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Efficient estimation of material property curves and surfaces via active learning
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The relationship between material properties and independent variables such as temperature, external field,
or time is usually represented by a curve or surface in a multidimensional space. Determining such a curve or
surface requires a series of experiments or calculations which are often time and cost consuming. A general
strategy uses an appropriate utility function to sample the space to recommend the next optimal experiment or
calculation within an active learning loop. However, knowing what optimal sampling strategy to use to minimize
the number of experiments is an outstanding problem. We compare a number of strategies based on directed
exploration on several materials problems of varying complexity using a Kriging-based model. These include
one-dimensional curves such as the fatigue life curve for 304L stainless steel and the Liquidus line of the Fe-C
phase diagram, surfaces such as the Hartmann 3 function in three-dimensional space and the fitted intermolecular
potential for Ar-SH, and a four-dimensional data set of experimental measurements for BaTiO3-based ceramics.
We also consider the effects of experimental noise on the Hartmann 3 function. We find that directed exploration
guided by maximum variance provides better performance overall, converging faster across several data sets.
However, for certain problems, the tradeoff methods incorporating exploitation can perform at least as well,
if not better than maximum variance. Thus, we discuss how the choice of the utility function depends on the
distribution of the data, the model performance and uncertainties, additive noise, as well as the budget.
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I. INTRODUCTION

The accurate prediction of the properties of materials as
a function of independent variables is crucially important in
exploiting their use in different applications. Such a func-
tional relationship is usually described as a curve or surface
between a property and the independent variable(s) in a multi-
dimensional diagram [1]. These properties can be mechanical,
thermal, electrical, magnetic, optical, and chemical, and the
independent variables often include chemical composition,
temperature, time, and heat treatment conditions [2]. The
material property curves and surfaces determine the critical
states and property optima, and consequently play a crucial
role in the design of new materials, the assessment of hazards,
and the optimization of processing parameters. Familiar ex-
amples include phase boundaries and surfaces in temperature
versus composition space, fatigue life cycle curves describing
the relationship between mechanical properties and load-
ing cycles, and intermolecular potential energy surfaces for
molecules.

Determining a property curve or surface is often time and
cost consuming as a number of measurements or calculations
are required depending on the accuracy needed. An adequate
number of data needs to be accumulated as the independent
variable is varied in given steps. The data requirements are
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sensitive to nonlinearities and sharp changes in the functional
form as well as the presence and number of multiple extrema,
including critical points. For example, establishing a phase
diagram requires a series of experiments to determine the
critical temperature for different compositions or pressures.
Similarly, a number of parallel samples, each of which is used
to obtain the ultimate stress for a given number of loading
cycles, are required to obtain the fatigue curve of an alloy.
Although regression algorithms have been employed to model
the functional form between the property and the independent
variables [3–6], the results of regression inevitably contain
large uncertainties if the number of initial data points is
relatively small, especially if the relationship between the
property and independent variable is complex. Hence, there
is a need for an approach that can predict general property
curves and surfaces and successively refine them rapidly using
as few new measurements or calculations as possible.

Active learning allows an algorithm to choose the data
from which it learns so that it may learn more efficiently
with less training data than otherwise [7–12]. This becomes
particularly important in materials science where the size of
a good quality labeled data set for supervised learning is
often limited because of the expense associated with gen-
erating it [7,13–23]. Utility function in the active learning
loop provides the criterion to sample the search space to
recommend one or more unlabeled instances which would be
most informative to be labeled by experiments or calculations
[24–26]. Sampling the most important states is therefore key
to avoiding excessive numbers of iterations or experiments,
especially if it is unknown which states are most important.
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This requires exploring the allowed space efficiently, which
has been studied in the context of reinforcement learning
using exploration techniques, such as undirected and directed
exploration [27]. Undirected exploration is uninformed and
characterized by selecting actions randomly from a given dis-
tribution [28]. Directed exploration uses knowledge to guide
the exploration search so that the exploration rule directly
determines which action to take next. The goal is to select
actions which maximize the improvement over time, which
is impossible to determine as we do not know in advance
how a given decision will improve the performance. Thus,
all directed exploration techniques are heuristics designed to
optimize knowledge gain. The exploration may be achieved
by choosing states based on frequency of occurrence (counter-
based exploration), or assumed to have a high prediction error
(maximum variance), or those that include different degrees
of exploitation functions based on using the best value of
the model predictions at the time. Examples of the latter
include tradeoff methods such as the efficient global opti-
mization (EGO) and knowledge gradient (KG) schemes based
on Bayesian optimization for finding maxima and minima of
functions [24,29–34].

