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Electric energy dissipation and electric tortuosity in electron conductive cement-based materials
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The emergence of multifunctional cement-based materials in the construction industry has the potential
to shift the paradigm from strength-only performance to new functionalities enabled by electron conducting
capabilities in one of the most material- and energy-intensive industry sectors worldwide. To enable such
developments, we present results of a hybrid experimental-theoretical investigation of the electrical conductivity
and resistive (Joule) heating of highly heterogeneous nanocarbon (nCB)–cement-based composites (pastes and
mortars). By analogy with diffusivity, we find that electrical conductivity is determined by the electric tortuosity
of a “volumetric wiring” permeating a highly heterogeneous matrix from percolation to saturation. From a
combination of electrical conductivity and Joule heat rate measurements, we show that the electric energy
dissipation at the origin of the Joule heating originates from spatial electric-field fluctuations, reminiscent
of the fluctuation-dissipation theorem. We report that these fluctuations—in first order—are well captured
by functional relations of the electric tortuosity of the composite material, and synthesize these observations
into a first-order dissipation-tortuosity model. We suggest that harvesting the benefits of electron conducting
cement-based materials, such as resistive heating, electromagnetic shielding, and energy storage, will ultimately
focus on settling the competition between conductor concentration and electric tortuosity. Given the global
environmental footprint of concrete, the results open venues for the sustainable development of concrete for
existing and emerging green technology applications.
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I. INTRODUCTION

The introduction of electron conducting bulk composites in
the construction industry [1–7], in which highly electron con-
ductive constituents (such as graphite powder, carbon black,
carbon nanotubes, as well as steel and carbon fibers) are mixed
with insulating construction materials in bulk (cement paste,
mortar, concrete), is based upon the dual premise that (i)
engineers will be able to harvest the many benefits that result
from electron conductivity [4] and (ii) these benefits will out-
weigh the significant environmental footprint of construction
materials, specifically concrete [8]. These benefits range from
the ability to generate heat through current flowing through a
conductor, known as resistive heating or Joule effect, e.g., for
radiant heating of slabs [5], walls, and pavements [6,9,10], to
electromagnetic shielding [2,4,11] and the storage of electric
energy by using these materials as electrodes in structural
capacitor elements in electrical energy storage (EES) systems
[7,12] (see the Supplemental Material (SM-I) [13]).

Since the early developments of bulk metal and carbon-
based conductive polymer composites, it has been well known
that the electron conduction capacity of conductor-insulator
composites relies on the development of a percolated elec-
tron conductive network through an insulator [14]. While
the physics of the phenomenon, specifically around the per-
colation threshold, has been intensively studied [15–19],
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the governing mechanisms that link measurable electric
properties to constituent and texture properties of highly
heterogeneous conductor-insulator composites, as visible in
scanning electron microscope (SEM) images [Figs. 1(e) and
1(f)], still remain to be revealed.

Here, we focus on the assessment of electrical conductivity
and Joule heating in nanocarbon-black (nCB) loaded cement-
based materials (pastes, mortars), and approach the problem
by means of a hybrid experimental-modeling approach in
which we blend experimental observations with concepts of
composite mechanics adapted, by analogy, for electric charge
flow through heterogeneous materials.

Our typical experimental setup for Joule heating measure-
ments is shown in Fig. 1(a): a cylindrical sample (cross section
A = πr2

0 , length L) tightly clamped in between two con-
ducting plates [here, graphite foil, a current collector with a
conductivity higher than the material to be tested and mounted
insulated to drive the current into the sample and not in other
elements of the system; see Fig. 1(a)]. In the first set of
experiments, an electric potential difference is applied using
a DC generator (Potentiostat Solartron SI1287). The current I
is measured and the resistance is determined from Ohm’s law,
R = U0/I . The measurements are carried out with a voltage
ramp U0 = 0–10 V of rate 100 mV/s, which entails an on-
average negligible temperature increase over the ramp time
of 100 s (see SM-II B [13]). The sample resistance fit to the
recorded U0 − I curve during the ramp provides a means to
determine the sample’s electrical conductivity, σexp = L/(RA)
(of unit S/m). Moreover, to quantify the magnitude of the
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FIG. 1. (a) Experimental setup: a sample clamped between two
conductive graphite foils connected to a voltage generator, with two
thermocouples placed in the center. (b) Measured and fitted tempera-
ture rise, �T (t ) = T (t ) − T0. (c) Asymptotic temperature rise �T∞
and (d) characteristic time th as a function of the applied electric
potential difference U0 for different carbon-black volume fractions
ϕ of a W/C = 0.42 cement paste. (e),(f) SEM images of a porous
carbon-black particle network (black) in a highly heterogeneous
cement paste matrix (W/C = 0.42, ϕ = 13%).

