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CRYSPNet: Crystal structure predictions via neural networks
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Structure is the most basic and important property of crystalline solids; it determines directly or indirectly
most materials characteristics. However, predicting crystal structure of solids remains a formidable and not fully
solved problem. Standard theoretical tools for this task are computationally expensive and at times inaccurate.
Here we present an alternative approach utilizing machine learning for crystal structure prediction. We developed
a tool called Crystal Structure Prediction Network (CRYSPNet) that can predict the Bravais lattice, space group,
and lattice parameters of an inorganic material based only on its chemical composition. CRYSPNet consists of a
series of neural network models, using as inputs predictors aggregating the properties of the elements constituting
the compound. It was trained and validated on more than 100 000 entries from the Inorganic Crystal Structure
Database. The tool demonstrates robust predictive capability and outperforms alternative strategies by a large
margin. It can be used both as an independent prediction engine and as a method to generate candidate structures
for further computational and/or experimental validation.
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I. INTRODUCTION

Finding new materials with desired properties remains
one of the grand challenges in science. However, the
current demand for novel materials far exceeds the capabil-
ities of traditional approaches combining trial-and-error and
serendipitous discoveries. Only a combination of more effi-
cient experimental strategies [1] with computational methods
that can reliably and quickly predict properties of materials in
silico [2] can fully address this crucial need.

Structure is one of the most fundamental properties of
crystalline solids; it determines directly or indirectly the ma-
jority of materials characteristics. Crystal structure is also the
starting point for the first-principles computational tools used
to calculate many materials properties of practical interest
[2]. However, predicting the crystal structure itself remains
a formidable and not fully solved problem [3,4]. Most current
methods for this task rely on calculating the energy of a large
set of candidate structures (typically generated randomly or
using some similarity function) to find the best global solu-
tion. Despite the great advances in optimization methods and
the dramatic increase in the available computing power, this
approach remains arduous and computationally expensive.
The problems become severe as the size and the complexity
of the studied systems rises, driving an exponential increase
in the dimensionality of the search space and the number
of possible solutions. Moreover, first-principles methods are
typically built on uncontrolled approximations that sometimes
lead to poor accuracy of the formation energy calculations.

Machine learning (ML) methods have recently emerged
as a new, powerful approach in the study of materials
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[5–11]. In particular, ML can provide an alternative to us-
ing first-principles calculations. Instead of solving complex
quantum-mechanical problems directly, ML methods can
make predictions based on correlations found in measured
or calculated data. These correlations, in turn, are learned
through statistical and probabilistic methods [5,12]. Although
suffering from a fundamental limitation, namely, the inability
to predict outcomes (e.g., structures) not in the training data,
ML methods have several significant advantages. They are
less susceptible to human biases and erroneous assumptions,
especially when trained on experimental data. Use of ML
can circumvent some of the limitations of even the most
sophisticated ab initio methods, such as difficulties calculating
properties for finite temperatures and modeling composition-
ally modified (through substitution) nonstoichiometric com-
pounds. Once an ML model is trained, it typically provides an
extremely fast and inexpensive means to generate predictions.

Despite these advantages, ML has not been used ex-
tensively for crystal structure predictions. Furthermore, the
works that utilized ML methods for this task tended to focus
on particular materials groups [13–17]. This approach leads to
specialized models trained on limited data and with restricted
applicability. Such models clearly cannot be used to predict
the likely structure of an arbitrary hypothetical composition.
To goal of our work is to address this gap and to explore the
possibility of using ML methods for general crystal struc-
ture prediction. We present here a tool named CRYSPNet,
designed to predict the Bravais lattice, space group, and lattice
parameters of an inorganic material solely based on its chem-
ical composition. To develop the tool we utilized more than
100 000 entries from the Inorganic Crystal Structure Database
(ICSD) [18]. The access to such a large dataset allowed us to
extensively train and validate the ML models. For input, the
tool relies on aggregate predictors based on the properties of
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the elements constituting the compound. A similar approach
has been successfully used to predict other materials proper-
ties, from band gap energies [19,20] to superconducting and
ferromagnetic critical temperatures [21,22], and metallic glass
formation abilities [23].

CRYSPNet (abbreviated from Crystal Structure Prediction
Network) utilizes neural networks (NNs); the class of ML
models behind many of the recent breakthroughs in AI appli-
cations in science and technology [24]. The biggest advantage
of NNs is their ability to perform feature selection and training
simultaneously, obviating the need for manual creation and
selection of predictors. In condensed matter physics and mate-
rials science, NNs have been successfully applied to a variety
of tasks, ranging from analysis of Monte Carlo simulations
[25,26], microscopy images [27,28] and x-ray diffraction data
[29,30], to molecular design [31,32] and knowledge extraction
from published data [33,34]. This work applies these meth-
ods directly for crystal structure prediction (although they
have been used for related tasks such as classifying x-ray
diffraction patterns [35] and predicting possible compositions
forming a given structure [36]).

CRYSPNet demonstrates good predictive capability and
unconditionally outperforms trivial strategies such as ran-
dom or mode selection. In addition to using the entire
dataset based on ICSD, we developed models for two sub-
sets, namely, oxides and metallic alloys. Surprisingly, the NN
models trained on the latter—relatively small—dataset con-
taining only around 16 000 entries show much better overall
performance compared to the models for the oxide dataset
containing almost 56 000 compositions. They are able to
confidently predict the Bravais lattice, space group, and lattice
parameters with great accuracy. The models trained on the
entire and oxide datasets are generally less reliable, but also
decisively outperform trivial strategies, demonstrating their
ability to learn from the available data.

The tool can be utilized as a rational and data-informed
way to generate candidate structures for both computa-
tional and experimental studies. For example, CRYSPNet
predictions can be used to filter and constrain the prototype
structures used as starting points in first-principles calcula-
tions. Combined with other crystallographic and ML tools,
it can become an important preprocessing stage for den-
sity functional theory (DFT) studies, seriously reducing their
computational cost. Similarly, the symmetry and structure
constrains extracted from CRYSPNet can help significantly
streamline and accelerate the process of structure refinement
from experimental data such as powder x-ray diffraction
(XRD) measurements. Thus, this work not only unambigu-
ously demonstrates the general ability of ML to address the
task of crystal structure prediction, but also presents a tool
with significant application potentials.

II. DATA AND MODELS

A. ICSD dataset

ICSD is one of the largest collections of crystal structures
of inorganic solids [18]. Currently, it has more than 210 000
entries, containing structural information about solids ranging
from pure elements to extremely complex compounds with

more than ten constituent elements. To construct a dataset of
crystal structures, we have extracted the chemical formulas,
Bravais lattices, space groups, lattice parameters, and other
relevant information from 181 362 unique ICSD entries.

After obtaining this information, a manual data cleaning
was performed in order to make the notation uniform. It has to
be noted that the notation used in the “symmetry_cell_setting”
field of the CIFs [37] (the basic data structure of the database,
containing information for a single entry in ICSD) is neither
lattice system nor crystal system. The trigonal label is used
interchangeably with hexagonal and rhombohedral labels for
the same space group. We mapped the symmetry cell field
of all the trigonal compounds (total of 18 068 entries) to the
corresponding lattice system and Bravais lattice based on their
space group. Since rhombohedral lattices can be represented
in both hexagonal and rhombohedral unit cells, we converted
all rhombohedral entries with a hexagonal unit cell to a rhom-
bohedral unit cell (see Appendix A). Thus, all materials were
categorized in 14 Bravais lattices, with “P”, “I”, “C”, and
“F” as short-hand notation for primitive, body-centered, base-
centered with unique c axis, and face-centered, respectively.

