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We propose a data assimilation method for evaluating the finite-temperature magnetization of a permanent
magnet over a high-dimensional composition space. Based on a general framework for constructing a predictor
from two data sets including missing values, a practical scheme for magnetic materials is formulated in which
a small number of experimental data in limited composition space are integrated with a larger number of
first-principles calculation data. We apply the scheme to (Nd1−α−β−γ PrαLaβCeγ )2(Fe1−δ−ζ CoδNiζ )14B. The
magnetization in the whole (α, β, γ , δ, ζ ) space at arbitrary temperature is obtained. It is shown that the Co
doping does not enhance the magnetization at low temperatures, whereas the magnetization increases with
increasing δ above 320 K.
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I. INTRODUCTION

Even more than 30 years after the development of
neodymium magnet [1,2], there has still been continuing ef-
fort in developing rare-earth permanent magnets. One of the
central incentives for the development is the resource critical-
ity issue. Rare-earth permanent magnets of current industrial
use heavily rely on certain rare-earth resources. The main
phase of the neodymium magnet is Nd2Fe14B which contains
substantial amount of neodymium. More critical dysprosium
is added to enhance the coercivity, while other rare earths such
as lanthanum and cerium are abundant. Hence, more balanced
utilization of them is an important issue, especially given
geologic scarcity and political volatility of the former. While
Nd2Fe14B is famous for its strong saturation magnetization
at room temperature, it is also known to have relatively low
Curie temperature compared to more traditional permanent
rare-earth magnets such as Sm2Co17. Finding a rare-earth
magnet with better balance between saturation magnetization
and heat resistance thus deserves extensive efforts [3].

One of the most common approaches toward improvement
of rare-earth permanent magnets has been partial substitution,
where practitioners replace some elements of a particular
mother compound (e.g., Sm2Co17 and Nd2Fe14B) with other
ones [4]. Even though the “full” substitution (e.g., from
Nd2Fe14B to Ce2Fe14B) does not work quite well due to the
inferior magnetic properties of the resulting compound [5],
there still is possibility that better performance compared to
the mother compound may be achieved by properly setting the
ratio of the substitution. This is evidenced by the celebrated
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Slater-Pauling curve in 3d transition metal alloys. An example
in rare-earth magnets is a recent report for Sm(Fe1−xCox )12,
where the magnetization at and above room temperature in-
creases with increasing cobalt concentration [6]. These results
indicate the importance of searching the optimal chemical
composition in a widespread landscape.

The brute-force strategy, however, quickly runs into diffi-
culty as the number of candidates for substituents becomes
large. This is a typical manifestation of the notorious “curse
of dimensionality” [7]; the number of samples needed for
uniform sampling scales exponentially with respect to the
number of the candidates. Meanwhile, experimental prepara-
tion of a permanent magnet involves many time-consuming
processes (such as hydrogen decrepitation and annealing),
each of which takes one to tens of hours. Thus, it is obviously
infeasible to experimentally perform uniform and dense study
over the entire parameter space in question. In order to deal
with the curse, practitioners usually restrict their investiga-
tions on a rather tiny subset of the parameter space, typically
by restricting the number of constituent elements [8] or by
fixing the ratio between elements [9]. While such a treatment
is quite useful for studying certain aspects of magnetic com-
pounds, it comes at a cost of sampling bias and thereby at a
risk of overlooking a truly optimal compound even within the
predetermined parameter space. Hence, a less biased but still
manageable (in terms of the number of experimental trials)
approach is highly desirable.

On the other hand, recent development of high-throughput
calculation techniques enables us to perform first-principles
calculation of thousands of rare-earth magnet compounds
[10–12]. This is a powerful tool to capture trends over wide
parameter space. However, it contains a systematic error. One
remedy we consider in this work is to perform so-called
multitask learning on the data obtained from experiments and
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those from the first-principles calculations. Multitask learning
is an approach to improve prediction capability by learn-
ing multiple tasks simultaneously (not separately as classical
machine-learning frameworks do). By doing so, one can uti-
lize the hidden relationships among the tasks at hand. Given
that the computational results are expected to be strongly
correlated with experimental ones, it is natural to argue that
the multitask learning may also work in this case, although the
first-principles calculations do involve simplifying approxi-
mations [13] and hence validity of them should be examined
with care.