resistive (Joule) heating of the composite, a second exper-
iment is carried out, with the same equipment, at constant
applied voltage U0 (1–5 V), while simultaneously measur-
ing the temperature increase in time, T (t ) = T0 + �T (t ),
with respect to room temperature (T0), by means of type K
thermocouples placed at half length of the cylindrical speci-
men into predrilled holes (diameter 1 mm), which are sealed
after placement with a thermal paste to ensure good ther-
mal conductivity between the sample and the thermocouple
[Fig. 1(a)], and connected to a Fluke 287 True-RMS Stand
Alone Logging Multimeter. For each constant voltage level,
the temperature development exhibits an exponential time
evolution, �T (t ) = �T∞(1 − e−t/th ), to a maximum temper-
ature [Fig. 1(b)] as a consequence of the Joule effect, as well
known from other electron conductive bulk composites (for
instance, carbon-black loaded rubbers [20,21]; see, also, SM-
II A [13]). In such experiments, the maximum temperature
rise, �T∞ = T (∞) − T0, is found to scale with the square of
the applied voltage, �T∞ ∼ U 2

0 [Fig. 1(c)], consistent with
Joule’s law. Furthermore, as one would expect, the maximum
temperature increases with the nCB concentration [Fig. 1(c)],

whereas the characteristic time of heating is not affected by
the nCB volume fraction [Fig. 1(d)]. While both measurable
quantities, �T∞ = μexpV/(Sh) and th = V (ρmCm)/(Sh), de-
pend on sample volume V and surface S = 2πr0L, through
which heat escapes (heat exchange coefficient h; see SM-II
[13]), a straightforward solution of the governing heat equa-
tion provides a means to determine the intrinsic Joule heating
rate from μexp = (�T∞/th)ρmCm, where an overbar stands
for volume averaging and �T∞/th is the initial slope of the
experimentally accessible exponential temperature-time curve
[Fig. 1(b)]; whereas ρmCm, ρm, and Cm stand for, respectively,
the sample’s volume heat capacity, mass density, and specific
heat capacity of the constituents of the conductor-insulator
composite material; here, nanocarbon-black particles, unhy-
drated cement, hydration products, and sand are included.

II. RESULTS

We start by measuring the electron conductivity and resis-
tive heating of a comprehensive set of 43 electron conducting
nCB–cement-based composites that vary strongly in compo-
sition of the conducting phase (a nanocarbon-black additive,
PBX55, of a BET (Brunauer-Emmett-Teller) nitrogen sur-
face area of 45–60 m2/g, and density of 1.7–1.9 g/cc [22]),
pore space, and insulating phases (cement paste and sand).
This was achieved by varying the mix proportions, namely,
the water-to-cement (W/C) mass ratio, and the addition of
sand at different sand-to-paste mass ratios (mortar 1:1 and
mortar 2:1), while fine tuning the nCB concentration for max-
imum electrical conductivity (see SM-III [13]) through the
use of surfactants [here, polynaphthalene sulfonate (PNS) and
superplasticizer-based high-range water-reducing admixture
(HRWRA)]. (For sample preparation, see SM-III [13]).

A. Electrical conductivity

Figure 2(a) displays the measured electrical conductivity
(σexp) vs carbon-black volume fraction (ϕ ± �ϕ) determined
from density measurements of the hardened samples (see
SM-III C [13]). Similar to other electron conducting bulk
materials [14], we find that carbon-black loaded cement pastes
and mortars become electron conducting beyond a very low
and clearly defined percolation threshold [inset of Fig. 2(a)],
ϕc = 0.039 [with 95% confidence bounds (0.020, 0.058)].
Beyond the percolation threshold, the electrical conductivity
(σexp) scales with the carbon volume fraction ϕ, as σexp ∼
(ϕ − ϕc)αC (R2 = 0.9485) [inset of Fig. 2(a)], with a con-
ductivity exponent αC = 1.35 [with 95% confidence bounds
(0.97, 1.73)], in accordance with conduction-percolation re-
lations derived by Kirkpatrick [15] and Stauffer [23].