The existence of polymorphs leads to multiple entries for
compounds with the same chemical formula. This is problem-
atic for our approach: since it relies only on elemental features
(see below), it is highly desirable for each unique chemical
formula to correspond to a single crystal structure. To remove
the duplication caused by the polymorphs, a simple algorithm
was used to determine the most likely stable phase at ambient
conditions (prevalent for ICSD entries). We selected entries by
comparing the abundances of compounds with the same space
group, as well as the ground state formation energy from the
Materials Project database. (The details of this procedure are
provided in Appendix B. While the accuracy of the algorithm
for selecting stable Bravais lattices exceeds 90%, the incom-
plete filtering of the structures in ICSD that were synthesized
under extreme conditions—for example, high temperature and
pressure—is a potential source of error in the subsequent ML
modeling.) After removal of the polymorphs the dataset con-
tains a total of 110 813 unique composition-structure pairs.
Henceforth, we will refer to this as the Master dataset.

The Master dataset allows straightforward survey of 110
000 entries in ICSD providing “panoramic views” of most
known inorganic compounds. Figure 1(a) shows the distri-
bution of solids in the Master dataset by the number of
constituent elements. As can be seen here, the binary, ternary,
quaternary, and quinary materials comprise about 95% of the
dataset, while compounds with more elements are very rarely
observed. (Since the number of possible combinations grows
exponentially with the number of elements, this sparseness
underlines the fact that the space of complex multicomponent
materials is still almost unexplored.) Figure 1(b) shows the
abundance of the top 13 elements. Oxygen, the most abundant
element, is present in more than 50% of the entries, indicating
the dataset has a strong preference for oxide compounds. The
data can also be used to study the history of how compounds
were discovered and entered into ICSD (see Appendix C).

It is well known that compounds in ICSD are highly un-
evenly distributed over the 14 Bravais lattices and the 230
space groups [38]. The abundance of each Bravais lattice
is shown in Fig. 1(c) and as can be seen, about 40% of
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FIG. 1. Survey of compounds in ICSD: (a) Relative abundance of compounds with varying number of constituent elements; (b) Relative
abundance of the top 13 most ubiquitous elements in the dataset; (c) The percentage of each Bravais lattice in the dataset; (d) The distribution
of systems with varying number of elements with the same Bravais lattice class. Compounds with more than six elements are combined
in a single group. The abbreviations are “Hex.” for hexagonal, “Rhom.” for rhombohedral, “Tetra.” for tetragonal, “Ortho.” for orthogonal,
“Mono.” for monoclinic. “P”, “I”, “C”, and “F” denote primitive, body-centered, base-centered with unique c-axis, and face-centered systems,
respectively.

the materials are in the cubic (F), orthorhombic (P), and
hexagonal (P) lattices. In contrast, the number of orthorhom-
bic (F) or orthorhombic (I) entries is relatively small. As
shown in Fig. 1(d), the relative abundance of different Bravais
lattices also depends on the number of elements; triclinic
and monoclinic entries are rare in binary phases but become
more common as the number of elements increases, under-
scoring the correlation between stoichiometric complexity
and low-symmetry structures. A large imbalance is also ob-
served in the distribution of space groups, where P21/c(14),
Pnma(62), Fd3̄m(227), Fm3̄m(225), P1̄(2), P63/mmc(194),
I4/mmm(139), C2/c(15), C2/m(12), and R3̄m(166), the ten
most abundant space groups, encompass almost half (47%) of
the dataset [see Fig. 2(a)].

To be able to analyze the data in more detail, we extracted
two subsets from the Master dataset: one with only oxide
compounds (Oxide dataset, total of 55 770 compositions);
and another set with compounds formed by elements in al-
kali, alkaline earth, transition, post-transition, lanthanoid, and
actinoid metal series (Metal dataset, with 16 127 entries).

Analyses on these subsets show that the Metal dataset has a
distinct distribution of space groups and unit cell volumes,
different from the Master dataset. As can be seen in Fig. 2(b),
the list of most abundant space groups of the Metal dataset
contains such high symmetry space groups as P63/mmc(194),
Fm3̄m(225), and Fd3̄m(227). Meanwhile, the Master dataset
is dominated by low symmetry space groups [Fig. 2(a)]. We
also found that the unit cell volume of the Metal dataset is
generally smaller and more tightly concentrated in the range
of up to 500 Å³ (shown in Figs. 2(c) and 2(d)]. As mentioned
before, more than half of ICSD is composed of oxide com-
pounds, and thus, the symmetry and lattice patterns for the
Oxide dataset are quite similar to the patterns of the Master
dataset. As described in Sec. III, all three datasets are used to
train separate neural networks to predict Bravais lattices.

B. Predictors

To generate predictors for the ML modeling we used the
Matminer library [39]. It is an open-source Python library
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FIG. 2. Distribution of datasets by space group and volume: (a) The relative abundance of the top-20 most common space group in the
Master dataset.; (b) The relative abundance of the top-20 most common space group in the Metal dataset; (c) The histogram of unit cell volume
in the Master dataset; (d) The histogram of unit cell volume in the Metal dataset.

designed to automate several steps in the process of data
mining properties of materials. We utilized its predefined
feature generation methods that transform chemical compo-
sition into materials predictors. 132 Magpie predictors [19]
were employed as a starting point. They consist of the min-
imum, maximum, mode, weighted average (referred to as
“mean”), and weighted average deviation (denoted by “avg
dev”) over a specific compositional/elemental property. (The
mean and the average deviation are calculated by f̄ = ∑

xi fi

and f̂ = ∑
xi| fi − f̄ |, respectively. fi denotes the value of

the property for an element i, and xi is the mole fraction
of this element in any given compound.) These properties
include number of elements, positions in the periodic table,
covalent radius, electronegativity, number of valence elec-
trons in each orbit, as well as space group, specific volume,
band gap energy, and magnetic moment of the ground state
(T = 0 K) elemental structure. We removed all features that
are based on the mode. These only change when the majority
component changes, which introduces discontinuities in the
predictor space and makes them problematic for predicting
entries with atomic substitutions. In addition to the Magpie
set, some extra features were added, expanding the total fea-
ture set size to 228. A list of some important elemental prop-
erties used to generate predictors for the models is shown in
Table I.

C. Machine learning models

We combined several multilayer perceptron (MLP) models
to create a machine learning tool, CRYSPNet, able to predict
the Bravais lattice, space group, and the lattice parameter of
a material based solely on the elemental predictors described
in the previous section. MLP is a NN architecture that stacks
densely connected layers, combining a series of nonlinear
activation functions and optional regularization steps. The
ReLU [ f (x) = max(0, x)] function is used as an activation
function on the inner layers. We adopt Dropout and Batch-
Norm as two effective regularization methods used to prevent
overfitting [40,41]. (More details about the architecture of
the MLP models are given in Appendix D.) We employed
two distinct MLP architectures: one to predict the Bravais
lattice and the space group, and another one for the lattice
parameters.

The last layer of the MLP yields the model predictions. For
the classification problems (i.e., predicting the Bravais lattices
and the space group labels) we utilize the softmax function,
which gives the predicted probability for the i-th compound
to be in the l-th class by yl,i = exl,i/

∑K
l=1 exl,i , where K is

the total number of classes (e.g., 14 Bravais lattices) and x
is the output from the previous layer. These models minimize
the cross-entropy loss LCE (based on negative log likelihood
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TABLE I. Materials predictors used to generate the datasets from
compositional information. Magpie predictor set is based on calcu-
lating the mean, average deviation, minimum, and maximum of the
elemental properties (weighted by the fraction of each element in
the composition). Computing the additional predictors differs from
that for the Magpie set. For more details, the reader can consult the
Matminer documentation [39].

Magpie predictors Additional predictors

Atomic Stoichiometry p-norm
Number (p = 0,2,3,5,7)
Mendeleev Elemental
Number Fraction
Atomic Fraction of electrons
Weight in each Orbital
Melting Band
Temperature Center
Periodic Table Ion property (possible to form
row & column ionic compound, ionic charge)

Covalent
Radius
The number of valence e− in
orbital (s, p, d, f, total)
The number of unfilled e−

in each orbital (s, p, d, f, total)
Ground State
Band Gap Energy
Ground State
Magnetic Moment

for correct prediction):

LCE = − 1

N

N∑
i=1

K∑
l=1

ti(l ) log (yl,i ),

where N is the total number of data points, and ti(l ) is the
indicator variable for the true label of the i-th compounds (ti(l )
is 1 for l = ltrue and 0 for all other l).

