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Predicting activation energies for vacancy-mediated diffusion in alloys
using a transition-state cluster expansion
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Kinetic Monte Carlo models parameterized by first principles calculations are widely used to simulate atomic
diffusion. However, accurately predicting the activation energies for diffusion in substitutional alloys remains
challenging due to the wide variety of local environments that may exist around the diffusing atom. We address
this challenge using a cluster expansion model that explicitly includes a sublattice of sites representing transition
states and assess its accuracy in comparison with other models, such as the broken bond model and a model
related to Marcus theory, by modeling vacancy-mediated diffusion in Pt-Ni nanoparticles. We find that the
prediction error of the cluster expansion is similar to that of other models for small training sets, but with
larger training sets the cluster expansion has a significantly lower prediction error than the other models with
comparable execution speed. Of the simpler models, the model related to Marcus theory yields predictions of
nanoparticle evolution that are most similar to those of the cluster expansion, and a weighted average of the two
approaches has the lowest prediction error for activation energies across all training set sizes.

DOI: 10.1103/PhysRevMaterials.5.013803

I. INTRODUCTION

Atomic diffusion plays an important role in determining
various material properties such as the structure and activity of
nanocatalysts [1–5], the conductivity and stability of batteries
[6–9] and fuel cells [10–13], and the electrical properties of
semiconductor devices [14–17]. Atomic diffusion in materials
often consists of hops between local minima on the potential
energy surface, with atoms vibrating about these local minima
in the time between hops. If the rates of these transitions are
known, then the simulation of diffusion can be significantly
accelerated through the use of kinetic Monte Carlo (KMC)
[18,19], which simulates only the discrete jumps between
local minima rather than continuous time evolution of the
system. The key to a KMC simulation is the rapid calculation
of transition rates between local minima. By transition-state
theory [20], these rates depend exponentially on the activation
energies of the hops, making the rapid and accurate calcula-
tion of activation energies critically important to the success
of a KMC simulation.

Several methods for predicting activation energies in KMC
simulations have been proposed and explored in the literature.
These include the broken bond model [21–28] and a model
that is similar to Marcus theory [29–31], which have been
used in KMC simulations to study diffusion-related properties
of materials. These methods are relatively simple and can be
applied to a variety of material systems. However, the sim-
plicity of these models limits their accuracy, and there is no
way to systematically improve them if the predicted activation
energies are not sufficiently accurate. An appealing alternative
is to use systematically improvable machine-learned energy
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models such as cluster expansions [32–34] and interatomic
potentials [35–42] for the rapid and accurate prediction of
activation energies. As the cluster expansion is a discrete
model explicitly designed to calculate the energies of local
minima on the potential energy surface, it is particularly well
suited for KMC.

The cluster expansion has become a valuable tool for
studying atomic order and structure-property relationships
in alloys [43–58], but it is rarely used to model diffusion
[33,59,60]. Soisson and Fu [61,62], building off of work by
Bouar and Soisson [63], developed a cluster-expansion-like
lattice model to predict activation energies in which the energy
of the transition state is a sum of nearest-neighbor pair inter-
actions. In 2001, Van der Ven et al. demonstrated how cluster
expansions could be used to predict activation energies in
bulk LixCoO2 by constructing two cluster expansions: a global
cluster expansion of the local minima on the potential energy
surface and a local cluster expansion around the hopping atom
that calculated a “kinetically resolved activation barrier” [33].
The combination of the two cluster expansions enabled the
rapid calculation of activation energies. In a separate paper,
Van der Ven et al. used a cluster expansion to predict the
energies of both end states and local minima along the dif-
fusion path [64]. To calculate the energies of transition states
between local minima, they added a constant value to the
higher-energy local minimum, where the constant value de-
pended on whether or not the higher-energy site shared a face
with a nearby occupied site. In 2010, Bhattacharya and Van
der Ven adapted this approach for situations in which an atom
at the intermediate site along the diffusion path is at a saddle
point rather than a local minimum [65]. They accomplished
this by using nudged elastic band method [66,67] to calculate
the energies of structures in the training set in which the atom
was at the intermediate site. This approach enabled them to
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calculate the energies of both the initial and transition states
using a single global many-body cluster expansion.

