Beryllium polyhydride Be₄H₈(H₂)₂ synthesized at high pressure and temperature

Takahiro Matsuoka⁽⁰⁾,^{1,2,*} Hiroshi Fujihisa,^{3,†} Takahiro Ishikawa,⁴ Takaya Nakagawa,⁵ Keiji Kuno,⁶ Naohisa Hirao,⁷ Yasuo Ohishi,⁷ Katsuya Shimizu⁽⁰⁾,⁸ and Shigeo Sasaki¹

¹Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

²Material Science and Engineering, Joint Institute for Advanced Materials (JIAM), The University of Tennessee,

Knoxville, Tennessee 37996, USA

³National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8565, Japan

⁴The Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Ibaraki 305-0047, Japan

⁵Materials Science and Technology Division, Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan

⁶Environmental and Renewable Energy Systems Division, Gifu University, Gifu 501-1193, Japan

⁷Japan Synchrotron Radiation Research Institute (JASRI), Hyogo 679-5198, Japan

⁸Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science,

Osaka University, Osaka 560-8531, Japan

(Received 3 November 2019; accepted 18 November 2020; published 21 December 2020)

We report x-ray diffraction and Raman scattering measurements in combination with density functional theory calculations that reveal the formation of beryllium polyhydride $Be_4H_8(H_2)_2$ by the laser heating of a Be-H₂ mixture to above 1700 K at pressures between 5 and 8 GPa. $Be_4H_8(H_2)_2$ crystallizes in a $P6_3/mmc$ structure and consists of the corner-sharing BeH₄ tetrahedrons and the H₂ molecules that occupy an interstitial site. $Be_4H_8(H_2)_2$ is stable at least to 14 GPa upon compression and stable down to 4 GPa at room temperature. Our *ab initio* calculations suggest that $Be_4H_8(H_2)_2$ is a metastable phase of the Be-H system.

DOI: 10.1103/PhysRevMaterials.4.125402

I. INTRODUCTION

Since the discovery of beryllium dihydride (BeH_2) [1], extensive studies of physical and chemical properties have been performed. Although the toxicity of Be hampers its practical use, the high gravimetric H₂ density (H wt% = 18.3%) is attractive for hydrogen storage. Besides, with only six electrons and light mass, BeH₂ has been an excellent bench to test advanced quantum molecular calculations [2–6]. Furthermore, significant H wt% makes the investigation of superconductivity appealing because a strong electron-phonon coupling and a high frequency of atomic vibration are anticipated. In these contexts, finding the hydrogen-rich allotropes of the Be-H system is a particular interest. However, there have been no experimental or theoretical studies that have found any stable BeH_n (n > 2).

BeH₂ has a covalent or a mixed covalent/ionic Be-H bond [7,8]. The ionicity is mainly due to the charge transfer from Be 2s to H 1s atomic orbitals, while the hybridization of H 1s and Be 2p states dominates the covalency [7]. In the solid-state, BeH₂ molecules share their H atoms with neighboring BeH₂ molecules and form corner-sharing BeH₄ tetrahedrons [2,9]. The BeH₄ tetrahedrons form two types of BeH₂ allotropes at ambient pressure. One is an amorphous BeH₂ [10]. Another is a crystalline BeH₂ (called α -BeH₂) with an *Ibam* (body-centered orthorhombic) structure. α -BeH₂ is synthesized by compacting amorphous BeH₂ at high temperatures [11,12]. The phase diagram of BeH₂ has been revealed up to 100 GPa at temperatures from 300 to 1500 K by heating the Be-H₂ mixture [12]. Pépin and Loubeyre have observed the synthesis of another BeH₂ (named β -BeH₂, P4₁2₁2 structure) along with α -BeH₂ by keeping the Be-H₂ mixture at 2.4 GPa and 550 K for several tens of hours [12]. α -BeH₂ is stable up to 27 GPa, while β -BeH₂ transforms into a different phase (called β' -BeH₂) at 17 GPa [12]. Between 27 and 72 GPa, any BeH₂ allotrope decomposes into Be and H₂ [12]. Be and H₂ react again and form a BeH₂ that crystallizes in a $P\bar{3}m1$ layered structure (1T structure) at 72 GPa [12]. Any other phases have not been obtained below 1500 K. The Raman scattering measurements on amorphous BeH₂ have shown a structural transition at 80 GPa [13]. Theoretical calculations have predicted several structural transformations of BeH2 from the Ibam structure, including the transformation to the $P\bar{3}m1$ layered structure, at pressures between 0 and 400 GPa [14-17]. However, a calculation using first-principles variable-composition evolutionary methodology has suggested that BeH₂ is the only stable composition up to 400 GPa under static conditions [16]. An evolutionary structure search coupled with density functional theory (DFT) calculation has also predicted that any phases of BeH_n (n > 2) are unstable toward decomposition into H₂ and BeH₂ to at least 250 GPa [17]. According to the calculations, BeH₂ remains insulating or semiconducting below 200 GPa [14–16]. Above 200 GPa, *Cmcm* ($P \ge 200$ GPa) and P4/nmm ($P \ge 350$ GPa) phases exhibit superconducting transitions at temperatures between 20 and 90 K [15,16].

