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Correlated disorder in a model binary glass through a local SU(2) bonding topology
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A quantitative understanding of the microscopic constraints, which underlie a well relaxed glassy structure,
is the key to developing a microscopic theory of structural evolution and plasticity for the amorphous metallic
solid. Here we demonstrate the applicability of one such theory of local bonding constraints developed by D.
R. Nelson [Phys. Rev. B 28, 5515 (1983)] for a model binary Lennard-Jones glass structure. By introducing
a modified radical Voronoi tessellation, which removes some ambiguity in how nearest-neighbor bonds are
enumerated, it is found, that a large proportion (>95%) of local atomic environments follow the connectivity
rules of the SU(2) topology resulting in a dense network of disclination lines characterizing the defect bonds.
Furthermore, it is numerically shown that a low-energy glass structure corresponds to a reduced level of
bond-length frustration and thus a minimally defected bond-defect network. It is then demonstrated that such
a defect network provides a framework to analyze thermally activated structural excitations, revealing those
high-energy/low-density/elastically soft regions not following the connectivity constraints are more likely to
undergo structural rearrangement that often ends with the creation of new SU(2) local topology content. The
work provides a new analysis tool to study the connectivity of developing structural motives characteristic of
isotropic undercooled liquids, their transition to a glass, and subsequent glassy structural relaxation.
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I. INTRODUCTION

If the temperature of a glass forming metallic liquid is
lowered sufficiently fast below the melting point, the nu-
cleation and growth processes needed for crystallization do
not occur and the material enters the metastable undercooled
liquid phase. Kauzmann, in his seminal paper of 1948 [1],
asserted that as the temperature continues to drop, fluctuation
processes rare to the equilibrium liquid become increasingly
likely. These microscopic fluctuations, broadly known as dy-
namical heterogenities [2,3], have characteristic timescales
and length-scales which rapidly increase with decreasing tem-
perature and when these become larger than the relevant
observational timescales, the material falls out of the metae-
quilibrium of the undercooled liquid and enters that of the
bulk-metallic glass [1,4,5].

The materials science approach is to quantify the nature of
this glassy metaequilibrium regime—its structural character-
istics through its fluctuations and instabilities, and ultimately
their collective and macroscopic response to stimuli such
as external heating and/or loading protocols [6–8]. With no
long-range order, understanding amorphous structure has to
be based on quantifying the atomic-scale constraints. Indeed,
the configurational entropies of a glass can be up to an or-
der of magnitude lower than its liquid phase at the melting
temperature resulting in a considerable reduction of the ac-
cessible structural phase space [5]. The classification of such
constraints, and how they may be broken, can lead to the
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notion of a structural defect hierarchy which in turn could be
the basis for a microscopic theory of the amorphous solid.

Kauzmann goes on to assert that deep within the un-
dercooled liquid those microscopic structural fluctuations
necessary for crystal nucleation, and those deemed to be rare
in the equilibrium liquid state, have comparable timescales,
competing with each other to determine the metaequilibrium
structure of the undercooled liquid, and therefore that of the
resulting glass structure. This suggests that the sought after
atomic-scale constraints of the glass feature aspects of lo-
cal structural motives compatible with local crystalline order
[9,10].

There has been considerable effort to characterize within
atomistic simulation, the local structural motives of the glass
and more generally that of the undercooled liquid, and the
glass transition it entails (see, for example, the review article
of Tanaka and co-workers [11], which considers both isotropic
and molecular-type liquids). Such approaches address both
static structures and their dynamics, thus broadly addressing
both local entropic and energetic aspects of the problem. This
latter perspective seems intuitive since as the temperature
lowers, entropic factors diminish and the energetics of the
local motives begin to dominate. It is within this “low-energy”
sector that the aforementioned constraints should emerge.

Insight into those structural fluctuations that are not com-
patible with general crystalline order, and which are rare in
the liquid, can be gained by considering the minimum energy
configuration of a quadruple of atoms [6]. For a monoatomic
system, this configuration results in a regular tetrahedron.
However, such regular tetrahedra can not be packed in a vol-
ume filling way. The packing of twelve distorted tetrahedrons
around a single atom, forms an icosahedron, and represents
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FIG. 1. (a) Four (green), five (blue), and six (red) fold bonds,
defined by the number of common neighbors or the number of
tetrahedra that may be packed around the bond. The creation of a
defect involves the breaking of the fivefold (middle) symmetry to that
of either the fourfold (left) or the sixfold (right) symmetry. (b) Yellow
shaded icosahedron whose fivefold rotation symmetry directions are
labeled from i = 1 to 12. To each such axis corresponds the operator,
Ũ±

i , which creates a fourfold (+) or a sixfold (−) bond defect that
breaks the corresponding fivefold symmetry along that direction.
The six fivefold rotation axes correspond to the Ũ±

1 = Ũ∓
2 , Ũ±

3 =
Ũ∓

4 , Ũ±
5 = Ũ∓

6 , Ũ±
7 = Ũ∓

8 , Ũ±
9 = Ũ∓

10, and Ũ±
11 = Ũ∓

12 redundancies.
(c) Examples of allowed bond defects where green/red defect bonds
represent fourfold/sixfold bonds, using the same orientation as in
(b). Here the upper panels represent examples of Frank-Kasper
polyhedra [14] and the lower panels examples of Nelson polyhedra
[29,30].

the minimally distorted tetrahedral packing with the bond to
the central atom being shorter than that between its neighbors.
The common neighbors between the central atom and one of
its neighbors, number five, and represent a packing of five
tetrahedra. This is referred to as a fivefold bond [Fig. 1(a)].
Continuing a tetrahedral packing protocol, whilst maintain-
ing the icosahedral point symmetry soon results in distorted
tetrahedra and strong internal strain, that can be alleviated
by either modifying the curvature of the space in which the
particles are embedded [12,13] or by breaking the icosahe-
dral point symmetry and introducing “defects” in the form of
fourfold and sixfold bonds—an idea proposed by Frank and

Kasper [14] where generally an n-fold bond is represented
by the packing of n distorted tetrahedra around the bond axis
[Fig. 1(a)]. It is these fourfold and sixfold bonds that lead to
long range close-packed crystalline order, resulting in these
bonds being referred to as “crystal-like” bonds, whereas the
fivefold bond is referred to as the “liquidlike” bond (which,
in fact, is rare in the equilibrium liquid). Relative to the Z12
coordinated local structure of the icosahedral environment,
Frank and Kasper [14] identified these bonds as higher co-
ordinated environments involving two, three, four additional
sixfold bonds whose coordinations are, respectively, 13, 14,
and 15, whereas Bernal [15] identified lower coordinated envi-
ronments as involving two, three, and four additional fourfold
bonds whose coordinations are, respectively, Z11, Z10, and
Z9.

The discussed structural motives are all relevant for the
amorphous structure, as evidenced by the success of the glass
structural models of Miracle and co-workers [16–19], and the
use of icosahedral content and the polytope variants pioneered
by Ma and co-workers [20–22]. The work of Miracle demon-
strates that structural insight into binary and ternary metallic
glasses can be gained through an analysis of dense local pack-
ings of solute atoms which take into account the coordination
of the neighboring atoms [16], whilst the work of Ma demon-
strates the central importance of local icoshadral environ-
ments as a structural measure of relaxation and rejuvenation in
bulk metallic glasses. Indeed, Jónsson and Andersen [23] had
showed somewhat earlier, that as the glass-transition tempera-
ture regime is entered and passed, a local icosahedral ordering
rapidly percolates throughout the model Lennard Jones amor-
phous solid. Together, these and many subsequent works
introduce the notion of medium range order, through the con-
nectivity of how such local structural units may be packed.

Atomistic simulation of well relaxed model binary alloys
has given some insight into the nature of such medium range
order. The work of Zemp et al. [24,25] has demonstrated
for a model CuZu glass, that high temperature annealing
simulations spanning up to 800 nsec result in atomic envi-
ronments whose icosahedrally coordinated atoms form local
bond networks identified as fragments of the C15 Laves
phase—a crystal structure belonging to the class of close-
packed topological alloy structures which are dominated by
fivefold and sixfold bonds. This has also been observed using
the Wahnström [26] Lennard Jones potential [9,27]—a poten-
tial that is known to nucleate Laves crystals at high enough
temperatures [28].

The notion of fourfold and sixfold bonds being defected
bonds was put on a firm theoretical founding by Nelson
[29,30]. Central to this approach was the focus on the geomet-
rical frustration associated with the inability to simultaneously
minimize the energy of all bonds in three spatial dimen-
sions [6]. Here, the fivefold bond and its packing of five
distorted tetraherons represents a locally minimally frustrated
structure at the individual bond-length scale, whereas the
icosahedral environment of twelve fivefold bonds represents
the minimally frustrated structure of the nearest-neighbor en-
vironment length-scale. Inspired by homotopy theory [31],
Nelson demonstrated that fourfold and sixbold bond defects
at this latter length scale are restricted to a subset of nearest-
neighbor environments—see Sec. II. The connectivity of these
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restricted local topologies could then represent a robust math-
ematical representation of the amorphous structure, defining
the glassy structure in terms of microscopic constraints that
the local atomic environments must satisfy in which any
low-energy microscopic realization would be described by
a network of n( �= 5)-fold bond defect lines—the so-called
four- and sixfold disclination line defects. Work by Qi and
Wang [32], who studied a 500 atom model Mg3Ca7 system
found several realizations of the local topologies predicted by
Nelson, in terms of the number of four-, five-, and sixfold
bond number, confirming that such local structural motives
do exist.