Here, we present a method equivalent to this latter ap-
proach, in which transition states are explicitly included in
a global cluster expansion as a set of sublattice sites, for
modeling vacancy-mediated diffusion in Pt-Ni nanoparticles.
The advantage to using a single global cluster expansion,
rather than separate global and local cluster expansions, is
that a single cluster expansion may be more compatible with
general-purpose cluster expansion software packages and eas-
ier to extend to include correlated hops in which multiple
atoms change sites at the same time. Pt-Ni nanoparticles have
been widely studied as potential catalysts for the oxygen
reduction reaction [1,68–71] and we present a challenging
system for predicting activation energies due to the variety
of local environments that exist both in the bulk and on the
surface. On this system we find the cluster expansion approach
yields significantly more accurate activation energies than
alternative leading approaches with little to no increase in
computational cost for the kinetic Monte Carlo simulation.

II. METHODS

A. DFT

Density functional theory (DFT) [72] calculations were
performed using the Vienna Ab initio Simulation Package
(VASP) [73] with the revised Perdew-Burke-Ernzerhof
(RPBE) [74,75] exchange-correlation functional. The
Pt_pv_GW and Ni PBE projector-augmented wave (PAW)
[76] potentials were used. A single k-point at the center of
the Brillouin zone was used for each nanoparticle. For bulk
materials, the Brillouin zone was sampled using generalized
Monkhorst-Pack grids generated by the k-point grid server
[77] with a minimum distance of 46.5 Å between real space
lattice points. Second-order Methfessel-Paxon smearing [78]
with a width of 0.2 eV was used to set partial occupancies.
The convergence criteria for the electronic self-consistency
iteration and the ionic relaxation were set to be 10−4 eV
and 0.03 eV/Å, respectively. The climbing image nudged
elastic band (NEB) [66,67] method was used to calculate the
activation energies for atomic diffusion, and the calculations
were considered to be sufficiently converged when the
maximum force component perpendicular to the diffusion
path was below 0.05 eV/Å.

B. Cluster expansion

Cluster expansions are generalized Ising models that ac-
count for many-body interactions [32,79] and are commonly
used to study atomic order in substitutional materials [47,54–
56,80–82]. In this application, the arrangement of atoms in the
material is expressed as a set of discrete sites that are occupied
by different elements. In the cluster expansion constructed
here, the sites are arranged on an fcc lattice and each site
is occupied by a Pt atom, Ni atom, or vacancy. We fit the
parameters of the cluster expansion, known as effective clus-
ter interactions (ECI), to DFT-calculated energies using the
Bayesian approach [83], which has been shown to effectively
improve the accuracy of the cluster expansion for a given
training set size [54,81,83]. Specifically, we assumed expo-

FIG. 1. (a) A schematic of transition-state cluster expansion.
Large gray and brown spheres represent Pt and Ni, respectively, on
lattice sites (local minima on the potential energy surface). Small
green dots represent saddle points for hops between two local min-
ima. For illustration purposes a two-dimensional lattice is shown, but
the model in this paper is built on a three-dimensional fcc lattice.
(b) A set of three training structures representing a diffusive hop,
with the diffusing species at the transition-state site circled in green.
From left to right: initial, transition, and final state.

nential decay in the width of the prior probability distribution
with respect to the number of sites in each cluster and the
maximum distance between sites.

To calculate activation energies for diffusion using the
cluster expansion we added a sublattice of “transition-state”
sites halfway between nearest-neighbor sites [Fig. 1(a)]. Each
of these transition-state sites corresponds to a saddle point on
the potential energy surface for a hop between neighboring
sites. During a single diffusive hop, an atom starts at one of
the fcc sites, moves to an adjacent transition-state site, and
then ends up in a nearest-neighbor fcc site [Fig. 1(b)]. By
comparing the calculated energy of the system when the atom
is at the transition-state site with the energy of the system
when the atom is in the initial fcc site, we directly predict
the activation energy from the cluster expansion. To train the
cluster expansion, the energies of the configurations where
an atom is at a transition-state site were obtained from DFT
nudged elastic band calculations.

We constrained the set of allowed configurations to pre-
vent simultaneous occupation of a transition-state site and an
adjacent fcc site, consistent with the mechanism of a vacancy-
mediated hop. We also included a constraint that prevented
two transition-state sites from being occupied simultaneously,
effectively allowing only a single atom to move during any
hop. We note that this framework could be extended in future
work by removing this second constraint. This would allow
for collective diffusion, in which multiple atoms hop simul-
taneously, which is particularly likely to occur on surfaces
[84–86].