How much exploration needs to be performed depends
on the costs of collecting new information and the value
associated with that information. In the absence of analytical
results for realistic problems and strategies, we need to com-
pare different strategies on different sets of data of varying
sizes and distributions to evaluate their relative performance
as a function of the dimensionality of the problem as well
as the influence of measurement noise. Here we compare
the efficiencies of six utility functions to estimate material
properties in terms of the number of new experiments required
for each. Since selection via maximum variance (Max-v) is
one of our utilities, we introduce the utility B.EGO, designed
to search for the option with the maximum of the variability in
the function over many bootstrap samples. This is in contrast
to finding the maximum and minimum of the function that
EGO and KG have so far been applied to. The uncertainties
are given by a Kriging model and used in evaluating Max-
v, B.EGO, EGO, KG, random exploration using a uniform
distribution, and sequential Kriging optimization (SKO) to
recommend the next candidate. The last utility considers the
effects of experimental noise on the data.

We apply our approach to several problems with increasing
complexity to determine which utilities are robust across all
of them. As it is common to predict property curves from
limited data, we examine two applications, the fatigue life
curve for 304L stainless steel (SS304L) and estimating the
Liquidus line of the Fe-C phase diagram. We show that two
or three new experiments or calculations are all that is needed
to complete the curve optimization. We study surfaces in the
form of the three-dimensional (3D) Hartmann 3 function used
in optimization tests, to which we also add experimental noise
to study utility performance for noisy data, and the fitted
surface for the intermolecular potential of Ar-SH. Finally, we
apply our tests to a data set of experimental measurements
for the Curie temperature of BaTiO3 ferroelectrics modeled in
four dimensions (4D).

Our principal conclusion is that for a range of materials
data and problems with varying complexities, directed explo-

ration via maximum variance generally performs better than
other utilities in mapping the property curve. The variability
utility B.EGO based on bootstrap samples is also a good per-
former, following Max-v. However, for given problems, the
tradeoff methods that add various degrees of exploitation can
perform at least as well, if not better, than maximum variance
Max-v. Thus, the choice of the utility function is sensitive to
the distribution of the training and subsequently acquired data,
the model performance, the noise as well as the budget, which
determines the number of iterations allowed.

II. ACTIVE LEARNING STRATEGY

Figure 1 illustrates our active learning loop. We begin with
a Kriging model that uses regression to estimate a property
curve, i.e., y = f (x), from the relatively small number of la-
beled data points available. The uncertainties associated with
the estimation will be large due to limited data. The Kriging
model predicts a value μ for each point in the curve as well
as the variance of the prediction s2 at that point. The utility
functions are defined in terms of μ and s2 and recommend
the next unlabeled point for the curve for which the label is
evaluated by the user via experiments or calculations. The
variance serves as input to Max-v as well as B.EGO. The
latter is defined in terms of the bootstrap mean error s̄ and
its standard deviation se(s). The new point selected then aug-
ments the training data so that the regressor can be refined
and provide an updated value for μ and s2. The loop then
continues so that the curve can be improved step by step until
an adequate estimate of the curve is obtained.

A. Model: Gaussian process via Kriging

In Kriging [35–37], the spatial interpolated values are mod-
eled by a Gaussian process governed by prior covariances. It
is customary to consider noisy observations of the targeted
property y, where ỹ j = y(x j ) + ε j and ε j is a realization of a
random variable so that ε j follows an independent, identically
distributed Gaussian distribution N (0, τ 2

j )(1 � j � n) with
homogeneous noise variance τ 2

j .
The property y is considered a realization of a Gaussian

process Y following Kriging. That is,

Y = m + Z =
∑

βf + Z, (1)

where m is a trend function, β is the coefficient, and the
process Z is assumed Gaussian.

Assuming p training data x∗, with unknown data points x,
the universal Kriging (UK) equations are given by [38,39]

μ = m(x) + K (x, x∗)(K + �)−1[ỹ − m(x∗)], (2)

s2 = s2
SK + [f(x)ᵀ − K (x, x∗)ᵀ(K + �)−1f(x∗)]ᵀ[f(x∗)ᵀ

× (K + �)−1f(x∗)]−1[f(x)ᵀ

− K (x, x∗)ᵀ(K + �)−1f(x∗)], (3)

where ỹ = (ỹ1, . . . , ỹp)T , K is covariance between training
data points, � is a diagonal matrix with diagonal terms
τ 2

1 , . . . , τ 2
p . The simple Kriging (SK) variance s2

SK is given by

s2
SK = K (x, x) − K (x, x∗)(K + �)−1K (x∗, x). (4)
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FIG. 1. Flow chart of active learning strategy for efficient estimation of material property curves. (1) A small, labeled training data serves as
the starting point for the targeted curve. (2) A surrogate model using machine learning methods provides an estimate of the fit with uncertainties.
(3) Several criteria are used to check if the estimated fit is adequate and fulfills conditions for success. If not, (4) utility functions are evaluated
and ranked to recommend the next data point to use from the pool of possible points for measurement or calculation to determine the label. (5)
The recommended experiment or calculation is performed and the new labeled point augments the training data to obtain a revised estimate of
the curve. The loop continues until the criteria for success are met.