B. Joule heating

The second series of measurements that we explore is the
resistive heating rate. We take into account the experimental
evidence of Joule’s law [Fig. 1(c)] and normalize the exper-
imentally accessible volumetric heat rate μexp by the square
of the applied electric field, E2

0 = (U0/L)2, corrected for the
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FIG. 2. Measured electrical conductivity (σexp) and resistive
heating/Joule effect (μexp) vs carbon-black volume fraction ϕ.
(a) Electrical conductivity σexp determined from electric resistance
measurements. (b) Resistive heating (Joule effect) determined from
the measured temperature rise in time due to the application of
a potential difference (voltage U0 = E0L, with L sample length),
corrected for the (insulating) sand volume fraction fS . [Horizontal
error bars �ϕ represent the relative error in mass density fit (see
SM-III [13]); vertical error bars represent the standard deviation of
five heating tests carried out at different voltages, U0 = 1–5 V (see
the table of all the results in the SM [13])]. The insets display plots
in a log-log scale, showing an almost identical percolation threshold,
ϕc = 3–4%, for both electrical conductivity and Joule effect, yet a
different exponent in the scaling (ϕ − ϕc )αi , with a fitted conductivity
exponent αC = 1.35 and fitted Joule effect exponent αJ = 1.57.

presence of the insulating sand inclusion phase,

μexp

E2
0 /(1 − fS )

= �T∞
th

ρmCm

E2
0

(1 − fS ). (1)

The sample’s heat capacity, ρmCm = ∑
i=(CB,P,S) fiρiCi, is de-

termined from volume fractions ( fi) of carbon black (CB,
fCB = ϕ), cement paste (P), and sand inclusions (S), together
with characteristic values of the specific heat capacity of the
constituents: CCB = 710–800 J/(kg K) for carbon black, CP =
920 J/(kg K) for cement paste [24], and CS = 830 J/(kg K)
for sand. The obtained results are displayed in Fig. 2(b).
Not surprisingly, the resistive heating exhibits an (almost)
identical percolation threshold as electrical conductivity [in-
set of Fig. 2(b)], ϕc = 0.033 [with 95% confidence bounds
(0.008, 0.057)], and follows a power relationship, μexp ∼
(ϕ − ϕc)αJ (R2 = 0.9485), but with an exponent αJ = 1.57

[with 95% confidence bounds (1.10, 2.04)] that differs from
the conductivity exponent by 15%. This suggests that the
electrical conductivity and resistive heating may not be pro-
portional. That is, while both electrical conductivity and Joule
heating relate to electron flow [as exemplified by the (almost)
identical percolation threshold], the experimental results pro-
vide evidence of a difference in the underlying mechanisms
and properties that define the development of the two phenom-
ena in such highly disordered conductor-insulator composites.

III. DISCUSSION

We proceed by developing a first-order quantitative frame-
work to explain the experimental observations using tools
of composite mechanics (see, e.g., [25,26]). We adopt this
approach, by analogy, for assessing the link between electron
flow, constituent behavior, texture, and macroscopically mea-
surable electrical conductivity and Joule heating rate.

A. Experimental electric tortuosity assessment

Following the test setup, we consider the conductor-
insulator composite sample subject to a regular electric field
at the boundary, ∂V , such that

on−→z ∈ ∂V ; u = −→
E · −→z ;

−→
E = −→e (−→z ), (2)

where u is the electric potential difference, and −→e (−→z ) and−→
E = E0

−→n z stand, respectively, for the microscopic (position
vector −→z ) and the macroscopic electric field (E0 = U0/L for
a voltage applied on the cylinder end sides in the direction
of the cylinder axis −→n z). The voltage boundary condition
(2) is the electric potential difference representative of the
work needed to bring charge from one side of the sample to
the other in an electric field. Under steady-state conditions,
the local electric field is given by Maxwell’s (first) equation,
∇ · −→e = ρ0/ε0, with ρ0 the volumetric charge density and
ε0 the permittivity. The electric field determines the current
density, both locally,