In this work, we overcome the challenge by assim-
ilating a limited number of experimental magnetization
data and systematic first-principles calculation. The exper-
imental small data are supplemented by the first-principles
calculation data, whereas systematic error contained in
the latter is corrected by the former. While we fo-
cus on Nd2Fe14B type compounds [or, more specifically,
(Nd1−α−β−γ PrαLaβCeγ )2(Fe1−δ−ζ CoδNiζ )14B] because of
their practical relevance, we expect that the approach can be
easily applied to other types of compounds. Apart from the
methodology, we present analysis of the saturation magne-
tization at various temperatures in the entire (α, β, γ , δ, ζ )
space. We show that the magnetization of partially substi-
tuted systems considerably deviates from the value linearly
interpolated from end points. In particular, increase in cobalt
concentration enhances the magnetization above 320 K, and
we discuss the origin of the enhancement focusing on magne-
tization at zero temperature and Curie temperature.

The rest of this paper is organized as follows: In Sec. II,
we formulate the present framework of the data assimilation.
This section also includes the test of the framework using
some toy data. In Sec. III, we apply the present framework to
magnet compound and discuss the implication of the results.
We conclude the paper in Sec. IV.

II. DATA ASSIMILATION: FORMALISM

We begin this section by introducing some notations and
clarifying the objectives. Suppose we would like to model the
target variable y ∈ Rq as a function of the descriptor x ∈ Rp

with some noise ε:

y = f (x) + ε. (1)

For example, in the cases discussed in the following sections,
an element of x is a monomial up to the second-order power in
the concentrations of component elements, whereas elements
of y represent the computational and the experimental values
of either the magnetization or the Curie temperature. In the
present context, p may or may not be larger than one, but
q must, because y is supposed to contain both experimental
and computational results. As for the model f , we consider a
problem of linear regression, on which the multitask learning
has been extensively studied [14]:

f (x) = W x =
⎛
⎝w1 · x

...

wq · x

⎞
⎠. (2)

Now, the problem is to estimate the coefficient matrix W ∈
Rq×p from given q sets of empirical data {{(xn;i, yn;i )}Ni

n=1}q
i=1.

In general, values of sampled data (xn;i, yn;i ) and the number
of samples Ni are not identical among q components. One can
construct an ordinary least-square (OLS) estimator for each
wi (i = 1, . . . , q), provided that it exists:

ŵOLS;i = (
X T

i Xi
)−1

X T
i Y i, (3)

where

Xi =
⎛
⎝ xT

1;i
...

xT
Ni;i

⎞
⎠, Y i =

⎛
⎝ y1;i

...

yNi;i

⎞
⎠. (4)

It is also important to note that the OLS estimator is known to
be the best linear unbiased estimator: that is, it has the smallest
variance among all linear unbiased estimates [15]. However,
restricting our interest to unbiased estimates is not necessarily
the wisest decision we can make. In the present case, the
target variables are one physical quantity obtained by different
ways: experimental and theoretical approaches. Ideally, wi are
equivalent among these ways, but they are not in practice.
This discrepancy can be resolved by assimilating those data.
We could construct a slightly biased estimator, with an aid
of correlation between multiple outputs yi (i = 1, . . . , q), to
achieve a better tradeoff between bias and variance. The focus
of the rest of this section is on the construction of such an
estimator.

In order to formulate our approach, we hereafter assume
that the descriptor x and the target y jointly follow the multi-
variate Gaussian distribution:

p(y, x; �) = 1√
(2π )d |�|

exp

(
−1

2
zT �−1z

)
, (5)

where � is a positive-definite (and thereby symmetric) co-
variance matrix and zT := (yT , xT ). For later convenience, we
use a precision matrix 	 := �−1. The component of 	 is
represented as

	 =
(

	yy 	yx

	T
yx 	xx

)
. (6)

Then, the probability distribution of y conditional on x can be
easily found:

p(y|x; 	) =
√

|	yy|
(2π )d

exp

(
−1

2
(y − μ)T 	yy(y − μ)

)
, (7)

where

μ = −(	yy)−1	yxx. (8)

Since Eq. (8) defines the regression coefficient matrix of y
with respect to x, the central task here is to estimate the matrix
from the data. In this work, we employ maximum likelihood
estimation: that is, we consider a problem of maximization of
the following log-likelihood function L(	|{(xn, yn)}N

n=1):

L
(
	yy,	yx

∣∣{(xn, yn)}N
n=1

) =
∑

n

log p(yn|xn; 	). (9)

Here, we note that, even though the original precision matrix
	 has (p + q)(p + q + 1)/2 independent elements, optimiza-
tion of only 	yy and 	yx suffices as far as estimation of μ is
concerned.
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Until here, the present formulation is fairly general [un-
der the assumption of (5), at least], and we did not assume
any further relations between the target variables. Although
combining multiple measurements may be beneficial for a
better estimation (in terms of combined error) even when
underlying mechanisms of those outputs are completely in-
dependent [16,17], it is usually advisable to incorporate a
relation between the outputs during the estimation process
(when reasonably possible). This is particularly true when
data for some target variables are substantially harder to
gather than the others, but one has a good guess over the
relation between these two.