For the lattice parameters predictions (a regression prob-
lem), the final layer output uses a sigmoid function and a
scaling factor (applied to confine the predictions into a phys-
ically meaningful range). The loss function is the log mean
square error (Log-MSE) LLog MSE:

LLog MSE = 1

N

1

D

N∑
i=1

D∑
j=1

[
log

(
Yi j

ti j

)]2

,

where N is again the total number of data points, yi j is the
prediction for the j-th parameter from the set of D symmetry
group-based parameters for the i-th compound (e.g., D = 1
for primitive cubic but = 6 for primitive triclinic), and ti j is the
ground truth value for the i-th prediction. The benefit of using
Log-MSE as a loss function is that it measures the relative
rather than absolute errors (ratio vs Euclidean distance). This
is important since entries with larger lattice parameters tend
to have larger prediction errors. Using absolute errors would
have biased the model towards trying to predict better the
larger lattices parameters, to the detriment of all others.

The schematic diagram of the CRYSPNet’s workflow is
shown in Fig. 3. Note that the Bravias lattice model precedes
the other two—space group and lattice parameters—NN mod-
els, which are independent of each other. Since the lattice
system determines the number of independent lattice param-
eters, prediction of the Bravais lattice has to come before the
corresponding model for lattice parameters. For example, a
model for a (likely) cubic compound only needs to predict
a single lattice parameter a, whereas a model for triclinic
compounds has to predict six: a, b, c, α, β, and γ . To capture
this, 14 distinct models were trained on materials that share
the same Bravais lattice. Similarly, the possible space groups
are also constrained by the Bravais lattice, and thus 14 distinct
models for space group prediction were trained.

Unlike many earlier ML efforts which explicitly enumerate
and evaluate correlations between different structures (see, for
example, Ref. [16]), the use of NNs allows CRYSPNet to
algorithmically find and utilize correlations between chemical
composition and structures, making it fairly general, as well
as much easier to train and use.

D. Metrics

Predicting the Bravais lattices and the space groups is a
multilabel classification problem. To evaluate the performance
of the models, accuracy and top-k accuracy were used as met-
rics. (The top-k accuracy measures the proportion of correct
predictions in the k classes with highest predicted probabil-
ity). Top-k accuracy with k � 2 is often used for multilabel
classification tasks: the canonical (top-1) accuracy can be too
strict a measure, especially if the probabilities for several of
the top ranked classes are close and all of them are of interest.
For instance, the top three likeliest Bravais lattices can be used
to initialize parallel first-principles calculations.

Predicting the lattice parameters is generally a multivariate
regression problem (since the number of lattice parameters is
larger than one for all except the cubic lattices). Moreover,
some of the variables have different physical meaning (length
vs angle). To simplify evaluating and comparing different
models we use as a main regression metric the coefficient of
determination R2, defined as follows:

R2 = 1 −
∑N

i=1 (yi − ti )2∑N
i=1 (t̄ − ti )

2
,

where yi and ti denote the predicted and true values of the
lattice parameter of i-th compound, and t̄ is the average value
over the entire dataset. R2 values close to 1 and 0 suggest the
model have excellent or no predictive power, respectively.

To avoid overfitting and obtain unbiased estimates of these
metrics, we use separate subsets to train and benchmark the
models. All datasets were divided into training and validation
sets using a separation probability of 0.1. The model param-
eters were optimized using the training set, while the metrics
were calculated on the validation set.

E. Interpreting the models

The interpretability of ML models is of great importance,
especially when they are applied to scientific problems. Un-
fortunately, NN models are notoriously difficult to interpret
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FIG. 3. The workflow of CRYSPNet. The input requires the user to provide one or more valid chemical formulas to the tool, which
transforms it to a matrix of materials predictors. This matrix is then first used to predict the Bravais lattice of the materials by an ensemble of
neural network (NN) models. Depending on the predicted Bravais lattice type, specific NN models are used to predict the lattice parameters
and space groups of the materials.

directly, due to their multilayer nature (creating a series of
nonlinear transformations of the input predictors). To gain an
insight into the inner workings of the models, some indirect
methods are typically required.

Permutation importance is a commonly used and relatively
simple approach to estimate the relative importance of each
of the predictors. It quantifies the significance of a predictor
by measuring the validation error with this predictor’s values
being randomly shuffled, while keeping everything else fixed.
To obtain a robust measure of the importance, K-times valida-
tion is performed with the same model for each predictor (the
dataset is randomly split in K subsets, and all possible K-1
groups are used to train the model, while the remaining points
are used as a validation set). If a predictor is important for
the model, its shuffling should lead to a high validation error.
Thus, the higher the error, the more important the feature is.
We calculate the permutation importance of the features for
all the models we created.

The permutation importance method provides some in-
sights into how the input predictors are used in the decision-
making process. To obtain a more complete understanding of
the way the model actually encodes knowledge in its native
space, it is useful to study the activation of the hidden units.
For example, in computer vision, visualizing the weights of a
hidden layer is used to discover regions and features the model
considers important [42]. In materials science, it was demon-
strated that the activations of a model studying chemical space
encoded the structure of the Periodic Table [36].

One challenge in processing the activations of a large NN
model is the so-called curse of dimensionality; since the av-
erage distances scale with the number of dimensions, points
become very sparsely distributed in high-dimensional spaces.
Thus, conventional clustering algorithms (such as K-means
clustering, Gaussian mixtures, and DBSCAN) do not perform
well when applied directly on such high-dimensional data.
Instead, dimensionality reduction techniques [e.g., principal
component analysis, t-distributed stochastic neighbor embed-
ding (t-SNE), and multidimensional scaling] are often used to
first project the points to a lower-dimensional space and then
cluster the projections.

We utilized a similar approach in order to understand how
well the models can distinguish different materials groups.

t-SNE algorithm [43] is used to project the activations on a
two-dimensional space; these projected points are then clus-
tered by the DBSCAN algorithm [44] (a detailed description
is provided in Appendix E). As we demonstrate in the next
section, these clusters indeed represent meaningful grouping
of materials, and can be analyzed to understand the model’s
internal representation of compounds. The clustering also
presents an alternative approach for searching materials with
structural and chemical similarity, which can yield candidates
for future exploration.

III. RESULTS AND DISCUSSION

A. Predicting the Bravais lattice

CRYSPNet consists of several distinct components (see
Fig. 3). The first is a Bravais lattice prediction module. We
trained and tested this module on Master, Oxide, and Metal
datasets, leading to three separate Bravais lattice prediction
models, namely, the Master model, the Oxide model, and the
Metal model. The performance of these models is shown in
Table II. Despite the fact it is trained with the smallest dataset,
the Metal model reached the highest accuracy of about 70%
and top-2 accuracy value of ≈84%, whereas the Oxide model
has the lowest accuracy of 54% and top-2 accuracy of 71%.
The performance of the Master model is similar to that of
the Oxide model, with accuracy and top-2 accuracy of 55%
and 71%, respectively. To put these numbers in perspective,
they have to be compared with some available alternatives.
A random selection of the Bravais lattice from the empirical

TABLE II. The accuracy and top-2 accuracy of models pre-
dicting the Bravais lattice trained on the Master, Metal, and Oxide
datasets. The results are the average and the standard deviation over
15 models trained for each dataset.

Accuracy Accuracy Top-2 accuracy
Dataset model random model

Master 54.2 ± .4% 16.5% 70.6 ± .4%
Metal 69.5 ± .9% 23.0% 84.2 ± .7%
Oxide 55.0 ± .8% 17.1% 71.1 ± .4%
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FIG. 4. Performance of the model predicting the Bravais lattices: (a) Confusion matrix of the Master model; (b) Confusion matrix of the
Metal model; (c) Confusion matrix of the Oxide model. The grey shade corresponds to the relative density of the true labels (also provided as
percentages). The numbers on the diagonal shows the prediction accuracy of each Bravais lattice. Histograms on the left and on the top represent
the distribution of the true and predicted labels, respectively. (d) The (top-1) accuracy and top-2 accuracy of the Master model (top) and Oxide
model (bottom). The abbreviations are “Hex.” for hexagonal, “Rhom.” for rhombohedral, “Tetra.” for tetragonal, “Ortho.” for orthogonal,
“Mono.” for monoclinic. “P”, “I”, “C”, and “F” denote primitive, body-centered, base-centered with unique c-axis, and face-centered system,
respectively.

distribution of observed compounds will lead to an average
accuracy of 16%, 23%, and 17% for Oxide, Metal and Master
dataset, respectively. Always selecting the mode (the most
popular class) yields a similar accuracy. Thus, the NN models
have clearly learned from the data and are able to greatly
outperform the other (trivial) strategies.