It is the goal of the present work to quantitatively investi-
gate to what degree the above disclination network description
is applicable to glassy structures obtained through atom-
istic simulation, a framework which gives predictions on the
allowed bonding structure not only in terms of the n-fold char-
acter but also its allowed orientational geometry. This is done
for the Wahnström [26] Lennard Jones model binary glass, for
glassy structures produced directly from the undercooled melt
and also from subsequent isothermal evolution at timescales
in the micro-second range. It is found that a large percentage
of the glassy structure, approximately 95% for well relaxed
systems, do indeed follow the topological constraints, produc-
ing a complex system spanning disclination network. In doing
so, it is established that glass relaxation entails a reduction of
frustration corresponding to an increasingly less dense discli-
nation network.

The paper is organized as follows. In Sec. II, the relevant
aspects of Nelson’s work are introduced leading to a mathe-
matical theory of local constraints based on the SU(2) algebra.
The results section, Sec. III, begins with a description of the
atomistic model binary glass simulations to which the SU(2)
algebra is applied, and a modified radical Voronoi tessellation
is developed that is better able to define the local nearest-
neighbor geometry necessary to define the n-fold bond defect
structure of the produced microscopic samples. This modifi-
cation is developed within the OVITO visualization software
[33] and made publicly available via GitHub [34]. Here one
will also find a stand alone fortran90 implementation that
uses the open source VORO++ TESSELLATION software [35].
This is followed by application of the SU(2) algebra to these
glassy structures (Secs. III A and III B), and how it correlates
with traditional microscopic descriptors such as local atomic
volume (free volume), local energy, local stress, frustration,
and elastic stiffness (Sec. III C). Sec. III D investigates the
spatial properties of the disclination network. Section IV dis-
cusses how the present work relates to the efficient packing
glass-structure model of Miracle and co-workers [16–19] and
how the SU(2) framework allows for an entirely new aspect to
studying thermally activated localized structural excitations,
and how they can lead to structural relaxation with the creation
of minimally defected content. The results are also discussed
within the context of past coarse-graining approaches that take
into account the constraints imposed by the SU(2) algebra
and also contemporary dynamical facilitation theories of the
glass transition. Section V summarizes the work and dis-
cusses future directions. The paper will refer extensively to the
supplementary materials document [36], where corresponding
section and figure numbers will be prefixed with SM.

II. THE SU(2) ALGEBRA OF LOCAL STRUCTURE

Nelson begins with the flat defect-free 2D triangular lat-
tice whose atoms are Z’6 coordinated. The Z’ terminology
refers to nearest-neighbor coordinations in 2D. The associ-
ated Z’5 and Z’7 local coordination defect environments are
topological (referred to as disclinations) and maybe associated
with the homotopy group arising from the translational and
rotational symmetry of the liquid phase in two dimensions,
and the discrete lattice symmetry of the solid 2D triangular
phase. This 2D picture is then applied to the surface of a
3-sphere where the discrete lattice symmetry is replaced with
the discrete symmetries of the icosahedron—the curved space
and finite 2D triangular lattice analog. The defect free atomic
structure would represent the environment of the Z12 coor-
dinated icosahedron structure of an atom within a 3D glass,
with a surface defect-free coordination of Z’5. Surface defect
coordinations of Z’4 and Z’6 are now the fourfold and sixfold
bonds referred to earlier. See Fig. 1.

In what follows only the fivefold symmetry of the icosa-
hedron are considered, and in particular the conjugacy classes
associated with ±72 rotations around the 6 + 6 fivefold axes
(see Sec. II C in Ref. [30]) which may be identified as the
fundamental disclinations of the icosahedron solid. The corre-
sponding group elements of these defect types forms an SU(2)
algebra, defined by the matrices:

Ũ±
i = exp

(
1
2 iω±ni.σ̃

)
, (1)

where ni are the twelve fivefold rotation axes of the icosahe-
dron [see Fig. 1(b)], ω+ = 72◦ and ω− = −72◦ refer to the
so-called disclinations associated with, respectively, the four-
and sixfold bonds, and σ is the 3-vector of Pauli matrices.
The allowed n-fold bond structure of a particular atom is then
defined by products of the Ũ±

i giving the identity matrix.
For example the Frank-Kasper Z14 polyhedron [14], could
be given by Ũ−

1 Ũ−
2 = Ĩ, the Frank-Kasper Z15 polyhedron

by Ũ−
1 Ũ−

5 Ũ−
11 = Ĩ, and the Frank-Kasper Z16 polyhedron

by Ũ−
1 Ũ−

8 Ũ−
9 Ũ−

12 = Ĩ matrix product. The Bernal-hole bond
order structures [15] are given by similar products, but in
terms of the U+

i . Reference [30] also introduces the so-called
vacancy (free-volume defect) in which one sixfold bond is
created and two 4-bonds are created, as well as interstitial
(negative free-volume defect) in which one fourfold bond
and two sixfold bonds are created at a site. These polyhedra
will be referred to as Z11 and Z13 Nelson polyhedra. Al-
gebraically these take the respective forms of Ũ−

1 Ũ+
5 Ũ−

12 = Ĩ
and Ũ+

1 Ũ+
6 Ũ−

9 = Ĩ. The Frank-Kasper and Nelson polyhedra
are visualized in terms of the geometry entailed by Eq. (1) in
Fig. 1(c). There are many more allowed defected bond order
structures, some of which will be studied in more detail in
what follows.

The implication for connectivity of a defected bond-order
network satisfying this algebra throughout the amorphous
structure is clear. A network of disclination lines whose inter-
connectivity satisfies the local need for the product of the
correspond matrices to give the identity operator. As pointed
out by Nelson, an immediate consequence is that a fourfold or
sixfold bond, disclination line, cannot terminate at a site that
is otherwise defect free since obviously, Ũ±

i �= Ĩ.
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III. APPLICATION TO A MODEL BINARY GLASS AND
A MODIFIED RADICAL VORONOI TESSELLATION

For the present work, the model binary Lennard-Jones
potential of Wahnström [26] is used. This potential is well
known as a model fragile glass former [13,37–39] and is
able to capture the essential structural physics of bulk binary
metallic glasses such as that of CuZr [6,20,22,40]. For the
current work four, 32 000 atom, atomic configurations are
considered. Each has a 50:50 stoichiometry of small to large
atoms which is close to the potential’s eutectic composition.
Periodic boundary conditions are used. Glass structures are
produced from the melt using a protocol of quenching and
iso-thermal annealing. The precise details are given in the
Secs. SM I and SM II. One configuration is referred to as
“from-the-melt” and is produced from a conjugant gradient
(cg) quench of a high temperature liquid configuration at
T = 1.7Tf (Tf is the fictive transition temperature), placing
the configuration at a local potential energy minimum—a so-
called inherent state [41,42]. This configuration may be seen
as an extremely unrelaxed glassy structure. The other three
samples are obtained from a subsequent isothermal NVT an-
nealing protocol at T = 0.95Tf and are distinguished by their
annealing times 0, 5, and 10 μsec. For structural analysis, the
instantaneous atomic configurations are also cg-quenched to
remove the thermal noise. All molecular dynamics (MD) sim-
ulations are performed using the LAMMPS software platform
[43] and atomistic visualization is performed using OVITO

[33].
To determine the population of bonds within a given struc-

ture, a variant of the Voronoi tesselation [44–46] is used for
systems with differently sized atoms. The radical Voronoi tes-
selation [47] (RV) gives the nearest neighbors of each atom in
a polydispersed system, which can be then used to determine
the common nearest neighbors of two neighboring atoms. It
is assumed that such a radical Voronoi tessellation takes into
account all relevant atom type dependencies. This is a working
assumption. From this, the n-fold nature of each bond is deter-
mined via the number of common nearest neighbors the two
atoms, forming the bond, have. This approach is motivated
by the common neighbor method of Honeycutt and Anderson
[48]. It is noted that the number of edges the corresponding
Voronoi face has, has also been used to define the n-fold
bond nature. However, the obtained value is generally not
equal to the explicit common neighbor approach, tending to
overestimate the value of n due to short edge contributions of
more distant (non-nearest-neighbor) atoms.