The constraints on the set of allowed configurations make
the cluster expansion overdetermined, i.e., there are more
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possible cluster functions than possible configurations. The
cluster expansion can therefore be simplified by removing
unnecessary functions. Here we accomplish this by removing
all functions associated with clusters that include two sites that
cannot be simultaneously occupied. As the number of remain-
ing cluster functions is then equal to the number of allowed
configurations, and these functions are linearly independent,
they form a complete basis for the constrained configuration
space. The proofs of these statements are provided in the
Appendix. We note that this simplification procedure is not
limited to studies of diffusion and can be used in any clus-
ter expansion in which some sites cannot be simultaneously
occupied.

A training set of 299 relaxed structures was generated
using DFT for fitting the cluster expansion. The training
set contained five bulk structures and the initial, transition,
and final states of diffusive hops in different nanoparticles
[Fig. 1(b)]. Each of the five bulk structures was included twice
to ensure accuracy in the bulk limit. The cluster expansion
was truncated to include the empty cluster, point clusters, all
two-body clusters up to a cutoff distance of 8 Å, all three-body
clusters up to a cutoff distance of 6 Å, all four-body clusters
up to a cutoff distance of 4 Å, all five-body clusters up to a
cutoff distance of 4 Å, and all six-body clusters up to a cutoff
distance of 4 Å. The resulting cluster expansion contained
1097 symmetrically distinct cluster functions. In addition to
the 299 energies in the training set, we also included 196
activation energies (energy differences between the transition
state and the two corresponding end states) explicitly in the
fitting to improve accuracy, as the expressions for these en-
ergies only include the terms that change between the initial
and transition states. An additional regularization parameter
was introduced to distinguish the expected magnitude of ECI
for clusters that include and do not include transition states.
Additional information about how the cluster expansion was
fit can be found in Sec. 1 of the Supplemental Material [87].

III. RESULTS AND DISCUSSION

We begin by assessing the predictive accuracy of the
transition-state cluster expansion on both formation energies
and activation energies. The root-mean-square leave-one-out
cross validation (LOOCV) errors are 1.203 meV/atom for
the formation energies and 0.127 eV per particle for the ac-
tivation energies (Fig. 2), relative to DFT calculations. The
LOOCV error of the activation energies is equivalent to 0.944
meV/atom, which is of the same order of magnitude as the
error for the formation energies. This LOOCV error com-
pares favorably to validation errors for other machine learning
methods for predicting activation energies (Table S1 [35–42]),
especially considering that the DFT data set contains hops in
a wide variety of coordination environments, including both
in the bulk and on the surface.

To further validate the accuracy of the transition-state clus-
ter expansion for predicting the energies of local minima on
the potential energy surface, we have used it to predict the
equilibrium surface composition profile of a 4.5 nm cuboc-
tahedral Pt3Ni nanoparticle (Pt2547Ni849) at 333 K (Fig. S2,
Supplemental Material Sec. 2.1 [87]), using Metropolis Monte
Carlo [88] simulations in a canonical ensemble. The near-

FIG. 2. Leave-one-out cross validation (LOOCV) of (a) the for-
mation energies and (b) activation energies from the transition-state
cluster expansion. The dashed lines in panel (b) indicate ±0.2 eV
deviation from perfect agreement between DFT-calculated and
cluster-expansion-predicted activation energies.

surface composition profile (Fig. S2) is similar to those which
have been experimentally [68] and computationally [69,89]
determined for an extended Pt3Ni(111) surface, consistent
with the fact that the surface of the cuboctahedral Pt3Ni
nanoparticle consists of mainly (111) facets.

We have compared the accuracy of transition-state cluster
expansion for predicting activation energies to three other
simple models that have been developed for KMC simula-
tions: the broken bond model [21], a model related to Marcus
theory [29], and a model we have previously used in which
the activation energy for a hop from a higher-energy state
to a lower-energy state (i.e., a “downhill” hop) is a constant
value [1,90]. Each of these models was trained using the
same data used to train the cluster expansion. In each of
these models other than the broken bond model, the cluster
expansion is used to calculate the energy of each end state and
the transition-state energy is expressed as a function of the end
state energies. The functional forms of the simple models we
have evaluated are shown in Table I.
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TABLE I. Models used as comparisons to the cluster expansion in this work. The fitted parameters are determined by minimizing the RMS
LOOCV error. ni and n f are the number of bonds at the initial and final states, respectively.