In Fig. 4 we show the confusion matrix for each model,
together with the true and predicted distributions of the
numbers of compounds of each class in the validation sets.
As can be seen from the figure, in some cases the poor

performance (low numbers on the diagonal of the confu-
sion matrix) of the models is clearly connected with the
scarcity of data points. It implies the severe problems with
class imbalance are harming the performance of the mod-
els. This affects especially the low symmetry compounds in
the Metal dataset [Fig. 4(b)], which are typically hard to
synthesize in a laboratory or difficult to find in nature. On
the other hand, the matrices for Oxide and Master datasets
show the models do not perform too well on the mono-
clinic (C, P), orthorhombic (C, F, P), and triclinic (P) entries,
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regardless of their abundances. However, further analysis
shows the second highest probability prediction of these
entries typically match the target Bravais lattice. The ac-
curacy and top-2 accuracy of these classes are plotted in
Fig. 4(d), and it can be seen there is a large improvement
(20%–30%) from top-1 to top-2 accuracy of triclinic (P),
orthorhombic (P, C), and monoclinic (P, C) entries. Thus,
the low accuracy for these classes is mostly due to the in-
ability of the model to select correctly between the top two
predictions. Low performance in orthorhombic (C, F) is prob-
ably explained separately by insufficient training data. As
more data become available in the future, a performance boost
in these two classes is expected.

To measure the contribution of each feature, the permu-
tation importance method was applied for all three models
(shown in Fig. 5). For the Metal model the top four features
(avg dev covalent radius, avg dev unit cell volume at ground
state, avg dev electronegativity and avg dev periodic table
column) hold a large portion of the overall feature importance.
The presence of predictors based on the covalent radii and the
ground state volumes indicates that the atomic sizes of each
element greatly affect the crystal structure of the metal com-
pound, hardly a surprising finding. The relative importance of
avg dev periodic table column, mean periodic table column and
those valence electron number features show the significance
of the elemental electronic structure. The Master model’s list
of most important features contains many of the same features
as the Metal model, again indicating the significance of these
predictors. By contrast, none of these features are in the top
four important features for the Oxide model. It is relying much
more on the compositional features, which are, unfortunately,
less interpretable. It suggests, however, that different branches
of the model have to be created for particular oxide materials.

Despite the models being trained on very different datasets,
some common features are present in all three. One such com-
mon point is the use of the stoichiometry p-norm features. The
lower p-norm (p = 2) can capture the spread of the composi-
tion, while the higher p-norm (p = 7, 10) is more sensitive to
the largest fraction of the composition. By using these features
the models are capable to learn that materials with similar
stoichiometries are likely to share the same crystal structures
(e.g., ABX3 materials usually have perovskite structure, while
X3Y2(SiO4)3 materials usually have garnet structure).

B. Predicting the space group

After predicting the Bravais lattice class, we move on to
predicting the compound’s space group. To restrict the pos-
sible space group range, we trained 14 independent models,
one for each Bravais lattice class. The Master dataset is first
grouped into 14 subsets based on the Bravais lattice, each of
which is then used as the input for the corresponding model
(see Fig. 3). The architecture of the NN is similar to the model
in the previous section. During the training process, the space
group and Bravais lattice models are trained independently. It
should be noted that the space group models are thus based on
the assumption that the Bravais lattices predictions are correct.

The cross-validated accuracies and top-3 accuracies of all
14 models are shown in Table III (estimated under the as-
sumption of an accurate Bravais lattice determination). Note

FIG. 5. Permutation importance of the models for Bravais lat-
tices prediction trained on Master, Oxide, and Metal dataset. The
permutation importance of each model is normalized by the feature
with the maximum validation error.

that since the triclinic system has only two (and highly im-
balanced at that) space groups, both its accuracy and top-3
accuracy are automatically very high, and we do not include it
in the subsequent discussion. Somewhat surprisingly, models
for cubic type lattice perform significantly better than those
for noncubic type lattices, with accuracy in the 87%–91%
range. Among the remaining 10 models for noncubic types,
the accuracy is typically in the 70%–80% range. Again, these
results should be compared with the random selection and
mode selection strategies. Applying random selection yields
the accuracy range from 13%–58%, where the highest ac-
curacy is for monoclinic (C) systems. Meanwhile, selecting
the most popular space group yields the accuracy range from
25%–74%, where the highest accuracy is for monoclinic
(P) systems, and the second largest accuracy (59%) is for
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TABLE III. The cross-validated accuracy and top-3 accuracy of
models predicting the space group trained for the 14 Bravais lattices.
The cross-validated results were obtained after averaging the results
of 15 independent training runs for each Bravais lattice class. The
100% top-3 accuracy in the triclinic row is a trivial result; there
are only two space groups in this Bravais lattice. The abbreviations
are “Hex.” for hexagonal, “Rhom.” for rhombohedral, “Tetra.” for
tetragonal, “Ortho.” for orthogonal, “Mono.” for monoclinic. “P”,
“I”, “C”, and “F” denote primitive, body-centered, base-centered
with unique c-axis, and face-centered system, respectively.

Accuracy Accuracy Top-3 accuracy
Bravais lattice model random model

Cubic (F) 90.7 ± 0.6% 36.5% 98.8 ± 0.2%
Cubic (I) 87.1 ± 1.7% 17.6% 95.1 ± 1.2%
Cubic (P) 87.3 ± 1.6% 30.4% 95.8 ± 0.1%
Hex. (P) 74.8 ± 0.9% 13.3% 87.9 ± 0.6%
Rhom. (P) 81.7 ± 1.4% 26.6% 94.5 ± 1.0%
Tetra. (I) 81.8 ± 1.1% 29.1% 92.7 ± 1.0%
Tetra. (P) 78.2 ± 1.4% 13.6% 86.9 ± 1.0%
Ortho. (F) 72.7 ± 4.7% 24.8% 93.0 ± 0.3%
Ortho. (I) 78.0 ± 3.1% 40.6% 91.9 ± 2.6%
Ortho. (C) 72.2 ± 1.9% 33.0% 90.8 ± 0.8%
Ortho. (P) 63.8 ± 1.4% 25.6% 81.0 ± 1.0%
Mono. (C) 74.0 ± 1.1% 40.1% 94.0 ± 0.7%
Mono. (P) 79.4 ± 1.1% 58.0% 81.0 ± 1.0%
Triclinic (P) 94.7 ± 0.9% 87.1% 100%

orthorhombic (I) compounds. This high accuracy for the sec-
ond trivial method of selecting space groups demonstrates the
very imbalanced distribution of data mentioned in Sec. I. In
all the cases (except for the triclinic system) our model outper-
forms both trivial strategies, leading to a dramatic increase in
the accuracy (in some cases with more that 40%–50%), again

demonstrating the ability of the models to extract meaningful
information from the data.