^{*}TKMatsuoka08@gmail.com; tmatsuok@utk.edu

[†]hiroshi.fujihisa@aist.go.jp

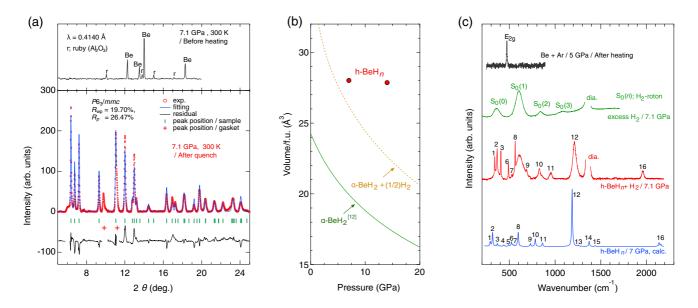


FIG. 1. (a) XRD profiles of the Be-H₂ mixture before and after the laser heating with the Rietveld fitting result for the suggested structure model. (b) The $V_{f.u.}$ vs *P* for h-BeH_n (solid circle), α -BeH₂ (solid line), and α -BeH₂+(1/2)H₂ (dashed line). The $V_{f.u.}$ of α -BeH₂ + 1/2(H₂) is calculated using the data shown in Refs. [12,24]. The lattice parameters of h-BeH_n at 14 GPa are a = 4.290(1) Å, c = 6.993(2) Å, and V = 111.5(1) Å³. (c) Raman scattering spectra of the h-BeH_n-H₂ mixture sample at 7.1 GPa, excess H₂, the Be after being heated to 2000 K in Ar at 5 GPa, and the calculated spectrum for Be₄H₈(H₂)₂. The numbers indicate the correspondence between the observed and the predicted peaks. "dia." is the signal from a diamond anvil.

This study aims at searching for hydrogen-rich BeH_n (n > 2) under high-pressure and high-temperature H₂ atmosphere by powder x-ray diffraction (XRD), Raman spectroscopy, and DFT calculation.

II. EXPERIMENTAL DETAILS

In the XRD and Raman scattering measurements, we used a diamond-anvil cell with type-Ia diamond anvils with 0.4 mm culets. We preindented 0.2-mm-thick gaskets made of rhenium (Re) to 50–60 μ m and drilled a 150- μ m-diameter hole (sample chamber) at the center of the gaskets. We loaded a tiny piece of Be (Sigma-Aldrich, 99.9%) in the sample chamber and filled the remaining room with fluid H₂ using a cryogenic H_2 -loading system [18]. The Be to H_2 molar ratios in three independent experiments were between 1:6 and 1:12. We compressed the small chips of ruby (Al₂O₃:Cr, corundum) together with the sample and estimated the pressure by ruby fluorescence wavelength using a proposed calibration curve [19]. We compressed the Be-H₂ mixture at room temperature to pressures between 5 and 8 GPa, and then we heated it to above 1700 K by focusing an IR laser ($\lambda = 1070$ nm, SPI laser) on Be. We collected the thermal radiation from the sample and analyzed it in a wavelength between 600 and 800 nm to convert the spectrum to temperature following Planck's blackbody radiation law [20]. The reaction between Be and H₂ was detected by monitoring the crystal structure change of Be from hcp using in situ XRD measurements at BL10XU/SPring-8. After the hcp structure of Be completely disappeared, we quenched the sample to room temperature. We performed Raman scattering measurements at room temperature in a backscattering geometry by a triple polychromator (JASCO NR1800) equipped with a liquidnitrogen-cooled charge-coupled device. The 532-nm radiation from a solid-state laser was used for excitation. The focused laser spot size on the samples was about 10 μ m in diameter.