A modified RV (modRV) is developed to overcome this
discrepancy, resulting in Voronoi polyhedra faces whose
edge number better corresponds to the number of common
neighbors of the associated bond (for details and a python
implementation within OVITO [33], see Secs. SM III and
SM IV). The modification may be viewed as producing a
better tetrahedral tessellation in terms of increasing the reg-
ularity [49] of the resulting tetrahedra. In particular, from
the standard Voronoi tessellation, n common neighbors of a
nearest-neighbor pair can have three neighbors, which among
themselves are common neighbors. In terms of a teterahedral
tessellation, this results in three highly distorted tetrahedra.
The modified radical Voronoi tessellation removes this n-

fold bond, resulting in a transition to two less distorted
tetrahedra—see Fig. SM 2. This modification generally ap-
plies to n >sixfold bonds. Doing so also has the added effect
of the resulting tetrahedral tessellation becoming space filling.
This modification should be distinguished from a previous
modification by Malin and co-workers [50] that also removes
more distant neighbors resulting from the standard Voronoi
tessellation. The statistical study of the n-fold populations has
been referred to as the topological N-ring analysis [11]. In
the following two sections, such statistics will be investigated
with the new emphasis on its connectivity according to the
work of Nelson [29,30].

A. Investigation of local n-fold bond structure

For each atom, the notation (N4, N5, N6) is now used.
Here Nn is the number of n-fold bonds. The coordina-
tion Z is then given by the sum of the Nn. This notation
should be distinguished from that used to describe a general
polytope associated with a (in our case, modified radical)
Voronoi tessellation [21,22]. Here, 〈n3, n4, n5, n6, . . . 〉 rep-
resents a polytope in which ni faces are constructed from
i edges, where the labeling 〈0, 0, 12, 0, . . . 〉 corresponds to
the icosahedron. The presently introduced notation labels the
icosahedron as (0, 12, 0). Atoms with (0, 12, Z − 12) corre-
spond to Z > 12-coordinated Frank-Kasper polyhedra, whilst
(2, 8, 0), (3, 6, 0), and (4, 4, 0) correspond to the Z10, Z9,
and Z8 Bernal holes. The Z13 and Z11 Nelson polyhedra
correspond to (1, 10, 8) and (2, 8, 1).

Figure 2(a) plots the n-fold bond distribution for the four
samples resulting from the modRV and standard RV. Figure
SM 3 plots the same data using a vertical logarithmic scale.
The figures demonstrate that the four-, five-, and sixfold pop-
ulations dominate using both the modRV and RV tessellations.
For the modRV tessellation this dominance is almost complete
constituting approximately 99.75% of the identified bonds.
The dominance is somewhat reduced to approximately 98%
when using the standard RV tessellation.

Figure 2(a) demonstrates that the number of defect free
fivefold bonds increases whereas the number of fourfold and
sixfold defected bonds decrease as the glassy structure re-
laxes. These trends are compatible with the observed increase
in (0, 12, 0) content seen in Fig. SM 1(b) as the glass relaxes.
The less pronounced change in n-fold bond populations when
compared to the scale of icosahedral content change indicates
that the creation of such low-energy and high-density icosahe-
dral environments is due to the removal/addition of just a few
defect/undefected bonds. Indeed, the n-fold bond populations
linearly correlate with the icosahedral fractional content, with
the gradients equaling −0.26, 0.56, and −0.29 respectively for
the four-, five-, and sixfold bonds. This indicates that the struc-
tural transition associated with the creation of icosahedral
content involves (on average) the creation of one fivefold bond
at the expense of a fourfold and sixfold defected bond. How
this may occur will be discussed in Sec. IV. The excess of
sixfold bonds over fourfold bonds seen in Fig. 1(a) reflects the
dominance of overcoordinated rather than undercoordinated
atomic environments and the presence of the Frank-Kasper
topologies. More fundamentally this is due to the sixfold bond
being less frustrated than the fourfold bond. At the higher
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FIG. 2. Distribution of (a) bond order and (b) local average bond
order derived from the from-the-melt, 0, 5, and 10 μsec anneal
configurations using the modRV tessellation. In (a), data points are
also included using the standard RV tessellation.

temperatures of the undercooled liquid this excess is reduced
[51].

Figure 3 now enumerates the population fractions of those
atomic environments completely defined by the (N4, N5, N6)
terminology, for the 0-, 5-, and 10-μs anneal. Only nonzero
populations are shown, demonstrating that the horizontal
axes satisfies (N4, N5, N6) = (N4, 12 − 2N4, N6). This origi-
nates from the definition Z = N4 + N5 + N6 and the rule Z =
12 − N4 + N6. The Frank-Kasper, Bernal-hole, and Nelson
polyhedra all satisfy this latter rule, as well as all polyhedra
satisfying the SU(2) algebra and originates from the assertion
that non-12 coordinated local environments also apply to the
SU(2) algebra in which the creation of a sixfold bond adds an

atom to the local environment, and a fourfold bond removes
an atom from the local environment [30]. There exists an
exception to the above rule. The topology (1, 10, 1) satisfies
(N4, N5, N6) = (N4, 12 − 2N4, N6) but is not allowed by the
SU(2) algebra of Sec. II since (say) Ũ−

1 Ũ+
2 �= Ĩ, which indi-

cates that it is not possible to terminate a single fourfold and a
single sixfold defect line at an atomic environment containing
no other defect lines.

Those local environments that could not be classified in
terms of a bond topology are grouped into the “other” classi-
fication. For the from-the-melt sample, this is approximately
15% of the atomic environments, reducing to below 10% for
isothermally annealed samples. Thus as the glassy structure
becomes more relaxed an increasingly large percentage of
local atomic environments satisfy the aforementioned bonding
topologies.

Figure 3 reveals that with increasing relaxation, not only
do the (0, 12, 0) icosahedral environments, but also the
Frank-Kasper environments increase in number. The Nel-
son environments involving a single fourfold bond decrease
in number for one and two sixfold bonds and increase for
three and four sixfold bonds. All other Nelson environments
generally decrease in number. Those environments that do
not fit into the SU(2) connectivity picture also decrease in
number as the structure becomes more relaxed. Thus gen-
erally, a more relaxed structure entails a reduced number
of local environments in which many defect bonds connect.
Figure 3 demonstrates that detailed insight into the overall
SU(2) structure can also be obtained for relatively unrelaxed
glassy structures, with large changes in SU(2) populations
being minimal when much longer relaxation timescales are
simulated. Finally, it is noted that using the modRV tessella-
tion, generally results in only a small change in the relative
populations of the SU(2) topologies.

It has to be emphasized that the rule (N4, N5, N6) =
(N4, 12 − 2N4, N6) is a realization of the Euler theorem relat-
ing the number of faces (bonds) to the number of edges (sum
of bond order over bonds) to the number of vertices of the
associated modRV polyhedra. This may be revealed through
the average number of edges per face via the average bond
order defined as

q =
∑

n Nn × n
∑

n Nn
, (2)

where Nn is the total number of n-fold bonds within a given
sample. Via Euler’s theorem this number can be related to the
average coordination via

Z = 12

6 − q
, (3)

indicating that coordination correspondingly reduces with de-
creasing bond order. Table I displays the common neighbor
measured value of q and the corresponding prediction for
the mean coordination using the above equation for the con-
sidered configurations. Also shown is the measured mean
coordination derived from the number of faces of each atom’s
Voronoi polyhedron. Data are shown for both the standard RV
and modRV, revealing that the modified RV tessellation results
in very good agreement with the predictions of Euler. It is
noted that when the number of edges of the common face is
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FIG. 3. Histogram of local defected bond structures classed as those satisfying (N4, N5, N6) = (N4, 12 − 2N4, N6) for the from-the-melt,
0-, 5-, and 10-μsec anneal samples. Local environments which do not satisfy this are classed as “other” and will generally involve non-zero
values of N7.

used to determine the bond order, the Euler relation [Eq. (3)]
is always followed, with q. This emphasizes the modification
ensures the correct polyehedra connectivity for the common
neighbor definition of bond order. Table I demonstrates that
the mean coordination reduces as the glassy structure relaxes
towards the value associated with the Frank-Kasper crystal
phases (qFK ≈ 5.1).

The values of q shown in Table I are global averages.
Figure 2(b) plots corresponding histograms of the local atomic
mean bond order derived from the modRV tessellation, show-
ing a relatively broad but singular distribution. When using the
standard RV, a similar overall shape is seen however smaller
peaks are seen between the large peaks of the modRV data.
The form of Fig. 2(b) can be understood by considering the
SU(2) bonding topology populations shown in Fig. 3 and the
fact that for a given topology (N4, N5, N6), the local atomic
bond order is (4N4 + 5N5 + 6N6)/(N4 + N5 + N6). This value
is plotted as a function of (N4, N5, N6) in Fig. SM 5(a). For
the from-the-melt configuration, the distribution has a broad
maximum spanning q values between 5 and 5.2, however
as the structure relaxes a clear peak at 5 emerges indicating

TABLE I. Calculated average bond order, q, derived from the
common neighbors of a bond, and the average coordination for
samples from-the-melt and the 0-, 5-, and 10-μsec annealed con-
figurations, using the radical Voronoi tessellation and the modified
radical Voronoi tessellation introduced in Sec. SM III.

measured q Z [Eq. (3)] measured Z

from-the-melt (RV) 5.229 15.567 13.958
0 μsec (RV) 5.200 15.005 13.872
5 μsec (RV) 5.181 14.653 13.720
10 μsec (RV) 5.175 14.553 13.762
from-the-melt (modRV) 5.126 13.728 13.729
0 μsec (modRV) 5.122 13.661 13.665
5 μsec (modRV) 5.117 13.597 13.599
10 μsec (modRV) 5.117 13.583 13.584

the strong presence of the (0, 12, 0) icosahedral environ-
ment. (2, 8, 2) environments also contribute to this peak. The
peak at 5.2 also increases, reflecting increased Frank-Kasper
(0, 12, 3) and Nelson (1, 10, 4) content. More generally, the
observed reduction in global q value with respect to re-
laxation can be understood as an increase in (0, 12, 0), an
increase Frank-Kasper topologies and some, N4 = 1, Nelson
topologies (which push the value towards 5.2), and finally a
reduction in N4 = 2, 3, . . . Nelson topologies (which have
average bond orders below 5). Figure SM 5(b) visualizes the
glass configurations with atoms colored according to their
local q—see Sec. SM VI for a related discussion.