C. Predicting the lattice parameters

Similar to the space group prediction model, we use 14
subsets, grouped by Bravais lattice, to create and train 14
separate models for predicting the lattice parameters (see
Fig. 3). The validation error (Log-MSE) of each model, as
well as the R2 for each relevant lattice parameter are shown in
Table IV. As can be seen there, the validation error increases
as the degree of symmetry of the Bravais lattice decreases. The
model trained on cubic (P) entries has the lowest Log-MSE
value of 0.12, while the validation error for the triclinic one is
six times higher. Since the number of lattice parameters also
increases six-fold, there is clear deterioration of the models’
performance as the number of parameters to be predicted
increases. Interestingly, for the triclinic type the predictions
for the angles α, β, and γ tend to be much worse than the
predictions for a, b, and c parameters (see also Fig. 10 in
Appendix F). A similar trend appears in the β predictions for
the monoclinic type. We believe this peculiar property of the
model at least partially originates in the crystallographic rules
and conventions for representing lattices. For monoclinic unit
cells, there are multiple rules that define the selection of basic
vectors, which can easily confuse the model. For example,
in monoclinic (P), if there is a glide operation, the c axis
is selected to parallel to that translation, whereas c axis is
to be selected to satisfy a � c if there is no glide operation.
However, the convention prefers a fully reduced mesh unit
cell where a and c are the two shortest transition vectors and
thus the interaxial angle β < 120◦. The restriction in c axis
might lead to a different selection of a axis (and β), which
might result in a different setting than fully reduced cell. In
our dataset, 11% and 20% of the entries in Monoclinic (P,
C) are not in fully reduced setting. Selection becomes even

TABLE IV. The cross-validated Log-MSE for the models predicting the lattice constants for each Bravais lattice. R2 values can be used
to assess the performance of the prediction models for each lattice constant. The results present the average and the standard deviation over
15 models trained for each subset. The abbreviations are “Hex.” for hexagonal, “Rhom.” for rhombohedral, “Tetra.” for tetragonal, “Ortho.”
for orthogonal, “Mono.” for monoclinic. “P”, “I”, “C”, and “F” denote primitive, body-centered, base-centered with unique c-axis, and face-
centered system, respectively.

R²

Bravais lattices Log MSE a b c α β γ

Cubic (F) 0.22 ± .02 0.83 ± .02 – – – – –
Cubic (I) 0.16 ± .06 0.80 ± .06 – – – – –
Cubic (P) 0.12 ± .03 0.85 ± .03 – – – – –
Hex. (P) 0.27 ± .02 0.77 ± .02 – 0.61 ± .04 – – –
Rhom. (P) 0.30 ± .03 0.52 ± .08 – – 0.71 ± .04 – –
Tetra. (I) 0.21 ± .02 0.73 ± .03 – 0.74 ± .03 – – –
Tetra. (P) 0.21 ± .01 0.76 ± .03 – 0.64 ± .09 – – –
Ortho. (F) 0.51 ± .11 0.19 ± .43 0.39 ± .16 0.39 ± .16 – – –
Ortho. (I) 0.65 ± .10 0.51 ± .11 0.35 ± .11 0.33 ± .09 – – –
Ortho. (C) 0.48 ± .04 0.39 ± .06 0.43 ± .09 0.64 ± .04 – – –
Ortho. (P) 0.50 ± .02 0.42 ± .02 0.35 ± .03 0.37 ± .03 – – –
Mono. (C) 0.58 ± .05 0.33 ± .07 0.46 ± .10 0.32 ± .04 – 0.17 ± .05 –
Mono. (P) 0.76 ± .02 0.11 ± .13 0.22 ± .03 0.19 ± .03 – 0.15 ± .04 –
Triclinic (P) 0.80 ± .04 0.24 ± .08 0.24 ± .17 0.22 ± .07 0.03 ± .04 0.06 ± .03 0.01 ± .03
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FIG. 6. The true unit cell volume vs the unit cell volume computed from the lattice parameters predicted by the models. Entries with
correctly classified Bravais lattices are shown in (a), while misclassifies entries are shown in (b).

more complicated in triclinic system. The reduced cell are
classified as type I (α < 90◦, β < 90◦, and γ < 90◦) and type
II (α � 90◦, β � 90◦, and γ � 90◦). We observe both type
I and type II unit cells in our dataset, with other configu-
rations also present. Similar reasoning can also explain the
inferior performance of the model on orthorhombic entries.
For orthorhombic lattices, c axis is preferred to be the one
that has lower symmetry element than a and b axes. When
the symmetry is same for all axes, they are selected so that
a � b � c. In our dataset, 23% of the orthorhombic (P, I, F)
entries are given in the latter format.

D. Generalization tests

Even though we have demonstrated the ability of CRYSP-
Net to predict the Bravais lattices and other structural
parameters for randomly selected compounds in ICSD, the
ultimate goal is to have a tool that is able to predict the crys-
tal structures of yet-to-be synthesized materials. To further
validate this idea, we split the ICSD dataset based on publica-
tion date. Specifically, compounds with structures published
before 2014 were used to train the model, while the rest of
the dataset was used as a holdout test set. We again split
the train and the holdout data in Master, Metal, and Oxide
subsets, which are used to train and test respective Master,
Metal and Oxide models. The accuracy of the Bravais lattice
predictions on the holdout test set is ≈48% for the Master
model and ≈51% for Oxide model; roughly similar to the
accuracy reported above. On the other hand, we observe a
significant difference in the performance of the Metal model.
The accuracy on the holdout test set is 43%, which is much
lower than the previous validation accuracy of 69% (albeit
still significantly better than what can be achieved using triv-
ial prediction methods). To understand this discrepancy, we
analyzed the distribution of compounds by the number of
elements in each dataset. For the Master and Oxide datasets,
the distributions of the training and holdout sets is closely
matched, leading to consistent model results. In contrast, for
the Metal dataset we found that the portion of binary systems
decreased significantly, from 38% in the training set to 15% in
the holdout set. Conversely, the combined number of ternary
and quaternary systems rose from 61% in the training set
to 82% of the holdout dataset. This shift in the underlying

distributions can explain the deterioration in the Metal model
performance; after all, we are testing the model on a dataset
that is significantly different from the set used to train it.

This result signifies the evolution of studies of materials,
with more complex compounds emerging to the forefront of
materials research. This gradual shift presents a real challenge
to ML methods for predicting crystal structures, as well as
other materials properties. Careful tailoring of the training
datasets might be required for best performance on relatively
new and scarce structures.

Looking at the general architecture of CRYSPNet (Fig. 3),
it is clear that obtaining accurate predictions for the Bra-
vais lattice is crucial for the further performance of the tool.
We also investigated how the possible misclassification of
the Bravais lattice would affect the subsequence lattice pa-
rameter predictions (since each Bravais lattice class has a
corresponding lattice parameter model). In Fig. 6 we show the
unit cell volume computed from predicted lattice parameter
and the experimental determined volume for all materials in
the holdout Master dataset. For the materials with correctly
predicted Bravais lattices [Fig. 6(a)] the model leads to a
good (although not outstanding) accuracy, with an R2 value
of 0.68. The model for misclassified materials [Fig. 6(b)] has
an R2 of only 0.04; it is statistically equivalent to simply
using the mean lattice parameters as predicted values. Thus,
and not very surprisingly, the lattice parameter predictions for
materials with incorrectly assigned Bravais lattices are almost
meaningless, while predictions for materials with the correct
Bravais lattice class can be quite accurate.

E. Clustering of materials

To gain some insights into the inner workings of CRYSP-
Net, we use t-SNE to project onto a two-dimensional space
the activations of the second hidden layer of the Bravais
lattice model trained on the Master dataset. These projected
points are then clustered utilizing a modified version of the
DBSCAN algorithm. We first group the projected activa-
tions by year, and then for each group perform DBSCAN
to form a materials cluster that has similar activations. Time
analysis was performed by connecting the clusters that are
close together but have different timestamps (see Appendix
E for more details). Following this approach, we were able to
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extract 1534 materials groups from the Master dataset/model.
To demonstrate that these groups based on projected activa-
tions indeed combine related materials, we extracted small
samples from clusters that include various cuprate supercon-
ductors, iron-based superconductors, and Li-ion solid-state
electrolytes (see Appendix G).