Functional forms of activation energy Fitted parameters Schematics

Broken bond Ea = ni
Pt−PtEPt−Pt + ni

Pt−NiEPt−Ni + ni
Ni−NiENi−Ni EPt−Pt = 0.097 eV

EPt−Ni = 0.066 eV

ENi−Ni = 0.067 eV

Broken bond (KRA) Ea = 1
2 �E + 1

2

(
ni

Pt−Pt + n f
Pt−Pt

)
EPt−Pt

+ 1
2

(
ni

Pt−Ni + n f
Pt−Ni

)
EPt−Ni

+ 1
2

(
ni

Ni−Ni + n f
Ni−Ni

)
ENi−Ni

EPt−Pt = 0.097 eV

EPt−Ni = 0.067 eV

ENi−Ni = 0.066 eV

Parabolic potential Ea =

⎧⎪⎨
⎪⎩

0, �E < −4b
(�E+4b)2

16b , −4b � �E � 4b

�E , �E > 4b

b = 0.628 eV

Constant activation energy Ea =
{

c, �E < 0

c + �E , �E � 0
c = 0.510 eV

Weighted average Ea = f ECE
a + (1 − f )E parabolic

a f = 0.75

In the broken bond model [21], the activation energy for
diffusion is calculated as a linear function of the number of
nearest-neighbor bonds of each type (e.g., Pt-Pt, Pt-Ni, or
Ni-Ni) that are broken when the hopping atom leaves its initial
state. One of the drawbacks of this model is that it does not sat-
isfy detailed balance, as the difference in activation energies
between the forward and reverse hops will generally not be the
same as the difference in energies between the end states. We
have also evaluated a broken-bond approach [24] in which de-
tailed balance is restored by calculating a kinetically resolved
activation (KRA) energy [33] as a function of the average
number of bonds of each type at the initial and final states.

In the model related to Marcus theory [29], the potential
energy surface of the initial and final state of the reaction as
approximated using a simple parabolic form. In this model the
activation energy can be analytically expressed as a function
of the difference between the initial and final states, �E (Ta-
ble I, Supplemental Material Sec. 3 [87]). We will refer to this
model as the “parabolic potential” model.

The final model, which we have used in previous work
[1,90], uses a constant activation energy for hops to a lower-
energy state and the same constant energy plus �E otherwise.
The advantage of this model is that the value of the constant
activation energy only affects the prefactor of the KMC simu-
lation (Supplemental Material Sec. 2.3 [87]), so it is possible
to simulate the dynamics of diffusion without including any
NEB-calculated activation energies in the training data. We
will refer to this model as the “constant activation energy”
model.

The simple broken bond model has the largest root-mean-
square LOOCV error (0.281 eV), followed by the KRA
broken bond model (0.227 eV), the constant activation energy
model (0.214 eV), the parabolic potential model (0.204 eV),
and the cluster expansion (0.127 eV) (Fig. 3). The relatively
low error for the cluster expansion is due largely to the fact
that it is systematically improvable. As a result, it includes

far more parameters (1097) than the other models. Because
the simple broken bond model only captures the nearest-
neighbor environment around the initial state of the diffusing
atom and its functional form establishes an upper bound for
the activation energy (∼1 eV), it predicts many hops with
identical activation energies regardless of the end states and
it underestimates the activation energies for many hops with
large activation energies. The KRA broken bond model is
significantly more accurate, likely because it does take into
account the end states and makes the forward and reverse
hops consistent. In particular, because this model depends
explicitly on the energy difference between the initial and final
states, it does not impose an upper bound on the activation
energy as the broken bond model does. The constant activa-
tion energy model establishes a lower bound of the activation
energy that is assigned to all downhill hops [Fig. 3(b)]. This
causes overestimation and underestimation of small and large
activation energies, respectively. The trend for the parabolic
potential model [Fig. 3(c)] is better, although it still signifi-
cantly overestimates and underestimates some small and large
activation energies, respectively. A comparison of how the
constant activation energy model and the parabolic potential
models predict the activation energy as a function of reaction
energy is provided in Fig. S3.