III. RESULTS AND DISCUSSIONS

Figure 1(a) shows the representative XRD profiles before and after the laser heating at 7.1 GPa, together with the result of Rietveld refinement for the suggested structure model discussed later. Note that we first compressed the Be-H₂ sample to 7.1 GPa and performed XRD measurements at room temperature [Fig. 1(a), upper panel]. Then, we conducted the laser heating and quenched the sample to room temperature. After quenching, we measured the XRD at room temperature [Fig. 1(a), lower panel]. Before the laser heating, we observed Be and ruby. After the heating, the XRD peaks of Be disappeared, and several new peaks appeared. All of the newly emerged peaks can be indexed with a hexagonal $P6_3/mmc$ structure [a = 4.300(1) Å, c = 6.997(3) Å, and V = 112.05(6)Å], in which Be atoms are at an atomic position (1/3, 2/3,0.5610 [Z (Be) = 4]. We temporary name this phase h-BeH_n. Figure 1(b) is the volume per formula unit $(V_{f.u.})$ vs pressure. The $V_{f.u.}$ is calculated by dividing the unit cell volume by the number of BeH₂ units. The $V_{f.u.}$ of h-BeH_n is larger and less compressible than that of α -BeH₂ and α -BeH₂ + 1/2(H₂), suggesting that *n* exceeds 2.

Figure 1(c) indicates the Raman scattering spectra measured on h-BeH_n. Since h-BeH_n was surrounded by excess H₂, we observed the signals from both h-BeH_n and solid H₂. The Raman scattering peaks from h-BeH_n are easily distinguishable from those of H₂ using the data obtained in excess H₂. For a control experiment, we heated Be in argon (Ar) to 2000 K at 5 GPa and confirmed that Be kept the hcp structure

Structure	Atom	Wyck. pos.	x	у	Z	Occ.
$\overline{P6_3/mmc}, Z = 4$	Be	4f	1/3	2/3	0.5610	1
a = 4.2965(2) Å	Н	241	0.3796	0.4135	0.0522	1/4
c = 7.0095(6) Å	Н	12j	0.5178	0.2894	1/4	1/6
$V = 112.06 \text{ Å}^3$	H (mol. ^a)	24l	0.0258	0.0076	0.2582	1/12
	H (mol. ^a)	24 <i>l</i>	0.1790	0.1837	0.3230	1/12

TABLE I. Structural parameters for $Be_4H_8(H_2)_2$ at 7.1 GPa. The lattice parameters and the Wyckoff position (Wyck. pos.) of Be were determined from Rietveld refinement. The positions of H atoms were deduced by DFT calculation.

^aMolecule.

in agreement with previous XRD experiments [21]. In the Raman scattering spectra of h-BeH_n, there is a broad peak centering at 1960 cm⁻¹. A theoretical study has calculated that the Be-H stretching mode frequencies of the BeH₄ tetrahedron in α -BeH₂ are about 1750 (symmetric mode) and 1990 cm⁻¹ (antisymmetric mode) [22]. Experimentally, these modes are observed at wave numbers between 1300 and 2000 cm⁻¹ for an α and β -BeH₂ mixture at 4 GPa, and they shift to higher wave numbers under further compression [12,23]. The observed peak at 1960 cm⁻¹ at 7.1 GPa suggests the presence of a BeH₄ tetrahedron in the unit cell of h-BeH_n.