In Fig. 7 we show the change with time in the number of
compounds in these clusters. Their evolution mirrors some
well-known historical developments in their respective fields,
further validating the clustering approach. For example, by
looking at the number of compounds in different cuprate clus-
ters [Fig. 7(a)] one can clearly see a surge of research activities
in the mid-1980s, which in fact corresponds to the discovery
of the first cuprate superconductor La5−xBaxCu5O5(3−y) by
Bednorz and Müller in 1986 [45]. The curves indicate that
following an initial surge period, activities to identify new
compounds belonging to each family tend to plateau after
5–10 years. In a similar manner [Fig. 7(b)], the increase in the
numbers of materials in the group containing the iron-based
superconductors started naturally after the discovery of the
first superconducting system LaOFeP in 2006 [46]. In 2008,
first reports of iron-arsenic and iron-chalcogenide supercon-
ductors further accelerated research [47]. It is interesting to
note that the so-called “1111” (e.g., LaOFeP) and “111” (e.g.,
LiFeAs) pnictides were only discovered to be superconductors
in 2006 and 2008, respectively, but their family curves clearly
indicate that related compounds from these groups (such as
LiCoAs and NaZnAs from the “111” cluster and LaOZnP and
LaONiP from the “1111” cluster) had been known for a lot
longer. Indeed, it is known that the serendipitous discovery
of superconductivity in LaOFeP happened “ …in the course
of exploration of magnetic semiconductors as an extension
of research on transparent p-type semiconductor …” [48] in
the LaTMOPn (TM = 3d transition metal, Pn = pnictogen)
“1111”-type compounds.

The clusters derived from the NN model can thus be used
to visualize and study the evolution of particular materials
groups. However, they can potentially have another, more
important and innovative, role. The groups created by the clus-
tering are based on similarity/dissimilarity between materials.
This similarity combines chemical proximity (as quantified
by the input predictors) and structural information (due to the
backpropagation optimization of the model), and is an uncon-
ventional way to create lists of related materials. These can be
then used as stating points in the search for novel compounds
exhibiting specific properties (such as superconductivity or
high ion conductivity) or other functional properties such as
electrocatalysis and thermoelectricity.

IV. DISCUSSION AND CONCLUSION

Since CRYSPNet makes no predictions for the atomic
coordinates in the unit cell, it does not fully specify the crys-
tal structure of a material. Still, the information it provides
has a significant practical value. First-principles methods like
DFT require a set of initial structures to relax and compare;
in principle, studying a large number of randomly gener-
ated structures is an unbiased way to explore the energy

FIG. 7. Number of compounds as a function of year for several
groups that contain interesting materials: (a) high-temperature
cuprate superconductors. (“LBCO”: La5−xBaxCu5O5(3−y);
“LSCO”: La2−xSrxCuO4; “YBCO”: YBa2Cu3O7−x; “BSCCO”:
Bi2Sr2CaCu2O8+x; “HBCCO”: HgBa2Ca2Cu3O8+x; “TBCCO”:
Tl2Ba2Ca2Cu3O10; “NCCO”: Nd2−xCexCuO4); (b) high-temperature
iron-base superconductors. (“1111”: LaOFeP; “111”: LiFeAs;
“112”: BaFe2As2; “11”: FeSe); (c) solid-state lithium-ion
conductors. (“LLTO”: Li3xLa2/3−xTiO3; “NASICON”: sodium
(Na) super ionic conductor– LiTi2(PO4)3; ”Garnet”: Li7La3Zr2O12;
“Lipon”: lithium phosphorus oxynitride-Li2PO2N).
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landscape. In practice, however, this is extremely com-
putationally expensive, and optimization methods such as
particle-swarm optimization [49] and genetic algorithms [50]
are used as efficient shortcuts for energy-based crystal struc-
ture predictions. The space group and lattice parameters
obtained by CRYSPNet can be used in this pipeline both at
the start (filtering initial prototype structures) and during the
optimization process, in order to reduce the search space. This
can lead to potentially large savings in computational time.

Our tool can also be part of an alternative crystal struc-
ture prediction pipeline. From the stoichiometry and predicted
space group, symmetry-constrained atomic coordinates can be
randomly generated (see Appendix J). A set of such “virtual”
crystals can then be compared using DFT calculations or ML
tools for predicting the formation energy (for such ML tools
see, for example, Ref. [51]). The latter option is of particular
interest, since it opens the possibility of very fast and compu-
tationally cheap “ML-only” full crystal structure predictions.

CRYSPNet predictions can also be useful in experimen-
tal studies. Determining the crystal structure from XRD or
neutron scattering data is typically done using Rietveld re-
finement, which requires an initial set of parameters. To
obtain meaningful and reliable refined structure, it is im-
perative to start the optimization process from a reasonable
initial structure (the problem being multidimensional and non-
convex). This demands significant expertise and creates a
large user barrier. Since CRYSPNet does not provide atomic
coordinates, it cannot serve by itself as a replacement for
conventional methods for structure refinement. However, hav-
ing a good starting point (in the form of a predicted Bravais
lattice, space group, and lattice parameters), even without a
complete crystal structure, will certainly be beneficial. The
predictions made by CRYSPNet can considerably simplify the
problem and automate the process, either by constraining the
set of prototypes, or by helping generate a crystal with given
(predicted) space group and lattice parameters. The overall
benefit of using the tool for this purpose obviously depends
on the material system and the complexity of the structure.

To demonstrate the utility of CRYSPNet in this
context, we consider the complex rare-earth perovskite
La2(Al1/2MgTa1/2)O6. It has attracted attention recently
as a promising thermal coating material with significantly
improved thermal cycling lifetime (reducing the risk of catas-
trophic events like turbine failures) [52]. Yet, little was known
about its detailed crystal structure. For a long time, it was
assumed it is in an orthorhombic phase at room temperature
[53]. Very recently, however, a Rietveld refinement procedure
of a single crystal La2(Al1/2MgTa1/2)O6 XRD data based
on an orthorhombic space group found a strong mismatch
between observed and predicted Bragg peaks. Ultimately, a
monoclinic space group lead to a much better fit (for details,
see Ref. [52]). We used CRYSPNet to predict the crystal struc-
ture of La2(Al1/2MgTa1/2)O6; this material was only added to
ICSD in 2020, so it was clearly not in the train or test datasets.
CRYSPNet correctly gave the monoclinic P21/n (14) as the
most likely space group. Furthermore, the lattice parameters
predicted by the model (5.874„ 6.090, 7.878 Å, 91.6◦ for
a, b, c, β, respectively) are quite close, within 6%, to the
experimental values (5.569, 5.571, 7.870 Å, 90.07◦), except
for b, which the model overestimates by about 10%. Thus, the

use of CRYSPNet could have led to the correct identification
of the crystal structure much earlier, first by calling into ques-
tion the orthorhombic structure, and second, by providing a
good starting point for the Rietveld refinement. Note that this
could have been achieved without expensive DFT calculations
run by an expert.

In conclusion, we presented an ML tool, called CRYSPNet,
designed to predict the Bravais lattices, space groups, and
lattice parameters of inorganic solids. CRYSPNet is a
combination of several NN models; it was trained on more
than 100 000 existing compounds extracted from ICSD.
The performance of the tool depends significantly on the
exact composition of the training/validation subsets, with
the models doing notably better with metallic compounds
and high symmetry crystal structures. However, in all cases
CRYSPNet significantly outperforms trivial crystal structure
prediction strategies.

This work demonstrates that NNs (and, more generally,
ML models) provide a viable way to obtain fast, inexpensive,
and rational crystal structure predictions given only chemical
composition of materials. The relevance of such methods is
rapidly growing; the ability to confidently predict properties
and screen hitherto unexplored materials on a large scale is
becoming of paramount importance in materials science and
engineering. Reliable and accessible methods for structure
predictions should be an integral part of any rational materials
design. ML tools can be used for this role, both as stand-alone
predictors, or as a first step and a way to constrain the search
space of first-principles crystal structure computations.

CRYSPNet is freely available [54]. The Fastai library was
used as the basic toolbox to design the NN models [55].
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APPENDIX A: CONVERSION FROM HEXAGONAL TYPE
UNIT CELL TO RHOMBOHEDRAL TYPE UNIT CELL

The equation for converting the lattice parameter is shown
below:

ar = br = cr =
√

a2
h

3
+ c2

h

9
,

αr = βr = γr = cos−1

(
2c2

h − 3a2
h

2
(
c2

h + 3a2
h

))
,

where ar , br , cr , αr , βr , and γr are lattice parameters for rhom-
bohedral unit cell while ah and ch are the lattice parameters for
hexagonal unit cell.