It is often possible to create a linear combination of mul-
tiple models to create a new model with improved predictive
accuracy, an approach generally known as ensemble learning
[91]. To evaluate this approach, we created a model consist-
ing of a weighted average of the cluster expansion and the
parabolic potential model (Table I). The relative weights of
the two models were determined in a way to minimize the
leave-one-out cross validation error (Table I and Supplemental
Material Sec. 4 [87]). We note that the weights determined this
way, 0.75 for the cluster expansion and 0.25 for the parabolic
potential model, are similar to what we would have obtained
using inverse variance weighting [92] (0.72 for the cluster
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FIG. 3. Leave-one-out cross validation (LOOCV) of the activation energy from the four methods against the known DFT activation energy
in the training set. In panel (a) the black and red data points are the simple broken bond and the KRA broken bond model, respectively. The
dashed lines indicate ±0.2 eV deviation from perfect agreement.

expansion and 0.28 for the parabolic potential model), using
the leave-one-out cross validation errors to estimate the vari-
ance. The newly constructed weighted average of the cluster
expansion and parabolic potential models further lowers the
LOOCV error by 10% (13 meV) relative to cluster expan-
sion itself (Fig. S4, Supplemental Material [87]). This can
be rationalized by the fact that these two models have error
distributions that are largely uncorrelated due to their very
different formalisms (Fig. S5).

The improved performance of the cluster expansion comes
with additional computational cost required to generate the
training data. To assess the trade-off between cost and per-
formance, we have evaluated the accuracy of the different
methods as a function of training set size by randomly par-
titioning our data set into training sets and test sets, with
models trained on the training sets and evaluated using the
corresponding test sets. We started by randomly selecting 20%
of the total data set as test set, training each model on all the
remaining data, and then testing each model on the test set.
This procedure was repeated 10 times to calculate the average
root-mean-square test error. We then repeated the procedure
using randomly-selected training sets that were 80%, 60%,
40%, and 20% as large as the first training set. The averaged
test set root-mean-square errors for the 10 different runs at
each size are shown in Fig. 4, with the standard deviations
colored as shaded regions.

For the cluster expansion, the test set errors decrease sig-
nificantly with increasing training set size, whereas for the

broken bond models, constant activation energy model, and
parabolic potential model the test set errors remain relatively
constant (Fig. 4). This can be understood by the more flexible
form of the cluster expansion compared to the simpler mod-
els (Table I). These results indicate that when little training

FIG. 4. Test set root-mean-square (RMS) error as a function of
training set size, expressed as a percentage of the remaining data
set (excluding the test set), which are 234 structures. The test set
contains 60 structures. The standard deviations of the test set errors
are colored as shaded regions.
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FIG. 5. (a)–(e) Snapshots of Pt-Ni nanoparticles after the KMC simulations at 1000 K using the (a) cluster expansion, (b) parabolic
potential model, (c) constant activation energy model, (d) simple broken bond model, and (e) KRA broken bond model. Gray spheres represent
Pt and green spheres represent Ni. (f), (g) The first layer Ni composition and overall Ni composition from the KMC simulations as a function
of KMC time.

data is available, the parabolic potential, constant activation
energy, and KRA broken bond models can predict activation
energies with accuracy comparable to the cluster expansion,
but if higher accuracy is desired the cluster expansion can
be improved through the generation of additional training
data. The weighted average between the cluster expansion
and parabolic potential model has the lowest error at every
training set size and is an appealing option especially for
relatively small training sets. For the system considered here,
the weighted average model achieves the same accuracy of the
cluster expansion with only 60% of the training data (Fig. 4).