We use the covariance kernel g(h) = exp[− 1
2 ( h

θ
)2], where h

and θ are hyper-parameters of the model and set characteristic
length scales associated with the data. Note that the variance
value s2 at x depends on the distance from known point x∗.
If x is close to known point x∗, it is influenced by x∗ and
the variance at x will be small. If x is separated from known
points, the variance at x will be large.

B. Evaluating goodness of fit for the targeted curve

We determine the quality of the model by tracking the
deviation of the regressed curve from the true curve. In our
testing case, as the true curve is known, we can use the mean
absolute error (MAE) and maximum absolute error (Max.AE)
defined by

MAE = 1

n

n∑
j=1

(|y j − μ j |), (5)

Max.AE = max(|y j − μ j |), (6)

where n is the total number of possible points in the function,
y j are the true values, and μ j are the estimated values from
Kriging model. The error MAE is the average deviation of
the estimate value from the true value whereas Max.AE is the
largest error over the range of data points.

As the true curve is usually not known, we utilize the uncer-
tainty associated with the regressor prediction as an estimate
of the model quality. We thus use instead the mean stan-
dard deviation (MSD) and the maximum standard deviation

(Max.SD) defined as follows:

MSD = 1

n

n∑
j=1

(s j ), (7)

Max.SD = max(s j ), (8)

where s j is the standard deviation associated with each predic-
tion (μ j) in the curve. We will monitor the evolution of MAE,
Max.AE, MSD, and Max.SD as we iterate the active learning
loop until the accuracy threshold is reached.

C. Utility functions

Small data sets, characteristics of many materials science
problems, typically give rise to large uncertainties in predic-
tion and therefore additional statistical design criteria need to
be invoked. A utility function allows us to choose by maxi-
mizing an expected utility, where the utilities are defined with
respect to information-theoretic considerations. By ranking
the expected value of the information for possible alternatives
for observation or calculation, the utility function provides the
means to prioritize the decision-making process based on the
information gained or reduced by observing a potential new
data point [13,40]. The utilities we compare in this work are
defined below; in the noise case we employ SKO instead of
EGO.

Min-u. Min-u is a greedy choice in which the candidate
with the lowest predicted mean value from the model is cho-
sen. That is,

νMin-u = μ. (9)
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Max-v. The variability in the predictions can be character-
ized by the variance at that point obtained from the Kriging
covariance equation (3). Thus, Max-v is a risk-averse utility
function selecting the next candidate point based on the mag-
nitude of the variance in the property at a given point. That is,

νMax-v = s2. (10)

EGO. Efficient global optimization (EGO) balances ex-
ploration and exploitation by evaluating the “expected im-
provement” (EI) and choosing the candidate with the largest
(EI). If ỹ∗

min is the minimum value in the training data, the
improvement at a point x j is I = max(ỹ∗

min − Yj, 0), where Yj

is distributed normally, N (μ j, s2
j ). As the tail of the density

function at point x j extends into ỹ∗
min, improvement is then

possible. Different amounts of improvement or distances from
ỹ∗

min are associated with different density values. The EI is
obtained by weighting all these improvement values by the
associated density values. The EI of each potential measure-
ment is the expectation of I at that point given by [41]

νEGO = E [max(ỹ∗
min − Yj, 0)] = sG

(
ỹ∗

min − μ

s

)

= (ỹ∗
min − μ)�

(
ỹ∗

min − μ

s

)
+ sφ

(
ỹ∗

min − μ

s

)
,

(11)

where G (z0) = z0�(z0) + φ(z0), z0 = ỹ∗
min−μ

s , s is the standard
deviation associated with the mean value μ of the model
prediction, φ(·) and �(·) are the standard normal density and
distribution functions, respectively. If the measurements are
noise free, νEGO is zero at the sampled points (points that are
already measured) and is positive elsewhere. In our discretized
version of the problem here, EGO simply evaluates EI at each
unexplored point and recommends a point with the largest EI
to be measured next.

SKO. In the noise case, the current best estimate ỹ∗
min

also suffers from noise, and the actual minimum is indeed
unknown. We therefore utilize an extension of EGO, sequen-
tial Kriging optimization (SKO) [42], in which ỹ∗

min in EGO
is modified through the model predictions μ∗∗. A prefactor
1 − τ√

τ 2+s2 is introduced to enhance the exploration

νSKO =
(

1 − τ√
τ 2 + s2

)
sG

(
μ∗∗ − μ

s

)
, (12)

where μ∗∗ = μ(argmin[μ + λs]), λ is the “risk-avoidance”
parameter.

KG. Knowledge gradient (KG) aims at maximizing the
current reward [43,44]. KG can be calculated using

νKG = SG

(
−

∣∣∣∣μ′ − μ

S

∣∣∣∣
)

, (13)

where μ′ is the minimum of the predicted values in the vir-
tual unexplored space (μ j) without the next recommended
sample (μi), i.e., μ′ = minμ j , for j �= i. If the measure-
ments are noise free, S is the standard deviation s provided
by the Kriging model directly. KG is also available for the
noise case and the modified standard deviation S is given by
S = s2/

√
τ 2 + s2, where s2 is the variance of the prediction

and τ 2 is the variance associated with noise [40,43,44].