B. Application of SU(2) algebra

Whilst the results of the previous section strongly support
the notion that the SU(2) bonding rules are largely satisfied in
our model binary glass, a quantitative geometric evaluation is
still lacking. Figure 1 demonstrates that not only do their exist
rules associated with the (N4, N5, N6) = (N4, 12 − 2N4, N6)
classification, there exist relative orientations between the de-
fect bonds. To quantitatively determine to what extent these
very specific n-fold bond geometries follow the predictions of
the SU(2) algebra [Eq. (1) and Fig. 1], the local environment
of each (N4, 12 − 2N4, N6) is now investigated in detail.

For each atom identified by (N4, N5, N6), the following
procedure is performed.

(1) The N4 + N6 defect bond vectors are identified and
normalized.

(2) An icosahedron is centered on the central atom and ori-
entated to optimize the alignment of its six fivefold symmetry
axes with these bond directions.

(3) Those icosahedron axes closest to the N4 + N6 bonds
are identified with the appropriate Ũ±

i operator.
(4) Products of these N4 + N6 operators which are equal

to the identity operator are found to establish that the SU(2)
description is obeyed.

The above procedure identifies the SU(2) bond geometry
which needs to be minimally distorted to achieve the actual
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FIG. 4. Common local defected bond environments derived from the atomistic simulation of a model binary glass. In each panel, the
green and red tubes represent the fourfold and sixfold atomic bond vectors, whereas the similarly colored arrows represent the bond vectors
associated with to the SU(2) algebra description of Nelson [29,30]. The upper most row show examples of the Z10 Bernal hole, and the
Z14-Z16 Frank-Kasper coordinated polyhedra, whereas the second row show examples of the Z11, Z13-Z15 Nelson coordinated polyhedra.
The remaining panels show other commonly occurring defected bond geometries associated with the SU(2) algebra.

local atomic structure. Application of the procedure to our
glass configuration confirms that all (N4, N5, N6) topologies
identified in Sec. III A do indeed follow the geometry associ-
ated with the SU(2) algebra of Sec. II.

Figure 4 visualizes some of the more common non-
five-fold (defected) bonds for a number of these polyhedra
obtained from our most relaxed structure. In the figure, the
actual bonds (normalized in length) are visualized as green
(fourfold) and red (sixfold) tubes, whereas the corresponding
fivefold symmetry axes of the rotated icosahedron are visu-
alized as similarly colored normalized vectors. In general,
correspondence is excellent for the well known bond geome-
tries. It is emphasized that the SU(2) description (the precise
angular bond geometry associated with the fivefold symmetry
axes of the icosahedron) is unable do describe local atomic
distortions arising from the interaction between atoms of dif-
ferent type—a certain degree of distortion is thus expected.
Both the choice of the orientation (step 2) and the assignment

of operators to the bonds (step 3) minimize this distortion by
minimizing the angular difference between the atomic bond
vectors and the fivefold symmetry axes of the icosahedron.
The presence of such distortion is best demonstrated for the
case of the (0, 12, 4) Frank-Kasper defected bond geometry
(upper right hand panel of Fig. 4) where the four sixfold bonds
arising from the atomic structure exhibit an approximate tetra-
hedral geometry, a configuration that the fivefold symmetry
axes of the icosahedron cannot describe. To quantify the
presence of this distortion, the average distortion defined by
the angle between the defect bond obtained from simulation
and the relevant fivefold symmetry axis of the appropriately
orientated icosahedron is calculated. Since the minimal angle
between fivefold symmetry axes is approximately 60◦, the
data show that the distortion is small where, for environments
with 1-3 defect bonds the average distortion is between 5◦ and
10◦. This increases with the number of defect bonds, saturat-
ing at appoximately 15◦ for greater than five defect bonds.
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These results are summarized in Fig. SM 4 by showing the
average angular distortion for each SU(2) topology and also a
scatter plot between this average distortion and the fractional
populations of SU(2) topological environments. This latter
data demonstrate little correlation between the occurrence and
distortion of a particular SU(2) topology, giving additional
indication that the populations within the glassy structure are
indeed a result of geometrical constraints rather than say local
energetics associated with this distortion.

The results of the present section therefore establish that
atomistic simulations produce a model binary amorphous
structure which generally follows the connectivity rules as
well as the spatial geometry entailed by the SU(2) algebra
formalism of Sec. II. In what follows, their relationship to
common local structural indicators such as free-volume, en-
ergy, stress, and frustration will be investigated.

C. Structural features of SU(2) bond environments
and their medium range connectivity

1. Free volume

Free volume content is a glassy material parameter that can
be used to characterize the degree to which an amorphous
structure is relaxed, and also how it might respond to an
external load. Early theoretical work by Cohen and Turnbull
[52] and Spaepen [53] viewed free volume as well-localized
vacancy-type defects, whereas subsequent work views it as a
“diffuse” delocalized quantity underlying variations in local
atomic density [54,55]. Structures with lower free volume
(higher densities) tend to be more relaxed. In what follows, a
local free volume measure is loosely defined as a deviation of
local atomic volume from a reference volume that is presently
not defined. In other words, a reduction in local atomic volume
would correspond to a decrease in free volume. To assign a
volume to a particular atom is somewhat arbitrary, and usually
involves either a Voronoi or radical Voronoi tesselation—or in
the present work a modified radical Voronoi tesselation.

Structurally, regions with high icosahedral content gener-
ally contain decreased free volume content. This correlation
turns out to be linear suggesting the reduction of free volume
and the creation of icosahedral content are one and the same
thing [56]. Whilst free volume does not strongly correlate
with the spatial occurrence of stress driven athermal structural
instabilities (STZ) [57], regions of reduced free volume tend
to exhibit reduced activity involving the thermal activation of
localized structural excitations [56,58].

Figure 5 plots the average atomic volume for the relevant
bond topologies, using the modified radical Voronoi tessel-
lation. Inspection of the figure reveals the well known result
that the (0, 12, 0) topology, the icosahedrally coordinated en-
vironment, has the overall lowest volume for each atom type
[56], being well below the global average. The figure also
reveals that for each class of bond topologies (distinguished
by the number of fourfold bonds) it is the topology with the
lowest number of sixfold bonds that has the lowest average
volume. As the number of sixfold bonds increases, so does the
volume per atom, starting at values below the global average
and ending at values above the global average. Inspection of
the local atomic pressure [see Fig. SM 6(a)] demonstrates that
regions with reduced volume (high density) are on average un-

FIG. 5. Plot of average local (a) volume, (b) cohesive energy,
(c) like/unlike atom frustration bond energy, and (d) Kelvin shear
moduli for the local defected bond structures considered in Fig. 3.
The lines in (a) indicate the average values for each atom type. In all
figures, the error bars are derived from the standard deviation of the
scatter. Data are derived from the 10-μs isotherm configuration.

der a negative (tensile) pressure, whereas those with enhanced
volume (low-density regions) are on average under a positive
(compressive) pressure. Thus their exists a strong spatial cor-
relation between regions containing low numbers of defect
bonds, and regions under tensile pressure which correspond
to regions of higher than average density and therefore low
free-volume content.
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2. Local atomic energy

The work of Ref. [9] found that increased icosahedral con-
tent also corresponds to a reduction in the average cohesive
energy per atom. From the results of the previous section,
one might therefore conclude that spatial regions containing
a low bond defect density would also correspond to regions
of low cohesive energy. Figure 5(c) shows the average energy
per topology class for both atom types. Whilst this conclusion
is certainly true of the (0, 12, 0) environment for the smaller
atoms, it is not the case for the larger atoms, where in fact
the (0, 12, 0) environment for the larger atom has one of the
highest energies—a result compatible with the observation
that the icosahedral content almost exclusively involves the
smaller atom. The conclusion is also valid for the Frank-
Kasper topologies for both atom types, where in general the
local energy is less than the global average. Indeed, for both
atom types, the lowest energy structure is not the bond-defect
free topology (0, 12, 0) but rather the Frank-Kasper Z16 coor-
dinated topology of (0, 12, 4). This observation most probably
drives the nucleation of the Laves phase seen at higher temper-
atures [28] and the asymptotic nano-phase structure proposed
in Ref. [9].