−→
j (−→z ) = σ (−→z )−→e (−→z ), and globally,−→

J = σhom
−→
E . This means that volume averaging provides a

link between the spatially varying local electrical conductivity
σ (−→z ) and the composite electrical conductivity σhom. For
an isotropic two-phase material composed of a conducting
phase [volume fraction ϕ; conductivity σ (−→z ) = σ0] and an
insulator [volume fraction 1 − ϕ; σ (−→z ) = 0], we obtain

−→
J = −→

j (−→z );
σhom

σ0
= ϕ

−→e (−→z )
Vc · −→n z

E0
, (3)

where −→e (−→z )
Vc

stands for the volume average of the local
electrical field taken over the volume of the conducting phase,
Vc = ϕV .

An interesting analogy can be made here between the elec-
tron conductivity of a conductor-insulator composite and the
diffusive mass flux of a solute through a solvent in a porous
material [26,27]. More specifically, in contrast to approaches
in soil science, which employ an ion-conductivity analogy
to estimate the hydraulic conductivity of porous materials
[28,29], we consider the local electric potential difference
[voltage u(−→z )] in the connected electron conducting phase of
volume fraction ϕ = Vc/V as an analog of the main diffusion
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FIG. 3. Electric tortuosity assessment and modeling. (a) Elec-
tric tortuosity (τe) vs carbon-black volume fraction (ϕ). Inset: paste
electric tortuosity τe,P = τe/(1 − fS ) (with fS the sand volume frac-
tion). (b) Tortuosity-based model performance: normalized electrical
conductivity (σ/σ0). Inset: model performance in a log-log scale.
[Model parameters: base electrical conductivity σ0 = 158 S/m; per-
colation threshold ϕc = 4.5%; saturation concentration ϕ0 = 15.8%;
minimum electric tortuosity of τe(ϕ0) = 2.23].

variable, solute mass density ρ(−→z ), in a solvent saturat-
ing the connected porosity. The analog of Fick’s diffusive
flux,

−→
j = −D∇ρ, is the current intensity,

−→
j = σ∇u, with

−→e = ∇u. Finally, the analog of mass conservation, ∇ · −→
j =

0, is Maxwell’s equation, ∇ · (−→e − −→e 0) = 0 with −→e 0 =
ρ0/ε0

−→z . This diffusion-conductivity analogy permits a quan-
tification of the electric tortuosity effects,

σhom

σ0
= ϕ

τe
; τe = E0

−→e · −→n z

Vc
. (4)

Much akin to classical definitions of tortuosity (see, e.g.,
[29]), the electric tortuosity τe, herein defined, can be
viewed—in first order—as a geometric tortuosity, that is, the
mean path (�) taken by electrons crossing the samples, nor-
malized by sample length (L); i.e., τe � �/L. It should be
noted that other phenomena, such as electron tunneling effects
[18]—no doubt—equally affect the flow path of electrons,
specifically around the percolation threshold.

The relevance of the tortuosity analogy is depicted in
Fig. 3(a) in the form of a plot of the experimental accessible

electric tortuosity τe ∼ ϕ/σexp vs the carbon content ϕ. The
inset of Fig. 3(a) corrects this experimental tortuosity for the
insulating sand phase by considering the carbon-black–paste
tortuosity, τe,P = τe/(1 − fS ). For both the composite and
the paste, the tortuosity is found to collapse onto a master
curve for all carbon-black–cement paste and mortar compos-
ite materials. It decreases with increasing (overall) carbon
content ϕ from the percolation threshold, where τe → ∞
(unconnected carbon-black grains), to a horizontal asymptote,
where the carbon-black–paste composite realizes a minimum
electric tortuosity, τe(ϕ > ϕ0) = τe(ϕ0). The asymptotic be-
havior of electric tortuosity around the percolation threshold
is reminiscent of results obtained by both molecular dynamics
simulations of a conductive gel formation, due to interparticle
electron tunneling phenomena [18], and experimental assess-
ment of percolation phenomena in carbon-black suspensions
[19]. This suggests that the phenomena enabling the very low
percolation threshold [ϕc � 3–4%, inset of Fig. 2(a)] is inde-
pendent of the specific mix design parameters of the electron
conducting bulk composite, and relate to the very nature of
the carbon-black gelation process. On the other hand, the
asymptotic minimum electric tortuosity of the electron con-
ducting bulk composite, τe(ϕ0), is attributed to the texture of
the conductive network of carbon black.