In order to introduce a bias (correlation) to our estimator,
we postulate that the experimental values yexpt (x) can be rep-
resented by a scalar multiplication of the prediction ycomp(x)
derived from computational data and a residual part R(x)
which involves substantially fewer terms than those originally
considered for modeling the computational results (hereafter
we assume q = 2, and refer to y1 as computational output
ycomp and y2 as experimental output yexpt)

yexpt (x) = Cycomp(x) + R(x), (10)

where

R(x) := wres · xproj. (11)

Here, wres ∈ Rr (r < p) and xproj is a natural projection of x
onto the parameter space of relevant descriptors. This assump-
tion can be easily implemented on the present formulation by
enforcing

	yexpt,i = 0 for i ∈ irrelevant descriptors. (12)

This indicates that yexpt only indirectly correlates with the ith
descriptor through other variables. In this case, C in Eq. (10)
can be expressed in terms of 	yy:

C = 	yexpt,ycomp/	ycomp,ycomp . (13)

While the description of the present framework is concep-
tually complete up to here, we have to face with one more
complication in practice. A central concern here is that we
usually have the smaller number Nexpt of experimental data
than that Ncomp of computational ones, thus, some data have
a missing value in either yexpt or ycomp. Although one may
simply discard such missing pairs during the analysis, one
could not benefit from abundance of computational data in this
approach and hence the estimates could not be very efficient.

In order to address this issue, we use the direct likelihood.
The idea behind the direct likelihood is that we integrate out
the missing variable. The direct likelihood is written as

L
(
	yy,	yx

∣∣{(xn, yn)}N
n=1

) =
∑

n∈
comp,expt

log p(yn|xn; 	)

+
∑

n∈
comp

log pcomp(ycomp,n|xn; 	)

+
∑

n∈
expt

log pexpt (yexpt,n|xn; 	)

(14)

by decomposing a sample set into three subsets 
comp,expt

where both the experimental and computational data are

available, and 
expt, 
comp where either of the two is miss-
ing (for example, samples in 
expt only contain experimental
data). The distributions for the missing data are

p� (y�|x; 	) =
∫

dy�̄ p(y�, y�̄|x; 	) (15)

=
√

|	̄��|
2π

exp

(
−1

2
(y� − μ� )	̄�� (y� − μ� )

)
, (16)

where

	̄�� := 	�� − 	��̄	−1
�̄�̄

	�̄�, (17)

and a pair of (�, �̄) represents either (expt, comp) or
(comp, expt). Use of the direct likelihood is justified by the
fact that the absence of data is simply a matter of design of the
measurements in this case and hence unrelated to the values
that have been missed [in other words, data are missing at
random (albeit not completely) in the sense of Rubin [18]].

Then, we optimize 	yy and the relevant part of 	yx for
Eq. (14). The optimization problem can be computationally
solved using the limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm [19,20] with simple box constraints
(L-BFGS-B) [21].

To see features of the method, we applied it to a toy data.
The toy data were generated from two true models

fi(x) = 2 − x + 5(x − 0.7)2 + 20(x − 0.5)3, (18)

fii(x) = fi(x) − 1.5, (19)

where x is an input parameter and the descriptor consists of
(1, x, x2, x3). The data (i) and (ii) mimic computational and
experimental data, respectively. 10 samples for model (i) and 5
for model (ii) were sampled randomly. Noise was applied with
widths 0.03 for yi and 0.1 for yii, respectively. An example
sample data and a result of the assimilation are shown in
Fig. 1. Although the sampled values of descriptors do not
match between the two models, the prediction well agree with
the true model. We also compared with a simple least-square
fitting for these models separately. For the model (i), the OLS
fit agrees with the true model as well as the assimilation.
For the model (ii), however, the OLS fit disagrees with the
true model for 0.5 < x < 1.0, whereas, the assimilation well
predicts the true model even for that region.

The remaining issue is to determine the list of candidates
for descriptors. Since, as we will see in Sec. III, the behavior
of the quantities of interest (e.g., magnetization, Curie tem-
perature) is rather simple and we do not expect to encounter
a singular point where these quantities diverge, it suffices to
model them by polynomial functions of the concentration
of each element. More specifically, we modeled the first-
principles results by a second-order polynomial function:

ycomp =
∑

iα+iβ+iγ +iδ+iζ �2

ciα iβ iγ iδ iζ α
iαβ iβ γ iγ δiδ ζ iζ , (20)

where α, β, γ , δ, and ζ denote, respectively, the concentration
of Pr, La, Ce, Co, and Ni. As for the list of candidates for
relevant descriptors for R in Eq. (10), we considered a constant
term for the magnetization, and constant and δ linear terms for
the Curie temperature.
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FIG. 1. An example for the data assimilation. The true models
are given by hand as (i) (blue solid curve) and (ii) (violet solid curve).
Sample data generated from the true models are shown as blue
squares and violet points. The prediction from the data assimilation
is shown as red for the model (i) and cyan for the model (ii). The
prediction from the OLS fit is also shown as a dotted-dashed line for
comparison.