For the Nelson topologies, the trend is somewhat more
complex. For both atom types, and for a given fourfold bond
number, the energy is highest for the topology containing one
sixfold bond and decreases with the addition of more sixfold
bonds until a minimum is reached beyond which the energy
again increases. For the smaller atom, those local environ-
ments containing one fourfold defect bond, the local cohesive
energies are lower than the global average otherwise (for both
atom types) it is those Nelson topologies with several sixfold
bonds that are close to or below the global average cohesive
energy value.

The understanding of these trends is difficult because the
average atom-type of the nearest-neighbor population varies
greatly between different realizations of actual atomic envi-
ronments. See Figs. SM 6(b) and SM 6(c), which display
the average number of like/unlike nearest neighbors, showing
that it can vary greatly and systematically across the local
topologies. It is therefore not an easy task to conclude via the
cohesive energy of an atom, that a low-energy glassy structure
corresponds to a low density of bond defects. To establish this
expected correlation, the cohesive energy must be viewed in
terms of bond frustration and the energy that it entails.

3. Bond frustration

Structural frustration involves the inability for bonds to
mutually achieve the minimum energy (at the equilibrium
bond length). Defining the fractional deviation away from this
equilibrium bond length as fab and the corresponding energy
as Vab = Vab(r( fab)) (see Sec. SM 7), the average geometrical
frustration of like and unlike atoms may be calculated for
both atom types, as a function of defect bond topology. These
average geometrical frustration values may then be inserted
into Vab to calculate the corresponding energy of frustration.
Figure 5(c) does this and directly shows that for both atom
types, those local topologies with a minimum number of
bond defects generally have the lowest energy of frustra-
tion. Where this is sometimes not the case, is in the regime

when the number of fourfold bonds is greater than or equal
to the number of sixfold bonds [for example, the (2, 8, 1)
for the larger atom and the (3, 6, 0) for the smaller atoms].
Because of their low coordination, such environments are
however quite rare (�0.2% of the identified topologies).

Figure 5(c) establishes numerically that a glassy structure
with a reduced bond-defect content does indeed correspond
to the minimally frustrated low-energy structure. To connect
these data to the local cohesive energy averages shown in
Fig. 5(b), an estimate of the total energy using the frustration
energy entailed in Fig. 5(c) and the average nearest-neighbor
occupancies [see Figs. SM 6(b) and SM 6(c)] can be made.
This estimate of the cohesive energy is shown in Fig. SM 6(d)
and is qualitatively similar to that of the actual local cohe-
sive energy averages calculated using the entire range of the
Lennard-Jones interaction [Fig. 5(b)]. Indeed, detailed com-
parison indicates that the effect of more distant interactions is
mainly characterized by a global energy offset, suggesting that
these contribute to the energetics in mean-field-like way. This
result demonstrates explicitly the notion that the short-range
repulsive part of the interaction is the controlling interaction
and the origin of the frustration [59–61].

4. Local Kelvin elastic shear modulus

A quantity that gives information on the local curvature of
the PEL with respect to an affine distortion, may be obtained
through the Born equation used to calculate the global elastic
constants. In Sec. SM VIII, expressions are defined to obtain
the local contributions to the global elastic constants. These
may be seen as estimates of the local elastic stiffness moduli.
Rather than expressing the elastic constants in the familiar
Voigt notation, the Kelvin [62] notation is used. This is also a
matrix of rank six, but retains its tensor structure giving mean-
ingful eigenvalues equal to the elastic stiffness moduli with
respect to the five linearly independent shear distortions and
a single isotropic distortion. These eigenvalues are referred
to as the five Kelvin elastic shear moduli and the dilation
modulus. Figure SM 8 plots the distribution of the sorted
local shear moduli for the 10-μsec sample. The distributions
show that the lowest Kelvin shear modulus can be negative
implying that the corresponding shear distortion (given by the
corresponding eigenvector) results in a reduction in energy
of the distorted bonds of the atom’s neighbors. This does not
imply a local material instability since the atomic environment
beyond the central atom and its bonded neighbors stabilizes
the local structure. The work of Ref. [63] hypothesized that
these elastically “soft” regions are amenable to nearby low
barrier energies within the PEL.

Figure 5(d) displays the atom-resolved average lowest
Kelvin elastic modulus for each of the SU(2) topologies. In-
spection of the actual distribution of moduli for each topology
reveals a lower average first Kelvin modulus corresponds to a
distribution whose low-end tail extends further into the nega-
tive region. Figure 5(d) demonstrates the local shear stiffness
is generally softer for the smaller atom. The stiffest envi-
ronment is that of an icosahedrally coordinated large atom.
This however occurs rarely. The more common small atom
icosahedral and large atom Frank-Kasper environments have
the next highest values. For both atom types, the lowest Kelvin
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FIG. 6. Evolution of pair distribution as a function of structural
relaxation.

shear moduli of the Nelson topologies (1, 10, N6), (2, 8, N6),
and (3, 8, N6), generally decreases for increasing N6, even-
tually being close to zero or negative for the smaller atom.
Atomic environments identified as “other” have among the
lowest shear moduli. The usefulness of this local measure will
be discussed in detail in Sec. IV B.

5. Medium range order

The pair distribution function (PDF) gives some insight
into the short and medium range atomic structure of a glass
and is indirectly accessible via x-ray diffraction. It is generally
characterized by a strong peak at distances comparable to the
nearest-neighbor separation between atoms, showing that like
that of the liquid, the glass has strong short range order. At
larger distances comparable to the second-nearest-neighbor
distances, a very broad peak is seen which (for well relaxed
glasses) has some structure indicating medium range order
(MRO). Such MRO is difficult to see in atomistic simulation
due to the short timescales simulated, however the present
micro-second scale simulation do result in a sufficiently re-
laxed amorphous structure to reveal this MRO signature [9].

Figure 6 plots the total PDF for the four glass samples
considered in the present work. As a function of degree-of-
relaxation, the short range structure (first peak) evolves and
a medium range (second broad peak) develops. This latter
fine-structure is entirely absent in the from-the-melt config-
uration. Sec. SM IX presents an investigation of the SU(2)
topological classification origins of the MRO probed through
the aforementioned PDF, and also the bond angle distribution
function and icosahedral orientation correlation function de-
veloped by Nelson and co-workers [30,64,65]. It finds that
the MRO of this model glass is characterized by fragments of
bond networks whose geometry is similar to the polyhedral
backbone of the C15 Laves structure. It is noted that the
structure of the C15 Laves crystal is characterized by an ex-
tended array of sixfold defect bonds mediated by a connected
network of Frank-Kasper (0, 12, 4) local geometries. This is
interpenetrated by a network of defect free bonds. For the case

of our glass, fragments of this type will require a population of
(0, 12, 2) and (0, 12, 3) local geometries to accommodate the
disorder. This originates from two distinct contributions, that
of fivefold bond fragments underlying the icosahedral defect
free structures and that of sixfold bonds underlying Frank-
Kasper defect lines characterized by the (0, 12, 2), (0, 12, 3),
(0, 12, 4), etc. local topological environments. Bond connec-
tivity between these two networks is via fourfold bond defect
lines whose termination is described by the Nelson polyhedra
and the rules of the SU(2) algebra. This later environment
appears more random due to the large configurational pos-
sibilities of the fivefold and sixfold fragments of the C15
structure. These observations are entirely compatible with
population histograms shown in Fig. 3 and demonstrate the
more general picture given by the SU(2) formalism.

D. Atomic and disclination visualization

As pointed out in Sec. II, the defect bonds may be viewed
as a disclination along which the icosahedral rotational sym-
metry is broken. Thus an atomic structure described by
defect bonds can be seen as a network of disclination lines.
The present section will investigate the properties of this
disclination network as a function of glass structure relax-
ation. An initial overview of how such a defect structure
evolves is gained via an inspection of the defect free bonded
regions, which consist of the fivefold bonds and in partic-
ular the (0, 12, 0) icosahedral environments. Figure SM 10
visualizes only the icosahedral regions of our four glass con-
figurations, in which like-colored atoms belong to the same
bond-connected cluster. From the melt, only small clusters of
icosahedrally coordinated atoms exist. However upon isother-
mal relaxation, these grow and coalesce, forming a system
spanning cluster of icosahedral atoms involving about 30%
of the atoms. This already occurs within the first microsecond
of the simulation. Section SN X displays [Fig. SN 11(a)] and
discusses the corresponding icosahedral cluster distributions.