We performed a structure analysis by indexing, spacegroup determination, and Rietveld refinement. The diffraction peaks were indexed using BIOVIA Materials Studio (MS) X-CELL software from Dassault Systèmes [27]. The crystal lattice and the atomic coordinates of Be were refined via Rietveld analysis using MS REFLEX software [28]. The energy stability and H-atom positions in each phase were investigated using the DFT program MS CASTEP [29]. We employed the generalized gradient approximation-Perdew-Burke-Ernzerhof for solids (PBEsol) exchange-correlation functionals [30] and used ultrasoft pseudopotentials [31]. The lattice parameters were set to the experimental values and refined by Rietveld analysis, and the atomic positions were optimized to minimize the total energy. When we restricted the stoichiometry to BeH_2 , we obtained two models: P31cand $P\bar{6}c^2$ structures that were composed of corner-sharing four BeH₄ tetrahedrons. However, the stress estimated by our DFT for these two models became 0 GPa in disagreement with experimental results (7.1 GPa). We note that these two models are isotypical to ice-Ih (ice at atmospheric pressure). Besides, the $V_{f,u}$ of h-BeH_n is bigger than that of α -BeH₂ by more than 7 Å³ at 7.1 GPa [Fig. 1(b)]. Also, h-BeH_n is less compressible than α -BeH₂. To mechanically support such a crystal structure with large internal space at pressures as high as 14 GPa, the presence of some substance in the interstitial sites is strongly suggested. Considering that H₂ surrounds h-BeH_n in the sample chamber, a H atom or an H₂ molecule is the most probable. When H atoms were at the interstitial sites of the P31c and P6c2 structures, our DFT calculation and MD simulation calculated that BeH₄ tetrahedrons decomposed, and the unit cells collapsed. When H_2 molecules were at the interstitial sites, an excellent fit to the experimental XRD profile was obtained, and the crystal structure became stable in the DFT calculation. The best structure model to describe h-BeH_n including the disorders of H and H₂ is summarized in Table I. Note that the lattice parameters and the atomic position of Be were determined from Rietveld refinement. The positions of H atoms were deduced by DFT calculation. In Fig. 2, we show the visualized structure model. The BeH₄ tetrahedrons rotationally oscillate, and the unit cell goes back and forth between P31c and $P\overline{6}c2$. The H₂ molecules freely rotate. See Movie 1 in the Supplemental Material for the rotational oscillations of BeH₄ units and H₂ molecules [26].

We thought of the possible occupation of the interstitial sites by Al and O from ruby, Re from the gasket, and carbon (C) from diamond anvils during the laser heating. However, if such heavier atoms are included, the XRD measurements and the following analysis allow us to detect them. Therefore, we exclude the occupation by C, O, and Al.

To examine the crystal structure model of h-BeH_n, we compare the calculated Raman spectra for the suggested structure model with experimental results at 7.1 GPa [Fig. 1(c)]. We note that we employed a fully ordered structure with space group *P*1 to do the calculation. Peak 16 consists of eight peaks originating from Be-H stretching modes (see Supplemental Movie 2 [26] for the Be-H stretching mode at 2138 cm⁻¹), and two of them at 2138 and 2157 cm⁻¹ are more intense than others. We assume that the eight peaks overlap and form the observed single broad peak. Peak 12 (1186 cm⁻¹) is the rotational mode of the BeH₄ tetrahedron (see Supplemental

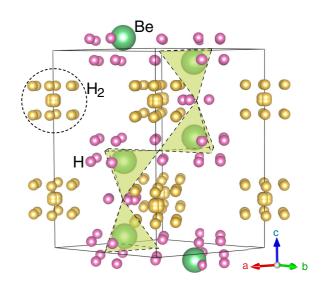


FIG. 2. $Be_4H_8(H_2)_2$ (visualized using VESTA [25]). Hydrogen atoms "H" are moving around the disordered positions. The H₂ atoms are rotating in a dotted circle. Each tetrahedron is a corner-sharing BeH₄ unit. See the Supplemental material for the crystal structure information file (CIF) of $Be_4H_8(H_2)_2$ [26].

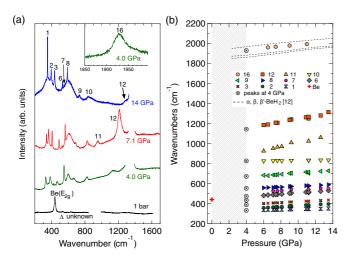


FIG. 3. (a) The Raman scattering spectra of h-BeH_n as pressure decreases. The numbers indicate the peaks described in Fig. 1(c). The spectra at 1 bar were measured after the diamond anvil was removed. (b) The pressure dependence of the Raman shifts for peaks 1–16. The data obtained in three independent experiments are plotted together. Below 4 GPa (shaded area), h-BeH_n is unstable at room temperature.