III. MAGNETIZATION OF (Nd,Pr,La,Ce)2(Fe,Co,Ni)14B

A. Data assimilation for magnetization

Now that we have introduced a general procedure for the
data assimilation, the next step is to apply the methodology
to build up a flexible framework for predictions of the essen-
tial properties of the magnetic compounds. By “flexibility”
we mean the ability to predict the properties at an arbitrary
temperature, in addition to one for arbitrary combination of
the doping concentrations.

A problem here is that both the experiments and first-
principles calculations suffer from their limitations. On one
hand, experiments are hard to perform at an arbitrary con-
dition due to, e.g., difficulty in synthesis and limitation in
experimental facilities. On the other hand, density func-
tional theory (DFT) [22,23], on which our first-principles
calculation are based, rely on an approximation to the
exchange-correlation functional in practical applications. Fur-
thermore, DFT only address the ground-state property of the
system (in other words, the system at 0 K). Finite-temperature
magnetism such as Curie temperature can be evaluated by
combining DFT with a mean field theory of classical spin
dynamics [24,25]. However, quantitative agreement with ex-
periments is limited. Magnetism is a consequence of quantum
many-body effect, which requires sophisticated theoretical
treatment. Therefore, the experiments and the calculations are
in a sense complementary to each other.

To fix this problem, we introduce a practical scheme to
estimate the finite-temperature magnetization. The scheme
consists of the following four steps and its flowchart is illus-
trated in Fig. 2.

Step 1-1. We prepared 119 experimental samples
of (Nd1−α−β−γ PrαLaβCeγ )2(Fe1−δ−ζ CoδNiζ )14B, each of
which has different chemical composition (this includes
one sample value extracted from Refs. [26,27]). The

FIG. 2. Flowchart of data assimilation method for finite-
temperature magnetization.

magnetization μ0M(T ) of each sample was measured at 3–7
temperatures within a range from 300 to 473 K. Experi-
mental details can be found in Appendix A. We converted
μ0M(T ) into the Curie temperature TC and the magneti-
zation μ0M(T = 0) at 0 K, which can then be directly
compared to the computational results. To do this, we re-
ferred to Kuz’min’s empirical formula for magnetization
[28]:

μ0M(T ) = μ0M0
[
1 − st

3
2 − (1 − s)t

5
2
] 1

3 , (21)

where t := T/TC, μ0M0 := μ0M(T = 0), and s is a phe-
nomenological shape parameter specific to the compound
[29,30]. For each chemical composition, μ0M0 and TC were
obtained by the least-square fitting. Following Ref. [31], we
fixed s to be 0.6 in this work. (To be more accurate, s could be
fitted as well as μ0M0 and TC.) An example for Nd2Fe14B is
shown in Fig. 3.

We note that the model to convert experimental data can
be replaced with another model, e.g., a two-sublattice model
[2,32,33]. We show an example for Nd2Fe14B in Appendix B.
This will be important for fitting more complicated tempera-
ture dependence of magnetization.
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FIG. 3. The magnetization of Nd2Fe14B as a function of temper-
ature. The violet points denote the experimental observation. The red
dashed curve is a regression curve derived from a least-square fitting
to Eq. (21). The obtained values for μ0M(T = 0 K) and TC are also
shown.

Step 1-2. On the theoretical side, we calculated the μ0M0

and TC following the method explained in Appendices C and
D. The calculations were performed for 2869 compositions
uniformly distributed in the (α, β, γ , δ, ζ ) space.

Step 2. We then applied the data assimilation method to
the obtained μ0M0 and TC. We adopted the following regres-
sion models:

μ0Mcomp
0 (α, β, γ , δ, ζ ) =

∑
I

Mcomp
I αiαβ iβ γ iγ δiδ ζ iζ , (22)

T comp
C (α, β, γ , δ, ζ ) =

∑
I

T comp
I αiαβ iβ γ iγ δiδ ζ iζ , (23)

where I := (iα, iβ, iγ , iδ, iζ ). Both quantities were expanded
up to the quadratic terms, namely 0 � ∑

j i j � 2. We as-
sumed that the experimental data are correlated with the
computational data as follows:

μ0Mexpt
0 (α, β, γ , δ, ζ ) = Cmμ0Mcomp

0 (α, β, γ , δ, ζ ) + m0,

(24)

T expt
C (α, β, γ , δ, ζ ) = Ct T

comp
C (α, β, γ , δ, ζ ) + t0 + t1δ.