The SU(2) approach now provides a more detailed ex-
planation of these trends. Figure 7(a) and 7(b) show the
initial from-the-melt and 10-μsec annealed configurations,
respectively, visualized in terms of bonds for which the four-,
five-, and sixfold bonds are colored according to the usual
green, blue, and red convention of Figs. 1 and 4. Inspection
of the two figures reveals an increase in blue (defect free)
bonds associated with the increase of (0, 12, 0) content. In-
deed, there exist larger regions of defect free bonds in (b)
which can be associated with the system spanning cluster
of icosahedral environments. Inspection of both (a) and (b)
reveal that within these regions red (sixfold) bonds are mainly
seen, indicating that sixfold disclinations tend to penetrate the
defect-free regions, whereas the fourfold disclinations tend
to be located around these regions. This may be more easily
seen in the insets displayed in (a) and (b) corresponding to
smaller regions in which the defect free bonds have been
removed to reveal the local disclination network of four- and
sixfold bonds. Closer inspection of the sixfold disclination
network extending into defect free environments of the more
relaxed sample [Fig. 7(d)] reveals the Frank-Kasper topolo-
gies of (0, 12, 2), (0, 12, 3), (0, 12, 4)—connected fragments
of the Laves C15 backbone polyhedra—whereas a network
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(b)(a)

FIG. 7. Visualization of bonds colored according to their n-fold value (4-green, 5-blue, 6-red) for the (a) from-the-melt and (b) 10-μsec
configurations. Insets display a region showing only defected bonds and the local fourfold and sixfold disclination line network.

of fourfold and sixfold bonds exist at the boundaries of these
defect regions. On the other hand, for the from-the-melt sam-
ple which contains only small (but numerous) regions of
predominantly defect-free bonds, the extent of the regions
dominated by Frank-Kasper topologies is reduced and a more
homogeneous distribution of fourfold and sixfold bonds exists
throughout the structure.

The connectivity of the disclination network is character-
ized by large clusters of atoms connected by bonds of the same
order. For all samples, all atoms are connected via the defect-
free fivefold bonds. On the other hand for the from-the-melt
sample there exists one cluster of 29049 atoms connected by
sixfold bonds, with the remaining atoms not being connected
by sixfold bonds. For the fourfold bonds, there exists one clus-
ter of 26712 atoms connected by fourfold bonds, and then 483
clusters below sizes of 10 atoms, with all remaining atoms not
being connected by fourfold bonds. Of these fourfold isolated
atoms 69% are (0,12,0) and 32% are Frank-Kaspar topologies
which are mainly (0,12,2) and (0,12,3). Similar trends exist
for the more relaxed structures, although the dominant clus-
ter for the sixfold connected cluster has reduced to 22 710
atoms whereas the for the fourfold connected cluster it has
reduced to 12637 atoms with the smaller clusters numbering
up 80 atoms. See Fig. SM 11(b) for the corresponding clus-
ter size distributions for all four samples. Additionally, the
Frank-Kaspar topologies of the fourfold isolated atoms now
include the (0,12,4) topology. These trends are compatible
with increased content of defect-free bonds and the increased
presence of the Frank-Kasper topologies.

Figure 7 should be compared to the schematic originally
proposed by Nelson [29,30,51], which shows a defect net-
work with a considerably lower line-defect density. In this
schematic, so-called isolated bubble structures are shown con-
sisting of two nearby (1, 12, 2) topologies. Since both of
these have a coordination of Z = 13, and therefore share an
extra atom, such a “bubble” defect was referred to as an
intersitial defect. A similar structure involving nearby (2, 8, 1)
topologies was referred to as a vacancy defect. Such isolated
structures, which should involve at least 4 atoms, where not
observed in the atomic configurations of the current work.

The (1, 12, 2) tended more to be at the boundary of between
regions of defects and defect-free regions.

IV. DISCUSSION

In 1952, Frank asked the question [40] “In how many
different ways can one put twelve billiard balls in simultane-
ous contact with one, counting as different the arrangements
which cannot be transformed into each other with out break-
ing contact with the center ball?”. The answer is three, the
two close-packed configurations of the face-centered cubic
and hexagonal structures, and the icosahedron structure. For
soft interatomic potential systems, this hard-sphere constraint
entails a non-negligible barrier energy separates the three
configurations, if the allowed transformation trajectories are
constrained to a certain distance from the central atom. Re-
laxing this constraint by allowing the particles to move away
from the central atom, can reduce this barrier energy. If these
thirteen atoms are not alone, such as in a densely packed
structure of a glass, this structural trajectory becomes limited,
allowing one to conclude that generally the three config-
urations of Frank are separated by non-negligible energy
barriers. A similar rational exists for the SU(2) defect struc-
tures of Nelson—energy barriers must be crossed for there
to be a reorganization of the nearest-neighbor shell defect
structure. Moreover, since this latter aspect involves topolog-
ical defects within the structural degrees of freedom of the
nearest-neighbor shell, the corresponding barrier energies are
expected to be large. It is from this perspective that one must
view the present formalism as a low-energy description of
nearest-neighbor structure with the obvious caveat that it is
an approximate theory.

A. Material specific considerations

How the present results may be affected by differing
atomic size and chemical composition, and their relation to
experimentally realizable glass systems, is now discussed.
Insight into this question can be found in the work of Miracle
and co-workers [16] who considered the efficient packing
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of the first nearest-neighbor shell of differently sized atoms.
In particular they considered the most efficient packing of
solvent atoms around a central solute atom as a function
of rsolute/rsolvent and found that depending on the value of
this ratio, a particular choice of “surface” coordination was
needed to better rationalize the known experimentally realiz-
able binary glasses. They considered the regimes of n = 3, 4,
5, 6 and higher surface coordinations which corresponds to
the strain free efficient packing of the corresponding n-fold
bonds. The n = 3, 4, and 5 surface coordinations were viewed
as tetrahedral, octahedral and icosahedral arrangements of
solvent atoms around a solute atom. The work found that spe-
cific values of R = rsolute/rsolvent would optimally entail these
quite different geometrical arrangements corresponding to re-
spectively 0.225, 0.414 and 0.904. For radii ratios between
these values, a less efficient but geometrically similar pack-
ing was envisaged. Experimentally realizable binary glasses
are mainly found with R ≈ 0.7–0.8 and (less so) for values
around R = 1.25. Indeed, the frequency of glass occurrence
as a function of R tended to peak at specific values, reflecting
an experimental tendency for optimal packing efficiency.

Historically, work on metallic glass production addressed
the question of what minimum concentration of an alloying
element (the solute atom) results in a glass. Values typically
ranged between 5–20 atomic percent [66]. Modern metallic
glasses exploit a much wider range of stoichiometries and at
some concentration, the solute/solvent labeling must be inter-
changed—this is the so-called isostructural condition defined
when the number of nearest-neighbor solute atoms is the same
for both labeling choices [67]. For the present 50:50 config-
uration, the mean number of large nearest-neighbor atoms of
a large atom is 6.6 and for the case of smaller atoms it is 5.3.
These values change little as a function of degree of relaxed
glassy structure.

The present work considers a system in which the atomic
radii ratio is rsmall/rlarge = 5/6 ≈ 0.83 = (1.2)−1. Section
SM XI discusses the two possible solute regimes and whilst
close to the isostructural limit, the discussion suggests the
smaller atom is the solvent atom at a 50:50 stoichiometry,
giving this model binary system an R = 0.83 which is typical
of common experimentally realizable binary glasses of the
AB alloys of HfCu, ZrCu, PdSi (also CaAl with R = 0.7)
with B being the solute atom. The corresponding isostructural
concentrations are in the range 42%–52%. An increase in the
smaller atom concentration should transition the system to
the BA alloy analog and an R = 1.2, with the larger atom
now being the solute atom. The common experimentally re-
alizable alloys are now the CuZr and CuHf (and CaAl with
R = 1.116).

The above results demonstrate a compatibility with the
glass structural model of Ref. [16] and suggest that changing
the values of rsmall/rlarge will change the populations of four-,
five-, and sixfold bonds, and thus the icosahedral population
within the binary glass structure. Moreover in the extreme
limit of this ratio becoming very small or very large, the
present description (in terms of the fivefold symmetry of
the icosahedron) might break down due to the presence of
threefold and sevenfold bonds. Such regimes of radii ratios
are however not common experimentally since the minimum
concentrations needed for glass formation can be up to 10%–

20%. The work of Ref. [16] has been extended to overlapping
nearest-neighbor shells, producing the so-called efficient clus-
ter packing model of glass structure and a theory of MRO
[17–19]. It is an interesting prospect that the present SU(2)
theory of bond-defects might facilitate a more precise realiza-
tion of such packing models.

Returning to the work of Ref. [32] who investigated the
(N4, N5, N6) topologies for a Mg3Ca7 alloy system. For this
system, rMg/rCa ≈ 0.83 = (1.2)−1 suggesting it should be-
have similarly to that of the present system when at the
same stoichiometry. Figure SM 12 compares the published
populations (N4, N5, N6) to the present 0μsec configuration
using a semilogarithmic plot. It shows that despite 89% of
the atoms being identified as “other”, the qualitative structure
of the populations remains similar. The (0, 12, 0) population
is similar to the from-the-melt sample, suggesting the low
populations of other SU(2) environments in the Mg3Ca7 data
are not due to a lack of relaxation. It is noted that for a
30:70 stoichiometry, the present Lennard Jones potential en-
tails a structure filled with defected close-packed structures
[9] which would significantly reduce the SU(2) content. Thus
differences seen in this past work might ultimately be due to
the different stoichiometry regime considered. Finally, Fig.
SM 12 also includes the SU(2) population for a 50:50 CuZr
simulation using the embedded atom potential by Mendelev
and co-workers [68] derived from an analogous preparation
protocol corresponding to the present 0-μsec annealed sam-
ple. Again, apart from the absolute magnitudes, similar trends
are seen across the Frank-Kasper and Nelson classes.