B.EGO. In order to find the point with the maximum vari-
ability in the property using EGO or KG, we introduce a utility
that complements Max-v. Whereas the variability in Max-v
is directly obtained from the Kriging model for a given data
set, the variability in B.EGO is obtained by considering many
bootstrap samples. Let s∗

max be the largest so-far value of the
standard error of the bootstrap uncertainties in the training
data, so that I = max(ERROR j − s∗

max, 0), where ERROR j

is distributed normally N (s̄ j, se(s)2
j ). The mean s̄ is given

by
∑B

b=1 sb

B , where B are the bootstrap replicates or samples,
and se(s) is the standard error of the bootstrap uncertainties
corresponding to s̄. We use a value of B of 50. Then, the
expected improvement EI of each potential measurement is
the expectation of I at that point given by [41]

νB.EGO = E [max(ERROR j − s∗
max, 0)]

= se(s)G

(
s̄ − s∗

max

se(s)

)

= (s̄ − s∗
max)�

(
s̄ − s∗

max

se(s)

)
+ se(s)φ

(
s̄ − s∗

max

s

)
,

(14)

where G (z0) = ∫ z0

−∞ �(z)dz = z0�(z0) + φ(z0), z0 = s̄−s∗
max

se(s) .
B.EGO is designed to aim at searching for the point with the
maximum expected improvement, however, the improvement
is not for the current minimum function value but for the cur-
rent maximum standard deviation of all labeled observations.

Random. This involves a random choice of the unmeasured
candidate, such that if there are a total of N choices, xi is
chosen with probability 1/N .

III. RESULTS

We present results for three classes of problems with vary-
ing complexity. We consider 1D and multidimensional cases
with a finite number of measurements of relevance in ma-
terials science. These include the following. Case I: (a) the
fatigue life cycle curve for 304L stainless steel (SS304L) and
(b) the Liquidus line in the Fe-C phase diagram. Case II: (a) a
standard optimization test function, the Hartmann 3 function
in 3D, and (b) the fitted intermolecular potential surface for
Ar-SH. Case III: measurements of the Curie temperature for
ferroelectric samples with four variables or features. In case
II(a) we also vary the data set size in the presence of “ex-
perimental” noise. In each case a small subset ỹ∗

j and x∗
j of

the data set is randomly chosen as the initial training data
and the remaining data ỹ j and x j comprise the unexplored
search space. We implemented the feedback loop of Fig. 1,
monitoring the departures from the true result (the optimizing
function) given by MAE, Max.AE, MSD, and Max.SD de-
fined previously. We employed Kriging to perform regression
and once the new measurement xi is selected by the utility
function, the new observed value ỹi augments the training data
and the loop repeats itself, refining successive estimates. We
monitor the number of iterations (N) of the loop, i.e., number
of new measurements made with a given utility that minimize
(N). To garner adequate statistics, the design process was
repeated 100 times with different initial training data ran-
domly selected from all the discretized points in the data set.
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A. Case study I: 1D materials cases

1. (a) Fatigue life curve for 304L stainless steel

Fatigue properties of materials are often described using
the fatigue curve, which describes the relationship between
cyclic stress and number of cycles to failure. It is critical
in assessing material failure and obtaining it experimentally
requires a series of tests to find the ultimate stress for a
given number of loading cycles, which is quite time and cost
consuming.

We choose a monotonic fatigue life curve for 304L stain-
less steel from the simulation work of Mozafari et al. [45]
as a typical example to validate our design loop in Fig. 1. We
consider the number of cycles to failure Nf as the independent
variable and the stress amplitude σa as the output or property
and discretize the curve into 201 data points. We randomly
choose five data points as the initial training data with known
x∗

j and ỹ∗
j to employ in the loop of Fig. 1 to optimize the curve.

The next measurement is recommended from the remaining
196 data points using different utility functions. Typical exam-
ples of the optimization process for Max-v, Random compared
to EGO and B.EGO from one initial data set are shown in Fig.
S1 [46]. The function Max-v converges to the true function
in only three new measurements, outperforming the other
functions which need more measurements.

For a more robust comparison, we used an initial random
training data set of n = 5 training points and tracked the
values of MAE, Max.AE, MSD, and Max.SD as a function
of number of new measurements for the different policies.
By repeating over 100 trials, Figs. 2(a) and 2(b) show the
average values and 95% confidence intervals for MAE and
Max.AE for the different utility functions. The results of MSD
and Max.SD are shown in Fig. S2 [46]. Both Max-v and our
function B.EGO perform very well, converging in relatively
few iterations followed by Random which also converges but
with more iterations. The tradeoff methods EGO and KG
decrease the error quickly in the first three iterations, but then
relax slowly but nevertheless also converge. The greedy, pure
exploitation Min-u shows very little relaxation after a few
iterations.