(25)

The coefficients {Mcomp
I }I , Cm, m0 and {T comp

I }I , Ct , t0, t1 were
determined by optimizing the likelihood (14) in terms of the
parameters of the multivariate normal distribution 	yy and
	yx. Then, the coefficients were given by −(	yy)−1	yx as
mentioned at Eq. (8).

In general, we may include higher-order terms to make a
prediction model more flexible and accurate, which brings
complexity in the determination of the coefficients in the
prediction model. In the present case, we included the linear
term of δ in Eq. (25) and we will discuss that point later.

Step 3. The above data assimilation gives model functions
for μ0M0 = μ0Mexpt

0 and TC = T expt
C at arbitrary composition.

Applying Kuz’min’s formula (21) to these data, we estimate
μ0M at finite temperature. In this way, we can predict the

experimental magnetization at arbitrary point in the (5 + 1)-
dimensional space spanned by α, β, γ , δ, ζ , and T .

B. Results and discussion

Figure 4 shows color maps of the magnetization on (β, γ ),
(β, δ), (γ , δ) planes at 0, 300, and 400 K, where other vari-
ables in α, β, γ , δ, ζ are set to zero in each case. We see
that the contour lines are not straight. This means that the
magnetization varies nonlinearly in the composition space.
The experimental data are unevenly distributed, which are
interpolated and extrapolated over the wide composition space
with the help of computational data by the data assimilation
method.

Figure 5 is a comparison of μ0M at T = 300 K between
measured values and prediction by data assimilation and OLS
fit along the β, γ , and δ axes. Estimated root-mean-square
errors between the predictions and the experimental data at
300 K are 0.085 T for the assimilation and 0.067 T for the
OLS fit. It can be seen that both the predictions are able to
predict the sampled experimental data, however, the OLS-fit
model extremely decreases at the high-δ region where sam-
ple points are absent. This seems to be typical behavior of
overfitted models in which sampled data are well described
while prediction is sacrificed. On the other hand, the extreme
decrease is not observed in the present assimilation method.
The validity of prediction at the region can not be verified
since there are no experimental sample data there. Instead, we
next examine the generalizability of the predictions.

In order to examine the generalizability of the data assim-
ilation method in comparison with the straightforward OLS
fit, we performed 10-fold cross validation for the experimental
μ0M0 and TC. The experimental data were randomly divided
into 10 groups. One of the groups was taken as test data and
the remaining were used for training. The data assimilation
was applied to the training data along with the whole com-
putational data, then the root-mean-square error between the
predicted experimental value and the test data was evaluated.
10 error values were obtained by changing test data to another
group. We iterated 10 sets of this procedure, and took an
average of the errors. For the OLS fit, we used the training
data only (without computational data). As demonstrated in
the upper half of Table I, the average error of the present
methodology was found to be significantly smaller than that
of the OLS fit, indicating high generalizability of the former.
The advantage of the data assimilation compared to the OLS

TABLE I. Root-mean-square error for the assimilated predic-
tions TC and μ0M0, corresponding to the components for the
experiment. The error for both the 10-fold cross validation (CV) and
the extrapolation are shown. In the extrapolation, the test data are the
experimental data in the range of α � 0.5. For comparison, results of
the OLS fit are also shown.

OLS fit Data assimilation

10-fold CV TC (K) 172.5 43.8
μ0M0 (T) 0.719 0.092

Extrapolation TC (K) 854.6 46.8
μ0M0 (T) 6.180 0.097

013806-5



YOSUKE HARASHIMA et al. PHYSICAL REVIEW MATERIALS 5, 013806 (2021)

FIG. 4. Color map of the magnetization μ0M(α = 0, β, γ , δ, ζ = 0, T ) at T = 0, 300, and 400 K. Experimental values, estimated by the
data assimilation method, on (β, γ , δ = 0), (β, γ = 0, δ), and (β = 0, γ , δ) planes are shown. The values of the magnetization are described
in Tesla. Blue squares are sampling points of the first-principles calculation data and violet points are those of the experimental data. Contour
lines are also shown with interval of 0.1 T. Note that the upper triangle region on the (β, γ ) plane is irrelevant because β + γ cannot exceed 1.

fit is more drastic when the test data are distributed outside the
region of training data. To see how the data assimilation works
in the case of “extrapolation,” we extracted the experimental
data with α > 0.5 as test data and used the remaining data
as training data. The data assimilation and the OLS fit were
applied to the training data as done for the cross validation.
The estimated error is shown in the lower half of Table I. It
indicates that the data assimilation extrapolates both μ0M0

and TC within permissible ranges of errors, while the OLS fit
breaks down.