That the atomic size ratio can give such remarkable insight
into metallic glass structure is a result of the unsaturated
isotropic bonding between the metal atoms, suggesting a
rather broad application for the SU(2) disclination descrip-
tion (as evidenced in Fig. SM 12). Indeed, in Ref. [51], the
expectation was that polydispersivity can be seen as a form
of annealed disorder that renormalizes the level of geomet-
rical frustration. Nonisotropic interactions such as saturated
bonding due to the presence of covalent elements and an-
gular dependencies associated with strong d-state bonding in
transition metals will strongly effect glass structure, possibly
introducing new local structural motives that compete energet-
ically with the low-energy motives of the SU(2) formalism.
This distinction is also reflected in the different approaches
in characterizing liquids and glasses that have nonisotropic
and isotropic interaction [11]—the latter of which are focused
more on tessellation based methods as done in the present
work. For example, strong directional bonding can lead to net-
work liquids and glasses that have quite different connectivity
structures [69].

B. Localized structural excitations (LSEs)

The structural relaxation seen in the high temperature
isothermal anneal is mediated by thermally activated LSEs
[56,58,70,71]. Such LSEs also mediate stress relaxation [72]
and the microplasticity occurring during the nominally elastic
regime of deformation [73], and are also seen within the
dynamical heterogeneities of the undercooled liquid [74–78]
playing a central role in the change in atom mobility as the
glass transition regime is entered [79].
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FIG. 8. (a) Visualization of atomic displacement field occurring between two configuration separated by 10 nanoseconds. Displacement
vectors are colored red for displacement magnitudes comparable to the typical bond length and blue for displacement magnitudes associated
with nonaffine strain. A number of localized structural excitations are circled, in which neighbor atoms successively displace. (b) and (c), Local
structural motives whose bonding topologies change due to negligible atomic displacements. (d) Changes in bond topology due to bond-length
displacements associated with a localized structural excitation.

Figure 8(a) visualizes an example of a number of ther-
mally activated LSEs occurring between two configurations
separated in time by 10 picoseconds at the 14 microsecond
timescale of the isotherm anneal. The left-most panel plots
the corresponding atomic displacement vectors, and colors
them according to their magnitude. Red indicates the largest
displacements, which are comparable to a bond length and
represent the core structure of the LSE. This core structure
generally involves bond-length scale displacements involving
a few atoms, in which neighboring atoms replace each other’s
position forming a string/loop like displacement structure.
The shorter blue displacement vectors indicate the small-
est scale of displacement and generally correspond to the
surrounding accommodating strain which accompanies the
central LSE structure.

LSEs are driven by thermal fluctuations which provides the
energy source to overcome a PEL energy barrier. Structural
changes occurring via LSEs should be distinguished from the
well known shear transformation zones (STZs) of Falk and
co-workers [80], which arise via a stress driven inflection
point in the PEL. Due to its athermal origin, STZ activity is in-
herently less stochastic than LSE activity, arising only because
of an applied stress. A relevant question for both LSEs and
STZs is, can the developed SU(2) description give insight into
the local atomic environments more likely to undergo such
activity?

It has already been established that quasi-localized low-
frequency vibrational modes of model glasses have a high
oscillator strength in regions that are less-likely to contain
icosahedral (0, 12, 0) and Frank-Kasper (0, 12, 4) topolo-
gies, and are more likely to exist in regions of so-called

geometrically unfavoured motives (GUMs) [21] which gen-
erally involve the Nelson SU(2) topologies. Earlier work
demonstrated that such vibrational “soft spots” where found
to correlate strongly with regions exhibiting negative local
Kelvin shear moduli which were hypothesized to more likely
undergo structural rearrangement upon loading [63]. This was
confirmed in the work of Ma and co-workers [21] which found
that the GUMs had a propensity to mediate plasticity under
high strain rate shear loading. This is compatible with other
work, using the Wahnström potential, which found that local
rigidity and therefore a resistance to shearing was intimately
connected to local icosahedal content [81]. Work by Falk and
co-workers [57] which exhaustively investigated what local
features of the structure mediated stress-driven localized shear
transformations, found little correlation with the traditional
local structural indicators such as potential energy, density,
the degree of short range order and local Voigt shear mod-
uli. Whilst confirming the work of Ref. [21], they found the
strongest correlation with a local yield shear stress measure
which involved shearing only cluster of atoms extracted from
their simulated glassy samples.

References [21,57] focus on predicting stress driven STZs
and not the thermally activated LSEs shown in Fig. 8, which
under a fixed applied strain geometry also mediate thermally
activated shear stress relaxation [72] and microplasticity [73].
Indeed, it might be that predicting the location of an STZ and
one prone to LSEs are quite different problems. The present
work offers one way to study certainly the latter dynamics
where the nature of the disclination network forms a predictive
tool to understand both thermally activated structural relax-
ation and plasticity.
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Analysis of many configurations separated by 10 picosec-
onds show that the topologies (0, 12, 6), (1, 10, 7), (2, 8, 8),
(3, 6, 0), (3, 6, 2), (3, 6, 9), and “other” are mainly involved in
LSE activity seen in Fig. 8(a). With the exception of (3, 6, 0)
and (3, 6, 2), these topologies correspond to regions of larger
volume [Fig. 5(a)], which is compatible with the observation
that thermally activated LSEs are more likely to occur in re-
gions of increased free-volume [9,56]. Figure 5(d) also reveals
these topologies have a low average first Kelvin shear modulus
indeed suggesting a link between so-called “soft spots” and
low barrier energies. In fact, a strong indicator of this link is
the observation that the smaller atom is generally in elastically
softer environments and also the most thermally active in
terms of general LSE mediated mobility [58]. The topolo-
gies of (3, 6, 0) and (3, 6, 2) correspond to undercoordinated
environments which generally entails a lower free-volume.
They also have a low first Kelvin modulus further suggesting
a connection between stiffness and barrier energy that does
not involve enhanced free volume. From Fig. 3, these two
topologies are rare, indicating that when they do exist, they are
likely to transform into other local topologies via the thermal
activation of an LSE.

The picture which therefore emerges is that the Nelson
topologies with large values of N6 or regions not describable
by the SU(2) framework are more likely to facilitate thermally
activated LSE activity. These topologies on average entail a
high disclination defect density characterized by high bond
frustration resulting in high free volume and low Kelvin elas-
tic stiffness.

C. LSE activity and changes in local SU(2) topology

The LSE structures seen in the left-most panel of Fig. 8(a)
entail a change in SU(2) topology. This is shown in the center
and right most panels of the figure, which visualizes only the
change in the n-fold bond structure. Here, only atoms whose
local topology has changed are displayed. The bond structure
(at the start and end) connecting these atoms is also displayed.
A broad inspection of the spatial structure shows strong over-
lap with the identified LSEs of the left panel—an obvious
result reflecting the strong change in the local bonding en-
vironment due to the displacements associated with the LSEs.

In regions away from the LSEs, where there only exist
small displacement fields due to the accommodating strain
fields of the LSEs, changes in the local bonding topology
are largely absent. In these parts of the structure, there do
however exist localized and isolated changes in the bonding
topology. Figures 8(b) and 8(c) display a zoom-in of some
common examples of such changes. Here the upper and lower
panel of (b) and (c) show the configurations at the start and
end of the 10 picosecond interval. In (b), which displays a
planar structure, a fourfold bond has switched between two
different pairs of atoms with no other change in bond structure
between the displayed atoms. On the other hand, (c) which
displays a sextet of atoms associated with a fourfold bond
indicates a switching of this fourfold bond between two differ-
ent atom pairs. In this case, the switching results in a different
bonding structure between the surrounding common-neighbor
atoms.

Given that the above examples occur in regions ex-
periencing minor nonaffine displacements associated with
surrounding accommodating strain of the LSE, one might
simply attribute such fluctuations to the chosen criterion of
what constitutes a nearest-neighbor bond. This is a generic
problem of metallic systems due to the de-localized nature of
the atomic bonding, relegating the choice of atom size and
bonding connectivity to a nonunique choice of local geome-
try such as in the Voronoi and radical-Voronoi tessellations.
Alternatively, this ambiguity can be seen to reflect a type of
degeneracy in the topology which also corresponds to an ob-
vious approximate degeneracy in the bond frustration energy
(see Sec. SM VII).

In regions where LSEs occur there exist strong changes
in the nearest-neighbor structure and therefore in the n-fold
bonding structure. Fig. 8 d gives one example of this where
the LSE is characterized by three atoms linearly displacing
(indicated by the yellow arrows). Surrounding this LSE is a
displacement field that reduces in magnitude as the distance
from the central LSE increases (not shown). The left and right
panels in d) show the non-five-fold structure associated with
the nearest neighbors of the three-atom LSE, at the start and
end of the 10 picosecond interval. The local structure of the
lower atom contains non-four- and non-six-fold bonds, and
therefore is in an environment not straight-forwardly char-
acterized by the SU(2) topology of Sec. II. On the other
hand, the central atom transits from a Nelson (2, 8, 5) topol-
ogy to a Frank-Kasper (0, 12, 3) topology, whereas the upper
atom whose initial four- and sixfold environment could not
be uniquely identified has transited to the Nelson (2, 8, 2)
topology. Thus the LSE has resulted in a reduction of the local
defect structure and the creation of a Frank-Kasper sixfold
structure.