Movie 3 [26] for the rotation that corresponds to 12). The appearance of peaks 12 and 16 in the experiments strongly supports the suggested structure model. In the hydrides that consist of H₂, we sometimes observe the intra-H₂ stretching mode (vibron) at wave numbers shifted from that of pure H₂ (4200–4400 cm⁻¹). In the present experiments, we did not observe the additional peaks near the vibron of excess H₂. We speculate that the peak from the accommodated H₂ in h-BeH_n overlaps with that of the excess H₂. Although a perfect matching is not achieved, the relative intensities and relative positions of the observed and calculated peaks are in reasonable agreement as a whole. We conclude that h-BeH_n is Be₄H₈(H₂)₂ with the *P*6₃/*mmc* structure that is composed of BeH₄ tetrahedrons and H₂.

We investigated the structural stability of h-BeH_n upon pressure decrease to 1 bar by monitoring the structure change using Raman scattering measurement [Figs. 3(a) and 3(b)]. We obtained the reproducible results from three independent experiments. As pressure decreases, Raman scattering peaks show a monotonic decrease to 6.0 GPa [Fig. 3(b)]. When the pressure reaches 4.0 GPa, peaks 3 and 11 disappear, a peak appears at 432 cm⁻¹, and other peaks become broad. However, the sample still maintains peaks 16 and 12, suggesting that the BeH₄ tetrahedron persists at 4.0 GPa. At 1 bar, the peaks from h-BeH_n vanish, and the peaks from Be metal and an unknown peak remain. Judging from the peak position, we consider that the possible origin of the unknown phase is the luminescence of ruby, covering the 100–800 cm⁻¹ region, that was there nearby the sample [32]. We conclude that h-BeH_n is unstable below 4 GPa decomposing to Be and H₂.

Regarding the synthesis condition and the stability region of h-BeH_n, we note the following. In the present experiment, our laser heating was limited between 5 and 8 GPa. The synthesis condition remains to be cleared. The stability region has a lower limit of 4 GPa. On the other hand, the upper limit is not known.

Here, we compare the crystal structure of h-BH_n with that of α -BeH₂ and discuss the Be-H bonding. Both h-BeH_n and α -BeH₂ consist of BeH₄ tetrahedrons. The difference is in the positions of shared H atoms. In α -BeH₂ at 1 bar, the H-Be-H connection is bent about 130°, and a Be-H distance is 1.38 Å, while another is 1.41 Å [12]. In h-BeH_n, the Be-H-Be angle is near 180°. The H atoms are at the midpoint between two Be atoms, and the Be-H distance (1.44 Å at 7 GPa) is longer than that of α -BeH₂. Another difference is in the structural stability at 1 bar. Contrary to the stability of α -BeH₂, h-BeH_n decomposes. We think that the shared H atom is not tightly bonded to a single Be atom, and the Be-H bond in h-BeH_n is possibly not a covalent. We speculate that the accommodated H_2 molecules mechanically support the unit cell of h-BeH_n and also elongate the Be-H bond to the extent the bond loses covalency.

To go into the interaction between H_2 and the surrounding BeH₄ tetrahedrons, we also compare the crystal structure of h-BeH_n with the compound of water ice and helium (He hydrate). Teeratchanan and Hermann have performed the first principle study assuming van der Walls interaction between He and H₂O with a binding energy of -7.99 meV and predicted the formation of He hydrate with ice-Ih structure where He occupies the interstitial site (cage) [33]. From the similarity of the crystal structure and the free rotation of H₂, we speculate that the interaction between H₂ and BeH₂ is similar to that of the He hydrate.

To obtain further knowledge about the thermodynamical stability of $Be_4H_8(H_2)_2$, we searched for the most stable crystal structure under static conditions using a genetic algorithm and first-principles calculations (see the Supplemental Material [26]). Our structure search predicts that BeH_3 has a positive formation enthalpy of 12 mRy/atom at 20 GPa for decomposition into BeH_2 and H_2 , as is the case in the theoretical results reported earlier [14–17]. Besides, a triclinic $P\bar{1}$ structure emerges as the most stable one instead of $P6_3/mmc$ observed by experiments. From our theoretical calculation, it is implicated that $Be_4H_8(H_2)_2$ with $P6_3/mmc$ is a metastable phase that is stabilized dynamically by the thermal effect at finite temperature.