Coming back to Fig. 4, the predicted magnetization gives
us useful information for Co substitution. The magnetiza-
tion monotonically decreases with increasing δ at T = 0
and 300 K, whereas a Slater-Pauling–type peak is found as
a function of δ at 400 K. This is in sharp contrast with
bcc-(Fe,Co), where Co doping up to ∼30% enhances the
magnetization in the whole temperature region. This indicates
that Co substitution enhances the magnetization at high tem-
peratures via enhancement of the Curie temperature, but not
via enhancement of the magnetization at zero temperature.

FIG. 5. Prediction (red solid lines) for the magnetization μ0M at T = 300 K is shown along (0, β, 0, 0, 0), (0, 0, γ , 0, 0), and (0, 0, 0, δ, 0).
Corresponding result for the OLS fit is shown as dark red dashed lines. Violet points indicate the experimental sample data observed at 300 K.
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FIG. 6. Co concentration dependence of the Curie temperature of
Nd2(Fe1−δCoδ )14B. Blue squares denote the first-principles data and
violet points denote the experimental data.

In Sm(Fe, Co)12, such reduction of the magnetization at zero
temperature and enhancement of the Curie temperature by Co
doping have been also observed in experiment [6].

This conclusion is based on the fact that the TC increases
with the Co concentration. However, it contains a tricky prob-

lem in the first-principles calculation. Figure 6 shows the
Co concentration dependence of TC obtained by the experi-
ment (step 1-1 in Fig. 2) and by first-principles calculation
(step 1-2). As seen in the figure, the calculated value decreases
as the concentration increases, i.e., the trend is opposite from
that of experiment. This discrepancy originates from theoret-
ical errors in the first-principles data, which are systematic
errors but not accidental ones. It is a hard task to reduce
the errors by improving approximations contained in the-
oretical methods. However, such systematic errors can be
complemented by the data assimilation if there is a correla-
tion between computational data and experimental data, even
though the correlation is negative. In our scheme, the negative
correlation in TC is expressed by the linear term in the right
side of Eq. (25).

Figures 7(a) and 7(b) show scatter plots of the magneti-
zation at 300 and 400 K, respectively, where the predicted
magnetizations on uniform mesh points are plotted against
the sum of Nd and Pr concentration (1 − β − γ ), which can
be regarded as the ratio of critical rare earths in the present
system. The dotted straight line connects the magnetizations
of two systems: La2Fe14B and Nd2Fe14B. While all the points
are below the dotted line at 300 K, some points appear above
the line at 400 K. This is attributed to the enhancement
of the magnetization at high temperatures by Co doping.
The maximum magnetization at T = 400 K is achieved in

FIG. 7. Scatter plots of the magnetization at (a) 300 K and (b) 400 K as a function of Nd and Pr concentration (1 − β − γ ). The
dotted straight line connects the magnetizations of two systems: La2Fe14B and Nd2Fe14B. (c) Cobalt concentration associated with chemical
composition giving maximum magnetization. The horizontal axis is temperature in Kelvin. The inset is an example of the magnetization at
400 K of Nd2(Fe1−δCoδ )14B. A green point denotes the δmax at the temperature. (d) Magnetization at 400 K as a function of γ /(β + γ ). Other
variables are fixed in each line and sampled within the range of 0.0 � α � 0.2, 0.8 � β + γ � 1.0, 0.0 � δ � 0.3, and 0.0 � ζ � 0.1.
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Nd2(Fe, Co)14B with the cobalt concentration δmax = 0.18.
Figure 7(c) shows the temperature dependence of δmax. The
δmax is nonzero above 320 K, and increases with raising
the temperature. Finally, we analyze the magnetization as a
function of Ce concentration. In Fig. 7(d), the magnetiza-
tion is plotted as a function of γ /(β + γ ) for fixed values
of other variables α, β + γ , δ, ζ . Each line shows the result
for different (α, β + γ , δ, ζ ). The magnetization is a convex
upward function, and decreases with increasing the cerium
concentration. This indicates that there is an optimum cerium
concentration to effectively utilize abundant Ce element.

IV. CONCLUSION

We have proposed a data assimilation method in which a
small number of accurate data and a large number of less
accurate data are integrated. The method enables us to pre-
dict the behavior in the region where the former data are
not available. Based on this method, we have developed a
practical scheme to estimate the finite-temperature magneti-
zation at arbitrary composition. We applied the scheme to
(Nd1−α−β−γ PrαLaβCeγ )2(Fe1−δ−ζ CoδNiζ )14B and obtained
the magnetization in the five-dimensional composition space.
Co addition enhances the magnetization above 320 K. It is
noticed that this is solely due to the fact that the Curie temper-
ature rises by the Co addition: the magnitude of magnetization
at zero temperature cannot be enhanced.