To quantitatively capture these observations, we consider
the connected network of carbon black as a “volumetric
wiring” which permeates the system from percolation to sat-
uration. The volumetric wire originates (most likely) during
the early stages of gelation from a phase separation process
of the hydrophobic carbon black and the hydrophilic cement,
water, sand, and so on. That is, the volumetric wire is not
a homogeneous phase, but a composite of CB particles (of
packing density ηCB = 0.60–0.67; see SM-III C [13]) and
cement hydration products, as evidenced by mass density
measurements (SM-III C [13]) and visible in SEM images
[Figs. 1(e) and 1(f)]. Consistent with percolation theory, the
percolation threshold of the volumetric wire phase is well
above the carbon-black volume fraction percolation threshold
of ϕc ∼ 3–4% determined from conductance measurements
[inset of Fig. 2(a)]. In fact, it should be close to the site
percolation threshold of a simple cubic lattice, pc = 0.3115 ±
0.0005 [30], as known from percolation studies of a conduc-
tive phase in a bulk insulator [15], or, in the continuum limit
of a disordered system, to the percolation threshold of the self-
consistent diffusion model, pc = 1/3 [27], when written—by
analogy—for electrical conductivity and electric tortuosity,

σhom

σ0
= (φ − pc)

1 − pc
� 0; τe = 1 − pc

φ − pc
ϕ. (5)

Herein, σ0 is a reference electrical conductivity and φ is the
volume fraction of the volumetric wire in the composite (to be
distinguished from the CB volume fraction ϕ in the compos-
ite). We need to adapt percolation theory and self-consistent
modeling to the experimental evidence [Fig. 3(a)] and bridge
between the two tortuosity asymptotes: a vertical one at the
percolation threshold, φ+ → pc where τe → ∞, and a hori-
zontal one for φ → 1 (ϕ → ϕ0), where the volumetric wire
saturates the composite system at a minimum tortuosity of
τe → τe(ϕ0). This is achieved here by considering the dif-
ferential homogenization approach [27,31]. Starting from the
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system with minimum tortuosity τe(ϕ0), we infinitesimally
remove the conducting phase, −dφ > 0, by adding an insu-
lator (paste, sand, etc.). After each increment, the electrical
conductivity is evaluated. The first step is given by Eq. (5); the
kth step consists in removing an infinitesimal fraction dε � 1
of the homogenized medium in excess of the percolation
threshold, and in replacing it by the same volume of insulator,
(φ − pc)dε = −dφ. In this step, we apply the self-consistent
solution (5) for the introduction of dε, while considering σ =
ϕ/τe and dσ = dϕ/τe − ϕdτe/τ

2
e . Finally, we integrate from

the reference state [the minimum tortuosity, τe(ϕ0)] to any
value pc < φ < 1 above the percolation threshold pc to obtain
the electrical conductivity relative to the reference electrical
conductivity, σhom(ϕ0)/σ0 = ϕ0/τe(ϕ0), while letting φ(ϕ) =
ϕ/ϕ0 � 1 and φ(ϕ) − pc = (ϕ − ϕc)/ϕ0 (see SM-IV [13]):

0 � σhom

σ0
= ϕ0

τe(ϕ0)

(
ϕ − ϕc

ϕ0 − ϕc

) ϕ0
ϕ0−ϕc

� ϕ

τe(ϕ0)
. (6)

This first-order electrical conductivity model is similar to the
conduction-percolation relations derived by Kirkpatrick [15]
and Stauffer [23], which are of the form σhom ∼ σ0(p − pc)αC ,
with p the probability of finding the conducting phase that
is equivalent to the volume fraction of the conducting phase
above the critical concentration, and pc is the critical or
threshold probability of formation of a conducting network;
whereas αC is the conductivity exponent. The added value
of the differential model herein employed is that it ex-
plicitly links the probabilities and exponent to measurable
volume fractions, namely, p = ϕ/ϕ0, pc = ϕc/ϕ0, and αC =
ϕ0/(ϕ0 − ϕc). The specific behavior for ϕ > ϕ0 as predicted
by Eq. (6) is motivated by the evidence of a minimum tortu-
osity, τe(ϕ0), associated with the volumetric wires saturating
the sample bulk, beyond which the electrical conductivity is
expected to increase linearly with the carbon-black concen-
tration, quasi-uniformly enhancing the carbon content of the
volumetric wires.