To investigate how the different models may affect the
structural evolution of a Pt3Ni nanoparticle and compare
model execution speeds, we have performed KMC simu-
lations on a truncated octahedral Pt3Ni nanoparticle with
randomly initialized atomic order (Pt3411Ni1137, with a di-
ameter of approximately 6.2 nm) at 1000 K. The elevated
temperature was chosen to accelerate dynamics and reduce
the computational cost of the KMC simulations. In each KMC
simulation, atoms were only allowed to hop into neighboring
vacant sites and the activation energy was computed using
different models. We also considered Ni dissolution, as sig-
nificant Ni loss is observed experimentally [1,70,90]. We only
allowed Ni dissolution from surface sites with a coordination
number less than 10, and as long as all of the neighboring
atoms were left with at least 3 nearest-neighbor atoms after
Ni dissolution. For simplicity, for all models we assigned an
activation energy of 0 eV for Ni dissolution, which generally
occurs readily from the surface [1]. More details are provided
in Supplemental Material Sec. 2.2 [87]. The snapshots of the
Pt-Ni nanoparticles after the KMC simulations are shown in
Figs. 5(a)–5(e).

The evolution of Ni composition in the first (outer-
most) layer is largely similar for the cluster expansion,
parabolic potential model, and constant activation energy
model [Fig. 5(f)], where a Pt-rich shell is formed, consistent
with our previous KMC work and experimental work [1,90].
The simple broken bond model produced a higher Ni compo-
sition in the first layer than that of the other models, but with
the lowest overall Ni composition [Fig. 5(g)], indicating that
the Ni atoms are exchanged more rapidly from inner layers
to the surface of the nanoparticle. The KRA broken bond
model, however, shows completely different kinetics from the
simple broken bond model, with a faster and more complete
formation of a Pt shell and Pt(111) surface. This is likely due
to the fact that the KRA broken bond model satisfies detailed
balance, resulting in evolution toward a lower energy state.

The overall Ni dissolution rate [Fig. 5(g)] largely follows
the trend of the prediction errors of the five models. The
simple broken bond model has the largest error and the cluster
expansion has the smallest, with the parabolic potential and
the constant activation energy model in between. The large
prediction error of the simple broken bond model is respon-
sible for promoting more hops with unfavorable change in
energy, thus creating more defects and a more porous structure
[Fig. 5(d)]. The less accurate models, such as the broken bond
models and constant activation energy model, have less spread
in the predicted activation energies and thus might artificially
accelerate rare events that could lead Ni to segregate to the
surface and dissolve, resulting in lower overall Ni composi-
tions [Fig. 5(g)].

Although the cluster expansion is much more accurate for
predicting activation energies, it does not significantly affect
the shape evolution of the Pt3Ni nanoparticle compared to the
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TABLE II. Average execution time for calculating the activation
energy expressed relative to the time for the cluster expansion model.

Relative time calculating
activation energy

Broken bond 1.673 × 10−3

Broken bond (KRA) 1.210
Parabolic potential 1.175
Constant activation energy 1.160
Cluster expansion 1

parabolic potential model or the constant activation energy
model [Figs. 5(a)–5(c) and 5(f)], except for the amount of
predicted Ni loss. We analyze the nearest-neighbor environ-
ments of the Pt-Ni nanoparticles from the five models at the
same overall Ni composition (18% Ni, Supplemental Material
Sec. 2.2 [87]). The values of NPt−Pt, NPt−Ni, and NPt−Vac,
measurements of the average numbers of Pt-Pt bonds, Pt-Ni
bonds, and Pt-vacancy bonds around a Pt atom, are almost
identical for the cluster expansion, parabolic potential, and
constant activation energy model, with the maximum dif-
ference being about 0.19 (Table S2). These values are also
consistent with our previous KMC work using the constant
activation energy model [1,90]. The KRA broken bond model
has the largest value of NPt−Pt + NPt−Ni, consistent with the
less loss of octahedral shape [Fig. 5(e)]. It is worth noting
that although the parabolic potential model has a prediction
error similar to that of the constant activation energy model,
its Ni composition profile is much closer to that of the cluster
expansion in the KMC simulations. This could be attributed
to the more physically meaningful formalism of the parabolic
potential model.

The simple broken bond model is the least accurate of
the models, but it is much faster than the other models for
calculating activation energies (by about 3 orders of mag-
nitude) since it only evaluates number of nearest-neighbor
bonds, which is equivalent to a cluster expansion with only
nearest-neighbor pair ECI (Table II). All other models calcu-
late transition-state energies roughly equally quickly, as they
all use the complete cluster expansion, with 1097 ECI, to
evaluate the energy difference between two different states

(either the initial state and end state or the initial state and
transition state).