ACKNOWLEDGMENTS

This work was supported by MEXT as “Program
for Promoting Researches on the Supercomputer Fugaku”
(DPMSD). Part of the computation in this work was per-
formed using the facilities of the Supercomputer Center of the
Institute for Solid State Physics at the University of Tokyo,
and computational resources of the HPCI system through the
HPCI System Research Project (Project No. ID:hp200125).

APPENDIX A: EXPERIMENTAL PROCEDURE

119 kinds of (Nd, Ce, La, Pr)13.55-(Fe, Co, Ni)80.54-B5.91

(at.%) alloys were prepared by arc melting. These alloys
were annealed at 1373 K for 24 h in Ar atmosphere. These
alloys were pulverized and sorted into particles with diameters
of <20 μm in an inert atmosphere to make magnetically
anisotropic powder. The powder density was determined using
a pycnometer (Ulrtapyc1200e, Quantachrome Instruments,
USA). The powder compositions were measured by ICP-
AES (ICPS8100, Shimazu, Japan) and the main phase, 2-14-1
phase, ratio was calculated from the obtained composition.
The magnetic physical properties were measured by using a
Vibrating Sample Magnetometer (VSM) (PPMS EverCool II,
QuantumDesign, USA) at a maximum applied field of 9 T.

The powder was mixed with an epoxy resin in a Cu con-
tainer and solidified in a magnetic field of 1 T to measure with
VSM. The Magnetic Hysteresis (MH) curve of magnetically
easy and hard direction was measured in the temperature
range of 300 to 453 K. The anisotropy field (HA) was de-
tected by singular point detection (SPD) method [34] from
MH curve of hard direction. When the anisotropy field is

less than 9 T, less than the applied magnetic field of VSM,
HA can be detected by SPD. If the anisotropy field is over
9 T, the MH curves for both of easy and hard direction were
extrapolated in high magnetic field to obtain the intersection
point, and the magnetic field at the intersection was made into
HA. On the other hand, the saturation magnetization (Js) was
estimated by the law of approach to saturation (LAS) [35–37]
from the MH curve of easy direction. When HA was higher
than 9 T, which is the maximum applied field, Eq. (A1) was
used, and when it was sufficiently lower than 9 T, Eqs. (A2)
and (A3) were used. Js is saturation magnetization and b and
χ0 are constants. The χ0H term is often referred to as the
so-called paramagnetismlike term [38]. Equations (A2) and
(A3) dealing with the χ0 term is more accurate for measuring
saturation magnetization, but there is a condition that the ap-
plied magnetic field is sufficiently larger than the anisotropic
magnetic field. The saturation magnetization estimated by the
LAS was divided by the main phase ratio of powder to obtain
the saturation magnetization of the 2-14-1 phase in these
compositions, where the grain boundary phases other than the
main phase were treated as paramagnetic phases:

J = Js

(
1 − b

H2

)
, (A1)

J = Js

(
1 − b

H2

)
+ χ0H, (A2)

dJ

dH
= Js

(
2b

H3

)
+ χ0. (A3)

APPENDIX B: AN EXAMPLE OF
TWO-SUBLATTICE MODEL

The scheme for finite-temperature magnetization shown
by the flowchart of Fig. 2 includes the steps for modeling
temperature dependence of magnetization. In this study, we
use Kuz’min’s formula for the modeling. A two-sublattice
model [2,32,33] is one of the other possible models to replace
the steps. Then we demonstrate the fitting by using the two-
sublattice model for Nd2Fe14B, which corresponds to Fig. 3
in the case of Kuz’min’s formula.

The two-sublattice model is defined as

μR(T ) = μR0BJ
(
μBμR0HR(μR, μT )/kBT

)
, (B1)

μT (T ) = μT 0BS
(
μBμT 0HT (μR, μT )/kBT

)
, (B2)

where the subscripts R and T denote rare-earth and transition
metal elements. BJ is the Brillouin function defined as

BJ (x) ≡ 2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
, (B3)

and molecular fields for rare-earth and transition metal atoms
are

HR(μR, μT ) = d (2nRRμR + 14nRT μT ), (B4)

HT (μR, μT ) = d (2nRT μR + 14nT T μT ). (B5)

μR and μT are the local magnetic moments of rare-earth and
transition metal atoms. μR0 and μT 0 are the corresponding
values at zero temperature, and we here fix μR0 as 3.3 μB
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FIG. 8. The magnetization of Nd2Fe14B predicted by using the
two-sublattice model, Eqs. (B1) and (B2).