In Fig. 3, we display the model performance in terms of
the electric tortuosity τe(ϕ) = ϕ/(σhom/σ0) [Fig. 3(a)] and
the normalized electrical conductivity σhom/σ0 [Fig. 3(b)].
The model has four adjustable parameters, which are read-
ily obtained by minimizing the quadratic error between the
electrical conductivity measurements (of 43 samples) and
model predictions (R2 = 0.9614): (i) a reference electrical
conductivity σ0 = 158 S/m [with 95% confidence bounds
(60, 256) S/m], in good agreement with experimental val-
ues reported from conductivity measurements of highly
compacted carbon-black powder [32]; (ii) a carbon-black per-
colation threshold ϕc = ϕ0 pc = 4.5% [with 95% confidence
bounds (2.3, 6.7)%], which is slightly above the experimen-
tally observed percolation threshold [inset of Fig. 3(b)] and
which permits estimating a site percolation threshold, pc =
29%, close to the simple cubic lattice percolation threshold of
31% [30]; (iii) a saturation concentration ϕ0 = 15.8% [with
95% confidence bounds (11.4, 20.2)%] (at which the compos-
ite material reaches its minimum electric tortuosity); and (iv)
the corresponding minimum electric tortuosity τe(ϕ0) = 2.23
[with 95% confidence bounds (1.60,2.85)].

B. Fluctuation-based assessment of Joule heating

We proceed in a similar fashion with an analysis of the
resistive heating rate by making use of concepts of nonlinear
homogenization techniques employed for a variety of material
properties ranging from strength properties [25,26] to vis-
cosity and yield stress of slurries [33]. Our starting point is
Joule’s (first) law at a microscale, μ(−→z ) = −→

j (−→z ) · −→e (−→z ).
The volume averaging then provides

μhom = μ(−→z ) = ϕσ0
−→e (−→z ) · −→e (−→z )

Vc

. (7)

In contrast to the electrical conductivity upscaling relation
(3), which only involves a linear average of the electric field,
the resistive heating is governed by the quadratic average
of the electric field, and thus by spatial fluctuations of the
microscopic electric field. Further insight is provided by a
development of the extended Hill Lemma (e.g., [34]) for
Maxwell’s equation (see SM-V [13]),

μhom = −→
J · −→

E − ϕσ0
ρ0

ε0
(−→z )u(−→z )

Vc

, (8)

where u(−→z ) is the local potential difference in the elec-
tron conducting phase. The first term,

−→
J · −→

E = σhomE2
0 ,

represents the work rate of the macroscopic charge flow
(macroscopic current density

−→
J ) in the applied (macro-

scopic) electric field,
−→
E = E0

−→n z, whereas the second term,

ϕσ0(ρ0/ε0)u
Vc , can be viewed as the work rate of the local

charge density of the conductor phase (volume Vc) due to
a local potential difference u(−→z ) in the heterogeneous mi-
crostructure. For a “perfect” conductor, the two terms would
cancel each other out, resulting in a zero resistive heating. In
contrast, the difference between the two terms is the power
dissipated in the conductor, which leads to Joule heating due
to texture imperfections of the volumetric wiring. That is,
reminiscent of the fluctuation-dissipation theorem, Eqs. (7)
and (8) link, at the composite scale, Joule heating to electric-
field fluctuations and electric-field dissipation.