APPENDIX B: SELECTION OF ENTRIES

Due to the fact that the ICSD contains multiple entries
with the same chemical composition but with different crystal

123802-12



CRYSPNet: CRYSTAL STRUCTURE PREDICTIONS VIA … PHYSICAL REVIEW MATERIALS 4, 123802 (2020)

structure, an additional algorithm was needed to determine
the most likely stable state at room temperature and ambient
pressure (the predominant condition for ICSD entries). An
external dataset with 83989 compounds from the Material
Project database was used for this purpose. The selection algo-
rithm is based on a score value that combines the abundance in
ICSD and the ground state formation entropy (Ehull, T = 0 K)
above the convex hull in the Material Project database. The
score for formula that coexist in ICSD and Material Project
database is computed as follows:

Score( f , s) = Abundance( f , s)

Ehull( f , s) + α
,

where α (= 0.1 in this paper) is a tunable parameter to balance
the formation energy term and abundance count from the
ICSD dataset, s is space group, and f is the chemical formula.
The Abundance( f , s) function counts the number of records
in ICSD that have the same chemical composition and space
group. The Ehull( f , s) function finds the lowest formation
energy above the convex hull for a given composition and
space group. If a given composition only exists in ICSD, the
score of its space group is taken as Abundance( f , s). The most
favorable space group is picked from the one with highest
Score( f , s). The most likely structure entry is selected as the
one with a unit cell volume closest to the median of unit cell
volume of entries in the favorable group.

After utilizing the information from ICSD and Material
Project dataset, for each chemical composition we were able
to select the entry that has a high abundance in space group
value, a low formation entropy, and a reasonable unit cell
size. To validate this algorithm, we picked 150 entries and
compared their Bravais lattice and space group with their
room temperature phases reported in literature. The accuracy
for the Bravais lattice is 90%, while the one of space group is
88%, which could be considered an excellent performance for
such a simple algorithm.

APPENDIX C: TIME EVOLUTION OF ICSD

ICSD data can be used to map the evolution of studies of
materials. To demonstrate the changes in the focus of mate-
rials research over time, we plot in Fig. 8 the numbers of
materials entries (both annual and cumulative) in ICSD for
each year. The rapid growth in the number of newly discov-
ered materials started early in the last century. In Fig. 8(b) we
show the distribution of materials in ICSD by the compounds
with different number of elements. As can be seen, the explo-
ration of materials shifted from binary materials in the early
days of 20th century to more complex systems after 1965. This
shift signifies two related developments in the study of materi-
als: the number of novel binaries was (nearly) exhausted, and
the advent of x-ray detectors enabled the analysis of complex
structures beyond binaries.

APPENDIX D: NEURAL NETWORKS ARCHITECTURE
AND TRAINING

The Fastai library was used as the basic toolbox to design
the NN models. This library provides a consistent and con-
venient application programming interface (API) for crating

FIG. 8. Time evolution of ICSD. (a) Cumulative and annual
number of materials entries which have been discovered since 1920.
(b) Relative abundance of materials grouped by the number of con-
stituent elements and normalized by the total amount of discovered
materials as a function of time.

and training NN models while remains highly customizable.
It integrates multiple best practices accumulated from a large
set of diverse deep learning applications. One of its tools is
a learning rate finder, which helps determining the highest
stable learning rate; this allows to reduce the training time and
to achieve better generalization (see Appendix H for details).
Cyclic learning rate policy (cycle length = 10 epochs) is also
used, both to accelerate and improve the stability of the train-
ing process (see Appendix I). A large batch size of 256 and
a large dropout probability of 0.1 were employed to enforce
better regularization on the models. Each model was trained
until the validation error converged. The Adam optimization
technique (β1 = 0.9, β2 = 0.999) was used to backpropagate
gradients and update weights of the neural network [56].

The size of each hidden layer of the NN model was
determined by hyperparameter optimization using the tree-
structured Parzen estimator approach and Median pruner
implemented by Optuna [57]. The exact architecture for the
models is shown in Fig. 9.

High variances and high biases were observed in the pre-
dictions of a single neural network. This was likely caused by
the selection of the training data and/or the stochastic nature
of the weight initialization and dropout function. Ensemble
learning with vertical voting was deployed to produce stable,
low variance, reproducible predictions [58]. Vertical voting
utilizes multiple models, trained on different datasets that
are randomly sampled from the original data; the outputs of
these models are averaged in order to produce a low variance
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FIG. 9. The general architecture of the neural network (NN) model for Bravais lattice, space group, and lattice parameters. Each color-
coded block represents a layer inside the NN. Model for all application share the same structure except the last output module. The softmax
function is used for Bravais lattice and space group predictions. The sigmoid function and a scaling factor are used for lattice parameters
prediction.

prediction. The equation for vertical voting is

P(x ∈ X ) = 1

M

M∑
i=0

P(x ∈ Xθi ),

where X is the set of Bravais lattices or space groups, θi rep-
resent the parameters of the i-th model, and M is the number
of models.

To mitigate the problem of class imbalance, oversampling
was applied to the minority classes. The model trained with
a dataset with oversampling shows fewer signs of confusion
for the minority classes, while remaining at a low validation
error. However, balancing oversampling is important since it
can lead to overfitting. Here, we choose the degree of over-
sampling by selecting the parameters that yields both low
cross-validation error and a small nondiagonal component in
the confusion matrix.

FIG. 10. True vs predicted lattice parameters for different Bravais lattices. (a) Cubic (F); (b) Cubic (I); (c) Cubic (P); (d) Hexagonal (P) (e)
Rhombohedral (P); (f) Tetragonal (I); (g) Tetragonal (P); (h) Orthorhombic (F); (i) Orthorhombic (I); (j) Orthorhombic (C); (k) Orthorhombic
(P); (l) Monoclinic (C); (m) Monoclinic (P); (n) Triclinic (P). The color bar shows the corresponding density of each bin.
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FIG. 10. (Continued).

APPENDIX E: TIME EVOLUTION WITH DBSCAN
(TIME-DBSCAN) ALGORITHM

The time-DBSCAN algorithm is performed by finding
and connecting nearby materials clusters in successive times-

tamps, which creates historical tracks of materials discovery.
First, t-SNE is used to reduce the dimensionality of all neu-
ral activations down to two. (We utilized the scikit-learn
implementation of t-SNE with parameters “n-component”
= 2, “perplexity” = 30). The entries are then grouped by
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FIG. 10. (Continued).

publication year. For each year, we apply DBSCAN clustering
algorithm (scikit-learn, “eps” = 0.05, “minimum samples”
=2) on the reduced neural activation to form materials clus-
ters. To connect clusters that are close together in this reduced
space, we defined a data structure called Link. A Link has
a center and population that are used to store and update its
location. In the beginning, Links are initialized by materials
clusters in the first group by equating their population and
center to the Links’ population and centers. After initializa-
tion, the algorithm runs through groups in each timestamp to
update those Links. In each step, we find the materials clusters
that are closed to one or more Links in Euclidean distance. To
include the nearby materials clusters, the center of each Link
is shifted to the population-weighted average of its center and
centers of the nearby materials clusters. After that the Link’s
population is increased accordingly. Materials clusters not
included in any existing Link are used to initialize new Links.
By repeating this process for each timestamp, the algorithm
develops a track of materials systems that share chemical and
structural similarity.

APPENDIX F: LATTICE PARAMETERS PREDICTIONS
FOR EACH BRAVAIS LATTICE CLASS

The actual lattice parameters vs lattice parameters predic-
tions from models trained on structures with the same Bravais
lattices are shown in Fig 10. The predictions of a perfect
model would lay on the diagonal line. The models’ perfor-
mance degrades with moving from predicting parameters of
high symmetry Bravais lattices (cubic, hexagonal) to predict-
ing parameters of low symmetry Bravais lattice (monoclinic,
triclinic).