The overall speed of the KMC simulation is not solely
determined by the time required to calculate the activation
energy. In the KMC routine the total time consists of the
time (i) choosing a random event, (ii) checking if the event
is valid according to its neighboring environment, (iii) calcu-
lating the activation energy and transition probability if the
event is valid, (iv) updating the nanoparticle configuration if
the event is accepted, and (v) recording simulation data. Once
calculating the activation energy becomes sufficiently fast, the
remaining steps may become the bottleneck. In our implemen-
tation, due largely to the constraints on the allowed transitions
on the surface, steps (i) and (ii) take up about as much time as
calculating the activation energy using the cluster expansion,
so methods that calculate the activation energy significantly
more quickly than the cluster expansion have relatively little
effect on the overall simulation time.

The transition-state cluster expansion provides some in-
sights into the activation energies for Pt and Ni diffusion as
a function of the local environment. We randomly generated
100 nanoparticles with between 114 and 387 atoms and com-
positions ranging from 3% Ni to 97% Ni. The structures of
these particles were determined in the same way as for the
training structures. For each atom in each particle, we ran-
domly generated a hop to a nearest-neighbor site (after making
that site vacant if necessary), for a total of 20,623 random
hops. The coordination number of the diffusing species in the
initial site ranges from 3 to 11 in this data set. The average
activation energies for Pt and Ni diffusion as a function of the
nearest-neighbor environment are shown in Fig. 6. The largest
activation energies are not observed at the largest coordination
number (11) as might be expected, but rather at coordination
numbers of 10 or 9. This may be a reason for the relatively
poor performance of the simple broken bond model, which
cannot capture this nonlinear trend. The largest activation
energies occur near extreme Pt/Ni (or Ni/Pt) ratios, i.e., far
away from 1:1, for both Pt diffusion and Ni diffusion. This
may be due to the fact that the local environment has more
structural degrees of freedom when it contains a mix of Pt and
Ni atoms, providing more options for finding a low-energy
path. Overall, we predict that the activation energy for Pt

FIG. 6. Cluster-expansion-predicted activation energies (Ea), averaged over 20,623 hops in randomly generated nanoparticles, as a function
of number of nearest-neighbor atoms nNi and nPt around the diffusing species. (a) The activation energies for Pt. (b) The activation energies for
Ni. (c) The differences between the activation energies in panels (a) and (b).
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diffusion from undercoordinated sites is larger than that for
Ni, but the activation energies are closer in the bulk [Fig. 6(c)].
The relatively slow Pt diffusion near the surface may play a
role in protecting the underlying Ni atoms from dissolution
[1,90,93,94].

IV. CONCLUSIONS

We have presented and evaluated a cluster expansion model
for predicting activation energies for vacancy-mediated diffu-
sion in alloys by explicitly including sites representing saddle
points on the potential energy surface. This approach allows
for the calculation of activation energies using a single global
cluster expansion and can be systematically improved with
additional training data to the point at which it is roughly
twice as accurate as commonly used, simpler models, with
comparable overall execution speed. Of the simpler models,
the broken bond model is fastest at calculating activation en-
ergy but produces anomalous results due to its lack of detailed
balance. A version of the broken bond model that corrects
for this deficiency yields significantly improved results but is
slower as it requires the evaluation of the energies of the initial
and final states. Similar accuracy and speed are achieved by
the constant activation energy model and the parabolic po-
tential model. One benefit of the constant activation energy
model is that it does not need to be trained on DFT-calculated
activation energies to predict dynamics, as it calculates rel-
ative rates only using the difference in energy between the
initial and final states. However, of the simpler models, the
kinetic evolution of a Pt-Ni nanoparticle is most accurately
represented by the parabolic potential model. This may be
due to the better physical motivation behind the parabolic
potential model, but the extent to which this result depends
on the particular system being studied is not clear. A weighted
average of the cluster expansion model and parabolic potential
model is most accurate at all training set sizes, suggesting this
may be an effective approach in general.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research
(Grant No. ONR MURI N00014-15-1-2681). C.L. and T.M.
acknowledge the computational resources provided by the
Brookhaven National Laboratory under Grant No. 33818, the
Maryland Advanced Research Computing Center (MARCC),
and the Homewood High Performance Cluster (HHPC). The
authors also thank Alberto Hernandez for helpful discussions.
Atomic-scale structural images were generated using VESTA
[95].