Furthermore, to assess the dissipation due to fluctuations
explicitly from measurements, it is useful to normalize the
Joule heating rate by a reference heat sink term, representative
of the work rate of the reference conductor (electrical conduc-
tivity σ0), when a constant potential difference is applied, i.e.,

μ0 = σ0
−→e · −→e Vc = σ0E2

0 /(1 − fS ) (see SM-V [13]):

μhom

μ0
= ϕ(1 − fS )

−→e · −→e Vc

E2
0

. (9)

We then define a measure of the fluctuation density in the
form of the ratio of the quadratic average and the square of
the linear average of the electric field by eliminating E0 in
between Eqs. (3) and (9),

−→e · −→e Vc

(−→e · −→n z

Vc

)2
= ϕ

(1 − fS )

(σhom

σ0

)−2 μhom

μ0
, (10)

where ϕ/(1 − fs) is recognized as the CB concentration in
the volumetric wiring. In Fig. 4(a), we plot the experimental

fluctuation density, Y = −→e · −→e Vc

/(−→e Vc · −→n z )2 [Eq. (10)] vs
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FIG. 4. Fluctuation-based assessment of Joule effect. (a) Nor-
malized fluctuation density Y (see text) vs excess tortuosity X =
τe − 1 [τe = 1 is the “perfect” (imperfection-free) conductor]. Inset:
Log-log plot with a power fit Y = αxβ , with β ≈ 1, confirming
the linear scaling Y ∼ X . (b) Model performance for normalized
resistive heating, μhom/μ0 = ϕ(1 − fS )/[2(1 + τe)], vs carbon-black
volume fraction ϕ. Inset: model performance in a log-log scale.

X = τe − 1. The rational behind this data display is that (i)
tortuosity captures the deviation from a straight streamline
flow of electrons through the sample, and is thus a prime
candidate to capture electric-field fluctuations and related dis-
sipation; and (ii) fluctuations should vanish for τe = 1. The
linear scaling of the fluctuation density with tortuosity, Y ∼
X , is evidenced in Fig. 4(a). Finally, a substitution of this
linear relation in Eq. (10) provides a means to highlight the
competition between conductor concentration ϕ and electric
tortuosity τe in the development of the resistive heating ca-
pacity of the composite,

μhom

μ0
∼ ϕ(1 − fS )

(
1

τe
− 1

τ 2
e

)
∼= ϕ(1 − fS )

1 + τe
, (11)

where we considered a Taylor series expansion, (1 + τe)−1 =
τ−1

e − τ−2
e + O(τ−3

e ). That is, as ϕ increases, the electric
tortuosity decreases [Fig. 3(a)] until it reaches a minimum,
τe(ϕ > ϕ0) = τe(ϕ0), at which the volumetric wiring saturates

the bulk, and beyond which the Joule heating is expected to
linearly increase with the conductor concentration within the
range of values considered in our investigation, ϕ < 25%.

The predictive power of the resistive heating model, given
by Eq. (11), is shown in Fig. 4(b). While the model slightly
overestimates the percolation threshold [inset of Fig. 4(b)]
which is a consequence of the tortuosity model, as a first-order
model (R2 = 0.9775 above percolation threshold), it rational-
izes the increase and dilution of the Joule effect with the
concentration of, respectively, the conductor (carbon black)
and the insulator (sand).

IV. CONCLUDING REMARKS

In summary, our hybrid experimental-theoretical approach
provides evidence that in addition to the conductor vol-
ume concentration, (i) the electric tortuosity defines much of
the electric conductivity of nCB-cement-based composites,
and (ii) the resistive heating (or Joule effect) of electron
conductive bulk composites is controlled by electric-field
fluctuations—reminiscent of the fluctuation-dissipation the-
orem. This volumetric heat rate results from the dissipation
of electric-field energy due to intrinsic imperfections of the
conducting volumetric wiring in the conductor-insulator com-
posite, which, in first order, is well captured by functional
relations of the electric tortuosity, τe. Our semiempirical
fluctuation-tortuosity model predicts that rationalizing the de-
sign of electron conducting bulk composite materials will
ultimately focus on settling the competition between con-
ductor concentration and electric tortuosity, with electric
tortuosity tailored by engineering the texture design. The
quantitative assessment model and its future refinements open
venues for harvesting new functionalities of classical com-
modity materials such as concrete for existing and emerging
green technology applications, ranging from radiant heating to
energy storage. Given the global environmental impact of the
production of cement-based materials [8], the development
and implementation of such novel functionalities is expected
to foster the sustainable development of both the construction
sector and our built infrastructure at large.
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