2. (b) Liquidus line in the iron-carbon phase diagram

The iron-carbon (Fe-C) phase diagram displays the phases,
compositions, and transformations in iron-carbon alloys as
a result of heating and cooling, and therefore serves as the
basis for composition design and optimizing heat treatment of
steels. The liquidus line is the phase boundary in the phase
diagram limiting the bottom of the liquid field, and the liq-
uidus line exhibits a eutectic point at C composition of 4.3%
between γ and Fe3C. The temperature curve in the phase dia-
gram is irregular and the challenge is to obtain it with as few
measurements as possible. We discretize the liquidus line into
118 data points, i.e., 118 composition-temperature data points
and randomly choose 5 initial points. The estimated curves
initially deviate significantly from the true curve, which gives
rise to large values of MAE, Max.AE, MSD, and Max.SD. We
show in Fig. S3 [46] that the function Max-v only requires two
new measurements to match the true function and outperforms
all the other functions which need more measurements. The
function B.EGO also does well in the optimization as it works

FIG. 2. Comparison of the performance of utility functions in
optimizing the fatigue life curve for SS304L steel. The initial data
size contains n = 5 training points and the mean values and error
bars showing the 95% confidence levels of the points are evaluated
over 100 trials. Shown is the behavior of (a) mean absolute error and
(b) maximum absolute error.

directly on the prediction variability. Both EGO and Random
predict a curve close to the true function in the second itera-
tion, but then get worse as the iteration number increases.

By repeating over 100 trials, Figs. 3(a) and 3(b) show
the average values and 95% confidence intervals for MAE
and Max.AE for the different utilities. The results for MSD
and Max.SD are shown in Fig. S4 [46]. Figure 3 essentially
bears out our previous findings for the fatigue curve seen
in Fig. 2, and the general features are very similar to those
discussed previously for the fatigue curve. The uncertainty-
based Max-v and B. EGO perform well and converge readily
compared to Random and the trade-off methods, all of which
do converge although require more iterations. Max-v relaxes
more quickly than B.EGO if compared to fatigue, however,
other than pure exploitation Min-u, all the exploratory utilities
(including Random) converge in the 1D materials data sets.

B. Case study II: Higher-dimensional surfaces

1. (a) Hartmann 3 function

We utilize a well-known optimization test function, the
Hartmann 3 function, to generate data for a three-dimensional
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FIG. 3. Comparison of the performance of utility functions in
optimizing the Liquidus line of the Fe-C phase diagram. The initial
data size contains n = 5 training points and the mean values and error
bars showing the 95% confidence intervals of the points are evaluated
over 100 trials. Shown is the behavior of (a) mean absolute error and
(b) maximum absolute error.

mathematical case with multiple local minima and a global
minimum. The function is defined by

y = −
4∑

n=1

αnexp

(
−

3∑
m=1

Anm(xm − Pnm)2

)
,

where α = (1.0, 1.2, 3.0, 3.2)�,

A =

⎛
⎜⎝

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎞
⎟⎠,

P = 10−4

⎛
⎜⎝

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

⎞
⎟⎠. (15)

The whole space is discretized into 400 points (xm j, m =
1, 2, 3; j = 1, 2 . . . 400) using Latin hypercube sampling.
Their corresponding y j is the value evaluated by the function.
We randomly select 80 data points (20% of the total search
space) as the initial training data, with known x∗

m j and y∗
j . The

surface as well as the optimization results after running 10

FIG. 4. Comparison of the performance of utility functions in
optimizing the targeted Hartmann 3 function. The initial data size
contains n = 80 training points and the mean values and error bars
showing 95% confidence intervals of the points are evaluated over
100 trials. Shown is the behavior of (a) mean absolute error and
(b) maximum absolute error.

steps of different utility functions is shown in Fig. S5 [46].
From the distribution of the new 10 points, we can see that the
points chosen by Max-v and B.EGO are widely distributed
on the whole surface and initially points on the edge of the
contours are even sampled. With EGO very few points are
distributed away from the local or the global minimum.

To compare the efficiency of the utility function introduced
above in the optimization process, we used an initial randomly
training data set of n = 80 training points and tracked the
values of MAE, Max.AE, MSD, and Max.SD as a function
of number of new measurements for the different policies.
Figures 4(a) and 4(b) show the average values and 95% con-
fidence intervals for MAE and Max.AE for 100 trials. The
results for MSD and Max.SD are shown in Fig. S6 [46].
Max-v and the tradeoff policies perform better than the rest,
including B.EGO and Random. This example also suggests
that the actual variance lends itself better to exploration of
the space than the variability across bootstrap samples. The
performance of EGO and KG is slightly better than Max-v
for 30 or less iterations, which can be explained through the
optimization sequence shown in Fig. S5 [46]. We observe that
the training data are further away from the global minimum
in Fig. S5 [46], suggesting that the points near the minimum
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FIG. 5. The number of new measurements needed to achieve a
given accuracy (3% and 1% of the y range) for the curve as a function
of the training data size [(a) and (b)]. Each optimization process
is repeated 100 times. The points with the error bar are the mean
values associated with 95% confidence levels over 100 trials. The
probability density of the difference in the number of iterations using
EGO and Max-v. Plotted along the x axis is NEGO − NMax-v.

will not be well predicted. EGO samples some points near
the global minimum in the first few iterations (shown by dark
purple stars), whereas Max-v, B.EGO, and Random do not
sample points in this area. Thus, it is not surprising that EGO
does better initially.

