B.-C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie,
Phys. Rev. Lett. 105, 146401 (2010).

[129] M. Stankovski, G. Antonius, D. Waroquiers, A. Miglio, H.
Dixit, K. Sankaran, M. Giantomassi, X. Gonze, M. Côté, and
G.-M. Rignanese, Phys. Rev. B 84, 241201(R) (2011).

[130] T. Rangel, M. Del Ben, D. Varsano, G. Antonius, F. Bruneval,
F. H. da Jornada, M. J.van Setten, O. K. Orhan, D. D. O’Regan,
A. Canning et al., Comput. Phys. Commun. 255, 107242
(2020).

[131] M. Betzinger, C. Friedrich, A. Görling, and S. Blügel, Phys.
Rev. B 85, 245124 (2012).

[132] M. Betzinger, C. Friedrich, and S. Blügel, Phys. Rev. B 88,
075130 (2013).

[133] M. Betzinger, C. Friedrich, A. Görling, and S. Blügel, Phys.
Rev. B 92, 245101 (2015).

[134] P.-F. Loos, B. Pradines, A. Scemama, E. Giner, and J.
Toulouse, J. Chem. Theory Comput. 16, 1018 (2020).

013807-20

https://doi.org/10.1016/0009-2614(93)87156-W
https://doi.org/10.1016/0009-2614(93)89151-7
https://doi.org/10.1016/S0009-2614(98)00862-8
https://doi.org/10.1063/1.1316015
https://doi.org/10.1103/PhysRevB.59.1743
https://doi.org/10.1088/0953-8984/14/11/302
http://www.openmx-square.org
https://doi.org/10.1016/j.cpc.2009.08.006
https://doi.org/10.1016/j.commatsci.2015.07.004
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1021/acs.jctc.8b00458
https://doi.org/10.1103/PhysRevB.49.16214
https://doi.org/10.1103/PhysRevB.93.115203
https://doi.org/10.1103/PhysRevB.33.7017
https://doi.org/10.1103/PhysRevB.35.5585
https://doi.org/10.1002/jcc.23284
https://doi.org/10.1021/acs.jctc.7b00801
https://doi.org/10.1016/0021-9991(78)90107-9
https://doi.org/10.1063/1.446963
https://doi.org/10.1002/qua.10538
https://doi.org/10.1103/PhysRevB.85.155129
https://doi.org/10.1103/PhysRevB.94.165109
https://doi.org/10.1063/1.5123290
https://doi.org/10.1088/1367-2630/15/12/123033
https://doi.org/10.1063/1.456153
https://doi.org/10.1103/PhysRevB.34.4405
https://doi.org/10.1103/PhysRevB.77.193110
https://doi.org/10.1103/PhysRevB.87.165122
https://doi.org/10.1016/j.cpc.2006.03.005
https://doi.org/10.1103/PhysRevB.48.5058
https://doi.org/10.1021/acs.jctc.0c00704
https://doi.org/10.1103/PhysRevLett.101.106404
https://doi.org/10.1103/PhysRevB.89.014402
https://doi.org/10.1103/PhysRevB.100.205123
https://doi.org/10.1103/PhysRevB.97.245132
https://doi.org/10.1039/b508541a
https://doi.org/10.1063/1.473863
https://doi.org/10.1088/1367-2630/aaf751
https://doi.org/10.1103/PhysRevB.83.081101
https://doi.org/10.1063/1.1679962
https://doi.org/10.1063/1.1733984
https://doi.org/10.1002/qua.22090
https://doi.org/10.1103/PhysRevMaterials.3.065402
https://doi.org/10.1103/PhysRevB.92.085137
https://doi.org/10.1088/1361-648X/aba45d
https://doi.org/10.1103/RevModPhys.77.1173
https://doi.org/10.1103/PhysRevLett.105.146401
https://doi.org/10.1103/PhysRevB.84.241201
https://doi.org/10.1016/j.cpc.2020.107242
https://doi.org/10.1103/PhysRevB.85.245124
https://doi.org/10.1103/PhysRevB.88.075130
https://doi.org/10.1103/PhysRevB.92.245101
https://doi.org/10.1021/acs.jctc.9b01067