APPENDIX

In this Appendix we will prove that if configuration space
is constrained to prevent the simultaneous occupation of two
sites, then all cluster functions that depend on the occupancies
of both of those sites can be removed from the expansion and
the remaining functions form a complete basis.

We start by introducing some background and notation.
Let the number of possible states for the jth site of a cluster
expansion be given by Nj . For example, in the Pt-Ni-Vacancy

cluster expansion, Nj = 3 for all sites, as each site can be
occupied by a vacancy, Pt atom, or Ni atom. For a given
configuration, let the occupation of the jth site be indexed
by the site variable s j , which can take on values from 1 to
Nj . For example, we may have s j = 1 if the jth site is vacant,
s j = 2 if the jth site is occupied by Pt, and s j = 3 it the jth
site is occupied by Ni. The set of site variables for all sites for
a given atomic configuration is given by the vector s. Here we
will always define the site variables so that s j = 1 whenever
the jth site is vacant.

To construct the cluster expansion basis, we select a set of
Nj independent basis functions, �i(s j ), for each site, where
i ∈ {1, 2, ..., Nj}. Let one of these basis functions be the con-
stant value, 1. We will always assign this value to the first basis
function, so for every site we have �1(s j ) = 1. The tensor
product of all of these single-site bases defines a complete
basis of “cluster functions” that can be used to represent any
function of s. Every one of the cluster functions in this basis
is a product of a unique combination of single-site basis func-
tions, with the product including exactly one basis function
for each site:

�b(s) =
∏

j

�b j (s j ), (A1)

where the vector b represents the particular combination of
single-site basis functions that define this cluster function, and
b j is the index of the single-site basis function for the jth site.
As �1(s j ) = 1, each cluster function is a function of only the
site variables for which b j �= 1 [32]. The corresponding sites
are the “cluster” represented by the cluster function, and we
say the cluster function “includes” these sites.

For each site, the allowed values for bj are identical to
the allowed values for s j , as they are both integers between
1 and Nj . As the number of possible configurations is given
by the number of possible unique vectors s, and the number
of basis functions is given by the number of possible unique
vectors b, we can see that the number of basis functions equals
the number of total possible configurations. That is, for any
configuration s, we can identify a unique basis function for
which b j = s j for all j, and vice versa.

Now we consider the case where there are two sites that
cannot be occupied at the same time. We will let j = 1 for
the first site and j = 2 for the second. The constraint that
both sites cannot be occupied eliminates all configurations
for which s1 �= 1 and s2 �= 1. As a result, there are now more
cluster functions than possible configurations.

We can eliminate redundant cluster functions by eliminat-
ing all cluster functions that are functions of s1 and s2, i.e.,
cluster functions for which b1 �= 1 and b2 �= 1. The number
of remaining vectors s is equal to the number of remaining
vectors b, as for any configuration s, we can still identify a
unique basis function for which b j = s j for all j, and vice
versa. Thus, the number of remaining cluster functions equals
the number of allowed configurations after imposing the
constraint.

To show that the remaining cluster functions form a
complete basis, we need only show that they are linearly
independent. We do this by demonstrating that each of the
cluster functions we have removed can be expressed as a
linear combination of cluster functions that were not removed.
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Specifically, let a cluster function that includes sites 1 and 2
be labeled by

b+ + = {b1, b2, b3, b4, ...}, (A2)

where b1 �= 1 and b2 �= 1. We similarly define the labels

b− + = {1, b2, b3, b4, ...},
b+ − = {b1, 1, b3, b4, ...},
b− − = {1, 1, b3, b4, ...} (A3)

for cluster functions in which site 1 is removed from �b+ + (s),
site 2 is removed from �b+ + (s), and both sites 1 and 2 are

removed from �b+ + (s), respectively. As none of these three
cluster functions include both sites 1 and 2, none will be
removed from the expansion. For the allowed values of s1 and
s2, �b+ + (s) can be written as a linear function of �b− + (s),
�b+ − (s), and �b− − (s):

�b+ + (s) = �b1 (s1)�b− + (s) + �b2 (s2)�b+ − (s)

−�b1 (s1)�b2 (s2)�b− − (s). (A4)

If there are other pairs of sites that cannot be simultane-
ously occupied, then the procedure can be repeated.
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