APPENDIX G: EXAMPLES FROM SOME MATERIALS
CLUSTERS

In Table V we show examples from several of the materials
groups created by clustering the weights of the NN model
for the Bravais lattices. We provide the full list for the “11”
and “1111” clusters (related to the eponymous iron-pnictide
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FIG. 10. (Continued).

families) in the Supplemental Material [59]. Other lists are
available upon request.

APPENDIX H: LEARNING RATE FINDER

The basic mechanism of the learning rate finder is to de-
termine the largest learning rate that does not destabilize the

training. Given an arbitrary NN, the algorithm starts to train
the model at a very low learning rate and increments the learn-
ing rate after each training step. For each step, the NN uses
this learning rate to update its weight. The loss of each step
along with the current learning rate is recorded. An example
learning rate curve is shown in Fig. 11. A rule-of-thumb is to
choose the optimal learning rate with the second order derived
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FIG. 10. (Continued).

TABLE V. Compounds included in several clusters formed by
the DBSCAN method.

Compound Year entered in ICSD Materials group

Cuprate Superconductors and related materials
YBa2Cu3O6.6 1987 YBCO
ErBa2Cu3O6.12 1992 YBCO
Bi8Sr8Mn4O25 1989 BSCCO
Bi2Sr2YCu2O9.916 1991 BSCCO
LaBa2.4Cu3O8.6 1988 LBCO
La1.8Sr0.2Co0.5Cu0.5O3.95 1989 LSCO
HgBa2Ca0.4Eu0.6Cu2O7 1991 HBCCO
Tl1.5Ba2Ca2Cu2.1O8.8 1991 TBCCO

Fe-based Superconductors and related materials
LiCoAs 1968 111
NaFeAs 2009 111
LaOZnP 1998 1111
SmOFe0.96Ni0.04As 2010 1111
BaCo2As2 1981 122
BaFe2As1.06P0.94 2010 122
Fe1.125Te 1975 11
FeSe0.44Te0.56 2010 11

Solid Li-ion conductors and related materials
Na2Nd2Ti3O10 1994 LLTO
Er0.5Na0.5TiO3 1998 LLTO
Li5La3Nb2O12 2006 Garnet
Li8La18Fe5O39 2010 Garnet
NaTiGeP3O12 1993 NASICON
NaNbZrP3O12 1995 NASICON
Li3SO3N 2013 LIPON
Li2PO4Na a 2013 LIPON

so it is close to zero. We utilized this method to determine
the optimal learning rate of the NN models for Bravais lat-
tice, space group, and lattice constants. The learning rate of
1 × 10−2 was found to be a good fit for all models.

APPENDIX I: CYCLIC LEARNING RATE

The cycling learning rate policy is an important method to
achieve better generalization for less training time [60]. This

FIG. 11. Curve shows minibatch loss change as learning rate
changes in each training step. The red dot shows the recommended
learning rate.
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FIG. 12. Cyclic learning rate: (a). A typical learning rate schedule as the function of step in each cycle. (b) The adjustment in momentum
to accommodate the learning rate change. The cycle length is relative to the actual training iterations, meaning the actual cycle length is a
user-defined parameter.

FIG. 13. Histogram of cosine similarity of RDF between structure from ICSD and structures generated from three methods: generated
with all CRYSPNet prediction (“CRYSPNet Full”); generated with CRYSPNet’s space group prediction (“CRYSPNet Space Group”), and
generated only using the chemical formula (“Chemical Formula Only”). The highest possible similarity is 1. The CRYSPNet prediction is
limited to top-1 space group. (a) Fe2B2O5. (b) DyGa4Ni . (c) Gd2ZrS5. (d) RbCuSe4. The atomic positions for the crystal structures predicted
by CRYSPNet were generated using PyXtal.
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FIG. 14. Crystal structures of material from ICSD, crystal generation with all CRYSPNet prediction (“CRYSPNet full”); generated with
CRYSPNet’s space group prediction (“CRYSPNet space group”), and generated using the chemical formula (“Chemical formula only”). The
last one is randomly selected from samples with different space group symmetry. Structure of NaPt2 is plotted in a 3 × 3 supercell for a better
visualization. Structures rendered through VESTA. The atomic positions for the crystal structures predicted by CRYSPNet were generated using
PyXtal.

policy, similar to the learning rate finder methods, varies the
learning rate and momentum hyperparameter in each step of
the training loop. Figure 12 shows a typical schedule for one
cycle policy where the learning rate increases for half of the
cycle and decreases in the other half. The momentum is kept
inversely related to the learning rate, to balance the change
in the learning rate that causes the magnitude of gradient
accumulation to increase. The initial learning rate is chosen
small, in order to let the Adam optimizer to accumulate a
more stable momentum over the gradient. As the momentum

become stable, the learning rate is increased to speed up the
training process. In the end, the learning rate is gradually
reduced to prevent the model from overshooting the correct
solution, helping the model to fine tune to the minimum.

APPENDIX J: GENERATING ATOMIC POSITIONS

Although CRYSPNet does not predict atomic positions,
it could be used to guide the generation of complete crys-
tal structures by other tools. Compared to an unconstrained
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sampling of all possible atomic positions in coordinate space,
the symmetry information provided by our model drastically
limits the possible configurations to a set of allowed Wyckoff
positions for a given space group. Existing tools like PyXtal
[61] and USPEX [62] are able to utilize this information by
generating random crystals with a fixed space group and under
various lattice parameters constraints (such as the shape of the
unit cell). This is implemented by iteratively inserting atoms
to Wyckoff positions where the site multiplicity is allowed,
until all the interatomic distances are larger than some prede-
fined threshold.

To demonstrate how the use of CRYSPNet predictions can
significantly increase the probability of generating realistic
crystal structures, we created a pipeline by combining
our models with PyXtal. For a given chemical formula,
CRYSPNet predicts the most likely space groups and lattice
parameters, which are then used as constraints in the PyXtal
procedure for creating random crystal structures. We compare
this approach (denoted by “CRYSPNet Full”) with two other
methods: (i) structures generated utilizing the space group
prediction from CRYSPNet but without any lattice parameter
information (denoted as “CRYSPNet Space Group”); (ii)
structures generated only based on the chemical formula
and a random space group sampled uniformly from 1 to 230
(“Chemical Formula Only”). Within the first two approaches
we generate 100 structures. For the final, “Chemical Formula
Only”,method, we generate five structures for each space
group. To compare these virtual crystals with the target
structure in ICSD, we use the crystals’ radial distribution
function (RDF) implemented in the Matminer package [39].
The similarity between the ICSD target and all candidate
structures is estimated by the cosine similarity between
their RDF vectors. In Fig. 13, we show the histogram of

similarity to the ICSD target of the three ensembles for four
randomly selected ternary materials. As can be seen there,
the structures generated using CRYSPNet predictions tend to
be concentrated much closer to the real crystal structure than
the crystals generated without any constraints apart from the
chemical formula.

The use of CRYSPNet offers important advantages. In-
stead of exploring structures for every possible space group,
an approach using the results of our model allows a much
denser search focusing on a handful of likely space groups.
Alternatively, it can reduce the subsequent DFT formation
energy evaluation by decreasing the number of candidates
tenfold–100-fold for the same density of generated structures
per space groups. Also, notice the benefit of using CRYSP-
Net lattice predictions, which is especially pronounced for
low symmetry space groups with more lattice degrees of
freedom. One reason is the large ratios between lattice pa-
rameters a, b, and c commonly present in complex structures;
these are difficult to recover by randomly sampling from
Gaussian distributions of relative lattice vector lengths with
the same mean value (as done with PyXtal’s default set-
tings). Without any lattice information, this approach favors
the generation of pseudocubic structure and underrepre-
sents lattices with large aspect ratios. In contrast, the use
of correlations between different lattice parameters learned
by our model from ICSD data ultimately leads to struc-
tures with (on average) higher similarity to the target. In
addition, in some cases several of the generated struc-
tures in fact represent the real structure of the materials
with a slight variation of the lattice parameters (shown in
Fig. 14). These structures can be further rapidly relaxed using
DFT methods or refined based on experimental diffraction
data.
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