The notable characteristic of h-BeH_n is the anomalous incompressibility of $V_{f.u.}$ compared to that of α -BeH₂ and α -BeH₂ + 1/2(H₂) [Fig. 1(b)]. The difference in V_{f.u.} between h-BeH_n and α -BeH₂ + 1/2(H₂) becomes larger as the pressure increases. As discussed, h-BeH_n is a dynamically stabilized phase whose formation enthalpy is unfavorable, compared to α -BeH₂ and α -BeH₂ + 1/2(H₂). To keep such metastable h-BeH_n under increasing pressure, it is required to decrease the internal energy. At a given pressure and temperature, materials behave to minimize the Gibbs free energy G =U + PV - TS. The PV term is dominant under high pressure, and the V of h-BeH_n is required to be comparable to or less than that of the α -BeH₂-H₂ mixture. For hydrides, variable occupancy is common [34,35]. For example, hydrogen clathrate, in which hydrogen molecules are trapped within cages formed from water molecules, in a manner not dissimilar to the structure of h-BeH_n, has a cage occupancy that varies by a factor of 1.5 [35]. Therefore, it would be appropriate to assume that the *n* in h-BeH_{*n*} possibly increases with pressure so that the $V_{f.u.}$ of h-BeH_{*n*} approaches that of α -BeH₂ + $x/2(H_2)$, where x/2 is the number of the inserted H₂ per formula unit. We expect future neutron scattering experiments will give us a clear answer.

IV. SUMMARY

In summary, $Be_4H_8(H_2)_2$ is formed by applying high pressure (5–8 GPa) and high temperature (above 1700 K) to the Be-H₂ mixture. In $Be_4H_8(H_2)_2$, BeH_4 tetrahedrons form a hexagonal $P6_3/mmc$ structure, and there are H₂ molecules in the interstitial sites. The observed $Be_4H_8(H_2)_2$ is possibly a metastable phase in the Be-H phase diagram. The H atoms are not covalently bonded to Be atoms. The present results would motivate further studies such as searching for superconductivity and recovering $Be_4H_8(H_2)_2$ to ambient pressure. So far, there has been no prediction of the formation of $Be_4H_8(H_2)_2$. Revealing the phase diagram of the Be-H system would be a particular interest, extending pressure and temperature ranges. The behavior of h-BeH_n between 27 and 70 GPa should be investigated, because $Be + H_2$ is reported to be more stable than α -BeH₂ [12]. Those studies would contribute to understanding the Be-H interaction, which has not been fully understood for years.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grants No. 25800195, No. 17K05541, and No. 26000006, and MEXT KAKENHI Grant No. 26000006 (ESICMM and Exploratory Challenge on Post-K Computer–Frontiers of Basic Science: Challenging the Limits). The authors are grateful for the awarded beam time for XRD measurements at BL10XU/SPring-8 (Proposals No. 2013B1109 and No. 2014A1320).