for Nd. J and S are the free-ion moments of rare-earth and
transition metal atoms, and thus, J = 9

2 and S = 1. μB is the
Bohr magneton. d ≡ μ0μB/V is a constant to convert the
unit of magnetic moment (Bohr magneton) to that of mag-
netization (Tesla). μ0 is the vacuum permeability and V is
a volume of Nd2Fe14B per formula unit. nRR, nT T , and nRT

are the dimensionless molecular-field coefficients which rep-
resent magnetic couplings of R-R, T -T , and R-T , respectively.
The magnetization is given as

μ0M(T ) = d[2μR(T ) + 14μT (T )]. (B6)

To obtain μR and μT at a temperature, we solve the simul-
taneous Eqs. (B1), (B2), (B4), and (B5) self-consistently. We
optimize μT 0, nRR, nT T , and nRT such that the experimental
data are well predicted. The result is shown in Fig. 8. In the
present case, there is no qualitative difference from Kuz’min’s
formula of Fig. 3. When the temperature dependence will
be more complicated, such as ferrimagnetism, this will be
important.

APPENDIX C: FIRST-PRINCIPLES CALCULATION

We perform density functional theory calculation
following Korringa-Kohn-Rostoker (KKR) [39,40] Green’s
function approach in the atomic sphere approximation
(ASA) incorporating coherent potential approximation
(CPA) [41,42] as implemented in AKAIKKR [43].
Continuous interpolation over 0 � α, β, γ , δ, ζ � 1 for
(Nd1−α−β−γ PrαLaβCeγ )2(Fe1−δ−ζ CoδNiζ )14B is done on the
basis of KKR-CPA. The local spin density approximation
as parametrized by Moruzzi, Janak, and Williams [44] is
adopted for the exchange-correlation energy functional. We
set lmax = 2 putting all 4 f electrons of the valence state
on the basis of open-core approximation. We assume each
configuration of the electrons as Nd3+, Pr3+, and Ce4+,
respectively. Contributions from 4 f electrons of Nd and Pr to
the magnetic moments are restored manually.

Intersite magnetic exchange couplings are calculated using
the method developed by Liechtenstein et al. [45]. The Curie

temperature is evaluated by solving the derived Heisenberg
model in the mean field approximation.

APPENDIX D: LATTICE PARAMETERS

We collected experimental lattice parameters of R2T14B
(R = Nd, La, Ce, Pr; T = Fe, Co, Ni) from literature [2]
[Table II(a)]. However, some of them are not available. In
order to evaluate the lattice parameters for these missing
points, we performed first-principles calculation based on
density functional theory [22,23] in the generalized gradient
approximation with Perdew-Burke-Ernzerhof formula [46]
using VASP code [47] [Table II(b)]. We integrated the calcu-
lated lattice parameters a and c with the above experimental
data assuming the following simple form:

acomp =
∑

I

acomp
I αiαβ iβ γ iγ δiδ ζ iζ , (D1)

ccomp =
∑

I

acomp
I αiαβ iβ γ iγ δiδ ζ iζ , (D2)

aexpt = Caacomp + a0, (D3)

cexpt = Ccccomp + c0, (D4)

where I := (iα, iβ, iγ , iδ, iζ ) runs under the condition
0 � ∑

j i j � 1. Using the data assimilation method
explained in Sec. II, we determined the coefficients
{acomp

I }, {ccomp
I },Ca, a0,Cc, c0, from which aexpt and cexpt for

the missing points are estimated [Table II(c)]. We interpolated
lattice parameters for nonstoichiometric systems according
to Vegard’s law by using the obtained lattice parameters for
stoichiometric systems.

TABLE II. Lattice parameters (a, c) of R2T14B for R = Nd, La,
Ce, Pr and T = Fe, Co, Ni. (a) Experimental values taken from
Ref. [2], (b) computational results, and (c) values obtained by the
data assimilation technique to complement the unavailable values
of (a).

(a) Fe Co Ni

Nd (8.80, 12.20) (8.64, 11.86)
La (8.82, 12.34) (8.67, 12.01)
Ce (8.76, 12.11)
Pr (8.80, 12.23) (8.63, 11.86)

(b) Fe Co Ni
Nd (8.73, 12.07) (8.58, 11.74) (8.57, 11.75)
La (8.75, 12.16) (8.61, 11.80) (8.59, 11.79)
Ce (8.70, 11.96) (8.55, 11.63) (8.54, 11.62)
Pr (8.75, 12.11) (8.59, 11.77) (8.59, 11.77)

(c) Fe Co Ni
Nd (8.62, 11.89)
La (8.65, 11.93)
Ce (8.61, 11.77) (8.60, 11.75)
Pr (8.64, 11.91)
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