To study the number of iterations required for different
policies or utility functions to match a targeted objective
function or curve, we set a threshold on MAE to stop our
iteration loop. The threshold is set to (ymax-ymin) × 3% and
1%, respectively, to show how these utility functions perform
to meet different demands of accuracy [shown in Figs. 5(a)
and 5(c), 5(b) and 5(d)]. The initial training data with sizes
from 3% to 15% times the number of total data for the first
threshold, and 5% to 20% times the number of total data for
the second threshold were selected randomly. A total of 200
iterations is set to stop the optimization loop. If after 200
iterations the loop does not reach the threshold, the number
of new measurements needed is counted as 200. Figures 5(a)
and 5(b) show the number of iterations required to meet the
threshold as a function of initial training data size. Each point
with the error bar represents the average value associated with
95% confidence level over 100 random trials. As the size
of training data increases, all the utility functions perform
better. Pure exploitation Min-u performs much worse than the
others, almost two or three times slower, followed by B.EGO
and Random. However, we notice the differences between the
tradeoff methods and Max-v when the MAE threshold differs.
If the MAE threshold equals 3% of y range, the tradeoff
methods EGO and KG are a little better than Max-v. If the
MAE threshold equals 1% of y range, a higher requirement on
the accuracy, then Max-v is the best choice. Figures 5(c) and
5(d) show the probability density difference (δ) in iterations
needed to reach the threshold using EGO and Max-v in 100
trials. The peak moves from negative to zero and becomes

FIG. 6. Comparison of the performance of utility functions in
optimizing the targeted Hartmann 3 function subject to noise levels
of 5%, 10%, and 15% corresponding to (a)–(c). The initial data size
contains n = 80 training points and the mean values and error bars
showing the 95% confidence intervals of the points are evaluated over
100 trials. Shown is the behavior of mean absolute error (MAE).

narrower as the size of training data increases in Fig. 5(c),
indicating that the advantages of EGO decrease with the in-
creasing size until they finally perform similarly. For MAE
threshold equal to 1% of y range, the opposite of Fig. 5(c)
applies [shown in Fig. 5(d)].

Effects of noise. Using the function above, we introduce
random errors to generate noisy data to simulate noisy mea-
surements in experiments. We assume noise ε j follows a
normal distribution N (0, τ 2), where τ is set to 5%, 10%, and
15% of y range, respectively. The observation values then can
be calculated via ỹ j = y(x j ) + ε j . A second measurement of
the same candidate j, which has already been measured, is
allowed. The results for the different utility functions after
100 trials are presented in Fig. 6. Each row corresponds
to one level of noise, the noise level increases from top to
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bottom. Compared to Fig. 4, if the number of iterations equals
to zero, MAE and Max.AE (shown in Fig. S7 [46]) increase.
The increase in these values in the beginning indicates that
noise makes the prediction of the model deviate much more
from the real curve. That is, the prediction suffers from both
model uncertainties and measurement noise. SKO, the modi-
fied version of EGO with noise, performs very well, especially
at noise levels of 5% and 10%. Max-v does surprisingly well
and does converge to SKO with more iterations.

2. (b) Intermolecular potential energy surface for Ar-SH

The 3D intermolecular potential energy surface for Ar-
SH has been determined by a combination of spectroscopic
measurements and solutions to the Schrödinger equation [47].
The fitted surface and potential well reproduces all the known
experimental data and we utilize this example to test the utility
functions. The database includes in total 1050 points with the
calculated potential energy in cm−1 and 3 variables, namely,
the distance between Ar and the center of mass of SH in Å,
the angle theta, and the SH bond length in Å. We randomly
selected 52 data points (5% of the total search space) as the
initial training data. The surface as well as the sequence of
optimizations on the two of these variables planes are shown
in Fig. S8 [46] for the 1050 points. The stars with the numbers
refer to the sequence obtained. The distribution of the newly
acquired 10 starred points by the utility functions is very
similar to that for the Hartmann 3 function. That is, those
chosen by Max-v and B.EGO are widely separated, whereas
for EGO few points are dispersed away from the local or
global maxima.