More generally, the above analysis suggests a topological
reason for the observed string-like geometry of the LSEs—
any change in the local disclination structure must be to some
extent nonlocal and one-dimensional-like, since it will involve
a reorganization of line-defects that at each site must satisfy
the SU(2) local topology.

Finally, since thermally activated LSE activity mediates
structural relaxation, it also mediates the creation of increas-
ing (0, 12, 0) content. The most likely initial local topologies
where this transformation occurs are the (1, 10, 2), (2, 8, 2),
(2, 8, 4), (3, 6, 4), and “other” environments. When one deter-
mines the actual number of four- and sixfold bonds involved
in the observed transformation to the (0, 12, 0) topology, a
roughly equal number of four- and sixfold bonds contribute,
which reflects the n-fold bond population gradients with re-
spect to an increase in icosahedral content investigated in
Sec. III A. Figure 5(a) reveals these to have relatively low local
volumes (reduced free volume content) and intermediate first
Kelvin elastic moduli, suggesting that such transformations
are less likely to occur. Thus as the system relaxes, and the
bond defect network evolves to a less frustrated configura-
tion, the density of free-volume reduces with a corresponding
increase in Kelvin shear stiffness, and LSEs leading to the
creation of icosahedral content become less frequent resulting
in a slowing down of the relaxation process (as seen in Figs. 2
and SM 1a).
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D. Correlated disorder and course grained theories
of the structural glass

The SU(2) requirement introduces a local bonding con-
straint that, if satisfied everywhere, will lead to a disclination
structure characterizing the frustration and structural disorder
of the glass. In this sense, glasses may be seen as containing
correlated disorder. Correlated disorder also exists in mag-
netism where for example in spin-ice local rules constrain
the orientation of neigboring spins [82,83]. This constraint
entails no-long range magnetic order and is referred to as
cooperative paramagnetism or a spin glass state, leading to
a coarse-grained divergenceless magnetic field, the breaking
of which, introduces charged magnetic monopoles and an
emergent dynamics analogous to electromagnetism [84].

There also exist attempts to derive a course grained theory
of glasses based on the SU(2) local constraint presently inves-
tigated [30,51,85–87]. These have been developed within the
framework of Landau’s particle-density free energy formalism
of liquid-to-solid freezing [88], which involves minimiz-
ing a generalized (Ginzburg) gradient term proportional to
|Dμδρn(r))|2. Here Dμ has a similar structure to a covari-
ant derivative and δρn(r)—the order parameter—is a coarse
grained density fluctuation away from the global value char-
acterized through a symmetry labeled by n. In addition to
the gradient term of the free energy, there exist quadratic
and cubic terms with respect to δρn(r), the latter of which
indicates a first order freezing transition [88].

For equilibrium freezing to a close-packed polycrystalline
solid, n represents a reciprocal lattice vector magnitude re-
flecting the material’s translational and rotational symmetry.
In this case the free energy term involving Dμ can be mini-
mized to zero every where, resulting in any two infinitesimally
spaced material locations being related by the generator of the
associated symmetry. For the undercooled liquid an appropri-
ate n will represent a point-group symmetry such as that of the
icosahedron. The inability to pack undistorted tetrahedra in a
space filling way in three dimensions makes the minimization
of |Dμδρn(r))|2 to zero, everywhere, impossible. Fundamen-
tally this is due to the non-Albelian nature of the associated
symmetry generators, manifesting itself as line defects (discli-
nations) along which the icosahedral symmetry is broken to
accommodate this noncommutivity.

The above approach has motivated the conjecture that the
metastable solid in which the undercooled liquid freezes is
that of a Frank-Kaspar crystal consisting of an ordered net-
work of disclinations. Indeed, as the temperature drops below
the equilibrium melting temperature, Tm, the undercooled liq-
uid will transit to a Frank-Kasper polycrystal at some lower
critical temperature Tc, and that a glass is created when the
system falls out of metaequilibrium before this temperature
is reached entering the new glassy metaequilibrium. The
structural evolution of the glass then becomes arrested due
to the entanglement of the disordered frozen-in disclination
network.

The recent interest in the so-called G-glass seen in atom-
istic simulation of the Ag and CuAg systems [10,89], and
the experimental observation of its first-order character in
the ternary glass PtCuPh [90], constitutes an example of a
possibly uniquely metaequilibrium phase transition occurring

in the undercooled liquid regime. However in the case of the
simulations, the resulting crystallinity is predominantly of a
close-packed nature [10] and thus most likely not topologi-
cally distinct from the liquid-to-solid phase transition existing
under equilibrium conditions.

Efforts to develop a quantitative theoretical understanding
of the glass transition have focused on a change from ho-
mogeneous to heterogeneous spatiotemporal dynamics [79]
that can be captured via coarse grained kinetically constrained
lattice models [61,91]. Central to this transition are the string-
like excitations that mediate this emerging heterogeneous
mobility—a dynamics that is referred to as being both fa-
cilitated and hierarchical in which atoms undergo temporal
and spatial intermittent motion. Within this framework a dy-
namical first-order phase transition emerges associated with
an order parameter that measures this dynamical facilitation.
Theoretically, this is described via an out-of-equilibrium sta-
tistical mechanics involving the enumeration of corresponding
trajectories rather than atomic configurations as in equilibrium
statistical mechanics [79].

These considerations and the results of the present work
motivate the conclusion that, as the temperature of the un-
dercooled liquid decreases there exist regions of increasing
temporal and spatial extent that largely satisfy the SU(2) con-
straints. The present work has only analysed the inherent state
structures arising from cg quenching, but one can equally well
study instantaneous configurations from atomistic simulations
of the glass transition, as has been done in Ref. [13] which
investigated the statistics of local structural motives for the
Wahnström potential. Using the SU(2) formalism, their con-
nectivity or equivalently the spatial extent of the fluctuating
disclination network may be studied. Indeed, both the space-
time “bubbles” of inactivity (regions of low frustration and
minimal disclination content) and the stringlike excitations
(LSEs) that drive the heterogeneous dynamics, should be in-
timately related to the constraints associated with the SU(2)
formalism. Interestingly, whereas the SU(2) regions might
impose hard constraints on allowed LSEs, the role of environ-
ments not satisfying the SU(2) picture, which the present work
indicates to be more LSE active, might also play an important
role in the facilitation, just as the imposition of soft constraints
has in kinetic facilitation [91]. Finally, via the statistics of
the local minima of the course grained free energy landscape
formalism [51,86], a connection could be made between the
spatial fluctuations in δρn(r) and that of the mobility/activity
order parameter of these kinetically constrained facilitation
models [61,79,91].

V. CONCLUDING REMARKS

A quantitative understanding of the nature of the structural
constraints of a well-relaxed amorphous solid could play just
as an important role as that of the theory of defects in a crys-
talline system. For the crystal, the reference is the long-range
order of the perfect lattice, whereas for a glass, the reference is
most likely a variety of low-energy structural motives obeying
the aforementioned constraints. These very same constraints
also define the nature of the local structural excitations that
will mediate glassy material evolution and its response to
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external stimuli as a load. The present work demonstrates that
the early work of Frank, Kasper, Bernel, Turnbull, and Chau-
dri culminating in the work of Nelson, whose mathematically
rigorous description of defects in the first neighbor shell forms
a consistent and possibly robust (albeit approximate) theory of
bond defects within the amorphous solid. The present work
finds that the vast majority of well relaxed structure have
local bonding topologies that follow the prediction of the
associated SU(2) algebra developed in Ref. [30], both in terms
of n-fold bond populations and also in terms of the predicted
orientational geometry of the bonds. This results in a dense
and extended disclination line-defect structure embedded in a
system spanning network of icosahedrally coordinated atomic
environments. This defect network is found to exhibit a spa-
tial icosahedral orientational correlation extending up to 3
to 4 bond lengths. Within this context the work has numer-
ically demonstrated that a less frustrated defect network (as
defined by deviations away from equilibrium bond-lengths)
will correspond to a less dense network of defect lines and
therefore an increased icosahedral content and a more relaxed
glassy structure. The study of atoms of different size ratios
and how the addition of larger atoms affects this description
forms the natural next steps to multicompound alloy mixtures

which form the industrially relevant bulk metallic glasses.
More generally, the provided SU(2) visualization tools [34]
will motivate future structural analysis of the undercooled,
the glass transition and glass structure in terms of structural
motive connectivity.

The revelation that most of our glassy structure does indeed
satisfy a set of local mathematically well-defined constraints,
which in turn result in an emergent longer range correlation,
suggests a certain level of correlated disorder. As with point,
line and planar defects in crystals, the exploitation of such
a disorder context, can lead to detailed theories of the glass
transition, structural evolution involving aging and rejuvena-
tion, and ultimately that of a thermally activated theory of
plasticity.
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