- G. D. Barbaras, C. Dillard, A. E. Finholt, T. Wartik, K. E. Wilzbach, and H. I. Schlesinger, J. Am. Chem. Soc. 73, 4585 (1951).
- [2] S. Sampath, K. M. Lantzky, C. J. Benmore, J. Neuefeind, J. E. Siewenie, P. A. Egelstaff, and J. L. Yarger, J. Chem. Phys. 119, 12499 (2003).
- [3] E. N. Koukaras, A. P. Sgouros, and M. M. Sigalas, J. Am. Chem. Soc. 138, 3218 (2016).
- [4] T. Hrenar, H.-J. Werner, and G. Rauhut, Phys. Chem. Chem. Phys. 7, 3123 (2005).
- [5] C. Bheema Lingam, K. Ramesh Babu, S. P. Tewari, and G. Vaitheeswaran, Comput. Theor. Chem. 963, 371 (2011).
- [6] L. N. Vidal and P. A. M. Vazquez, Chem. Phys. 321, 209 (2006).
- [7] N. N. Greenwood and A. Earnshaw, in *Chemistry of the Elements*, 2nd ed. (Pergamon Press, Oxford, 1997), p. 115.
- [8] B.-T. Wang, P. Zhang, H.-L. Shi, B. Sun, and W.-D. Li, Eur. Phys. J. B 74, 303 (2010).
- [9] S. V. Marchenko, V. F. Petrunin, Y. E. Markushkin, M. D. Senin, and N. A. Chirin, Sov. Phys. Solid State 24, 1308 (1982).
- [10] G. J. Brendel, E. M. Marlett, and L. M. Niebylski, Inorg. Chem. 17, 3589 (1978).
- [11] G. S. Smith, Q. C. Johnson, D. K. Smith, D. Cox, R. L. Snyder, R.-S. Zhou, and A. Zalkin, Solid State Commun. 67, 491 (1988).
- [12] C. M. Pépin and P. Loubeyre, Phys. Rev. B 93, 224104 (2016).
- [13] S. Nakano, M. Ahart, J. L. Yarger, H.-k. Mao, and R. J. Hemley, Special Issue Rev. High Press. Sci. Technol. 15, 261 (2005).
- [14] P. Vajeeston, P. Ravindran, A. Kjekshus, and H. Fjellvåg, Appl. Phys. Lett. 84, 34 (2004).
- [15] Z. Wang, Y. Yao, L. Zhu, H. Liu, T. Iitaka, H. Wang, and Y. Ma, J. Chem. Phys. **140**, 124707 (2014).
- [16] S. Yu, Q. Zeng, A. R. Oganov, C. Hu, G. Frapper, and L. Zhang, AIP Adv. 4, 107118 (2014).
- [17] J. Hooper, B. Altintas, A. Shamp, and E. Zurek, J. Phys. Chem. C 117, 2982 (2013).
- [18] Z. Chi, H. Nguyen, T. Matsuoka, T. Kagayama, N. Hirao, Y. Ohishi, and K. Shimizu, Rev. Sci. Instrum. 82, 105109 (2011).

- [19] H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).
- [20] Y. Ohishi, N. Hirao, N. Sata, K. Hirose, and M. Takata, High Press. Res. 28, 163 (2008).
- [21] A. Lazicki, A. Dewaele, P. Loubeyre, and M. Mezouar, Phys. Rev. B 86, 174118 (2012).
- [22] U. Hantsch, B. Winkler, and V. Milman, Chem. Phys. Lett. 378, 343 (2003).
- [23] S. Sampath, A. I. Kolesnikov, K. M. Lantzky, and J. L. Yarger, J. Chem. Phys. **128**, 134512 (2008).
- [24] P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R. J. Hemley, H. K. Mao, and L. W. Finger, Nature (London) 383, 702 (1996).
- [25] K. Momma and F. Izumi, J. Appl. Cryst. 44, 1272 (2011).
- [26] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevMaterials.4.125402 for Movies 1–3 and the CIF for Be₄H₈(H₂)₂.
- [27] M. A. Neumann, J. Appl. Cryst. 36, 356 (2003).
- [28] Dassault Systèmes Americas Corp., BIOVIA Materials Studio Reflex website, https://www.3ds.com/products-services/biovia/ products/molecular-modeling-simulation/biovia-materialsstudio/analytical-and-crystallization/, accessed: 2020-09-24.
- [29] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and F. C. Payne, Z. Kristallogr. 220, 567 (2005).
- [30] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
- [31] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
- [32] K. Syassen, High Press. Res. 28, 75 (2008).
- [33] P. Teeratchanan and A. Hermann, J. Chem. Phys. 143, 154507 (2015).
- [34] T. Matsuoka, H. Fujihisa, N. Hirao, Y. Ohishi, T. Mitsui, R. Masuda, M. Seto, Y. Yoda, K. Shimizu, A. Machida, and K. Aoki, Phys. Rev. Lett. 107, 025501 (2011).
- [35] K. A. Lokshin, Y. Zhao, D. He, W. L. Mao, H.-K. Mao, R. J. Hemley, M. V. Lobanov, and M. Greenblatt, Phys. Rev. Lett. 93, 125503 (2004).