To compare the efficiency of the utility function introduced
in the optimization process for the Ar-SH potential energy
surface, we used an initial random training data set of n = 52
training points and monitored the values of MAE, Max.AE,
MSD, and Max.SD as a function of number of new measure-
ments for the different policies. Figures 7(a) and 7(b) show
the average values and 95% confidence intervals for MAE
and Max.AE for 100 trials. The results of MSD and Max.SD
are shown in Fig. S9 [46]. The performance of EGO, KG,
and Max-u is considerably better than Max-v in the first 50
iterations shown, and the optimization sequence in Fig. S8
[46] shows the evolution. As the training data are further away
from the global maximum in Fig. S8 [46], we expect the
predictions to have large uncertainties. EGO samples points
near the global maximum in the first few iterations (shown
by dark purple stars), whereas Max-v, B.EGO, and Random
are sampling points further away. It is not surprising that the
tradeoff methods, such as EGO, as well as the greedy Max-u
perform well. Thus, as expected, the distribution of the data is
a factor in the relaxation and performance.

C. Case study III: Multidimensional Curie transition
temperature for BaTiO3-based ceramics

Ferroelectric ceramics such as BaTiO3 undergo a transi-
tion from a nonpolar paraelectric state to a ferroelectric polar
state at a characteristic temperature known as the Curie tem-
perature. This critical temperature is the upper limit of the
temperature window for piezoelectric applications including
sensors, transducers, etc. [32], and therefore it is of impor-

FIG. 7. Comparison of the performance of utility functions in
optimizing the Ar-SH potential energy surface. Plotted is the devia-
tion of the model prediction from that obtained using measurements
fitted to the Schrödinger equation. The initial data size contains
n = 52 training points and the mean values and error bars showing
95% confidence intervals of the points are evaluated over 100 trials.
Shown is the behavior of (a) mean absolute error and (b) maximum
absolute error.

tance to construct the Curie transition temperature surface in
as few measurements as possible.

The Curie transition temperature in BaTiO3-based ceram-
ics is affected by some features or descriptors, which can be
calculated for each composition by a weighted fraction of ele-
mental properties including radius, electronegativity, valence
electron numbers of the perovskite structure containing A and
B site cations [48]. It has been found that four descriptors
capture the salient physics of the system [49] and here we
test how the Curie transition temperature behaves in terms of
these descriptors in a discrete 4D space without a knowledge
functional form for the surface.

Our data set consists of 182 samples of data obtained in our
laboratory [46] and previously published [19,50]. This data set
consists of the property, the Curie temperature, and the four
descriptors or variables including density of B-site element
(BD), the ratio of electronegativity of the A site and B site
(EN), the ratio of the ionic radii of A site and B site (TA.B),
and the product of atomic volume of A site and B site (av).
The descriptors were obtained and studied previously from a
large superset of descriptors using methods such as gradient
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FIG. 8. Comparison of the performance of utility functions in
optimizing the targeted Curie temperature for BaTiO3-based ceram-
ics. The initial data size contains n = 55 training points and the
mean values and error bars showing the 95% confidence intervals
of the points are evaluated over 100 trials. Shown is the behavior of
(a) mean absolute error and (b) maximum absolute error.

boosting and 10-fold cross validation with a Kriging-based
model [49]. Our target here is to minimize the difference
between the predicted values from our Kriging model and
the measurement values. For the initial model training, we
randomly selected 30% of the data.

Figure 8 shows the results from 100 trials. There is a
significant drop initially in the maximum error for Max-v and
B. EGO, suggesting that the bulk of the uncertainty is reduced
within a few iterations. Again, Max-v relaxes the most but
the others are not far from converging to it. Unlike the other
cases, Max.AE does not relax to zero and is indicative of the
complexity of the problem. We have essentially used only four
features to model these data from a sampling of 182 measure-
ment points. There are uncertainties in the model itself, hence,
the Kriging needs to be accurate, and we are assuming that the
sampling of points is representative of the data in the whole
space.

IV. DISCUSSION

Our objective has been to compare the influence of utility
functions for curves, such as phase boundaries, fatigue lines,

and other multidimensional cases important in materials sci-
ence. This is essential as in the absence of analytical results,
it is difficult to predict a priori which utilities will be supe-
rior in reducing the costs of acquiring new information when
learning from data.

Except for the random case, all the utilities we compare are
based on directed exploration, which can incorporate different
degrees of exploitation. Our key finding is that maximum vari-
ance (Max-v) performs well across a range of data sets with
varying complexities, including the addition of experimental
noise. The function B.EGO, which tracks the variability over
bootstrap samples, and uses EGO to minimize the variability
across the whole function, also shows relatively good perfor-
mance, although it is not as robust as Max-v. Moreover, we
also find that for some type of data set, there exists a utility
which performs as well, if not better than, or at least competes
with, Max-v. The distributions of the property values in the
data set y can also influence the behavior. If the distributions
depart from the uniform distribution, and typically there are
relatively few training data points located near global minima
and maxima, then the minima and maxima can be associated
with large deviations from the true result. We find this to
be the case for the Hartmann 3 function and intermolecular
potential data sets, where the tradeoff methods EGO and KG
perform as well, if not better than Max-v. Also, for a given
problem, several utilities can converge but at varying iteration
numbers. For the intermolecular potential, the convergence
is far superior to Max-v even after 50 iterations. In cases
where Random selection does converge, it requires a lot more
iterations as the exploration is unguided. In the presence of
experimental noise, SKO, which is essentially EGO with noise
incorporated, is the superior performer at noise levels of 5%
and 10%, although Max-v also does well, converging with
more iterations.

Our results emphasize the importance of making the ap-
propriate choice in ranking and selecting the next candidate
for measurements or calculations.

To gain an understanding of the behavior of these func-
tions, we plot the probability density functions (PDF) for
the uncertainties from the Kriging model estimates and for
the deviation of the estimate from the true curve, as a func-
tion of iterations. Figures 9 and 10 show the results for the
Liquidus line of Fe-C phase diagram and the fatigue life
curve of 304L steel, respectively. The Fe-C curve is more
complex and its Kriging estimate would not be expected to
be as good. Thus, for all the four utilities being studied, we
see wide distributions in the uncertainty profile for the esti-
mates and the deviation from true curve (panel No. = 0) of
Fig. 9. With successive iterations as the next point is added,
the distributions of the uncertainties begin to narrow and the
mean value tends towards zero. All strategies are efficient in
this sense with Max-v leading to a desired narrower sharply
peaked distribution (No. = 5) of Fig. 9. For Random selection
and EGO, points with very large uncertainties always occur
because of the long tails in the distribution. The other utilities
target such points with large uncertainties to reduce the tail in
the uncertainty distribution.

The Kriging estimate for the fatigue line behavior shown in
Fig. 10 is better than for Fe-C as the function by comparison is
quite monotonic and so the initial distributions of “deviation

013802-9



YUAN TIAN et al. PHYSICAL REVIEW MATERIALS 5, 013802 (2021)

FIG. 9. For the Liquidus line of the Fe-C phase diagram, the probability density functions (PDF) of the uncertainties and deviation from
true result associated with the Kriging model prediction for Random, Max-v, B.EGO, and EGO are shown with successive iterations.

from true curve” shown in panels (No. = 0) of Fig. 10 are
narrower. The evolution of the distributions for utility func-
tions (except for Random) is similar to that in Fig. 9. Because
the objective function is simpler, all utility functions show

very similar performance in the first two iterations. Thereafter,
the PDF of “deviation from true curve” employing Max-v
quickly converges to zero compared to B.EGO and EGO.

FIG. 10. For the fatigue life curve for SS304L steel, the probability density functions (PDF) of the uncertainties and deviation from true
result associated with the Kriging model prediction for Random, Max-v, B.EGO, and EGO are shown with successive iterations.
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FIG. 11. Typical solutions and the probability density functions
(PDF) of the property values y for the intermolecular potential energy
surface (PES) and the FeC phase boundary data sets. The dark blue
line represents the model prediction and the red line the true solution.

Thus, irrespective of how good initially the predictive model
is, Max-v shows superior performance in these two 1D cases.

We conclude with some general remarks on circumstances
that favor Max-v and tradeoff methods such as EGO. If the
variance is large and the deviation from the true result also
large, then selection by Max-v will have a significant effect in
decreasing the deviation further. However, if the deviation is
small (i.e., the model is good), then the reduction in deviation
will not be significant. This is likely the case for both of
the 1D curve examples in case 1 where Max-v is especially
good. Similarly, in situations where the uncertainty is not too
large, and the deviation from the true result is significant, then
tradeoff methods such as EGO will have a substantial effect
in locating the max and min of the curve, that is, decrease the
deviation further. We suggest this is the case for the Hartmann

3 function and PES intermolecular potential. Tradeoff meth-
ods depend on balancing the uncertainty (exploration) with
exploitation (model performance), and in the limits where the
uncertainties are either very large or very small, for a given
deviation, then from expression (4), EGO behaves either as
Max-v or chooses the model prediction, respectively.

To illustrate graphically, we have plotted in Figs. 11(a) and
11(b) the distribution of the y-data values for the intermolec-
ular potential energy surface (PES) and FeC phase boundary
examples. We note that the former deviates strongly from a
uniform distribution of values, whereas the latter is closer to
uniform. Schematics of the solutions corresponding to these
two cases are shown in Figs. 11(c) and 11(d), where the
red line is the actual solution and the dark blue line is the
model prediction. The distribution of y values in Fig. 11(a)
typically gives rise to the curves of Fig. 11(c) with a maxi-
mum and there are relatively few training data points close
to the maximum in the distribution. As expected, EGO works
well near the maximum, whereas Max-v is better where the
uncertainties are large. For a more uniform distribution of
y-data values as in Fig. 11(b) for the 1D FeC example, the
solution profile is more complex as in Fig. 11(d), with Max-v
having a greater impact on driving the optimization towards
the solution. We hope our work will motivate further studies
on a variety of materials data to confirm our findings, as well
as provide a deeper understanding of why Max-v works so
well across data sets with varying complexities. All the data
used to perform this work are given in [46].
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