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Application of machine learning potentials to predict grain boundary properties in fcc
elemental metals
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Accurate interatomic potentials are in high demand for large-scale atomistic simulations of materials that
are prohibitively expensive by density functional theory (DFT) calculation. In this study, we apply machine
learning potentials (MLPs) in a recently constructed repository to the prediction of the grain boundary energy
in face-centered-cubic elemental metals, i.e., Ag, Al, Au, Cu, Pd, and Pt. The systematic application of machine
learning potentials shows that they enable us to predict grain boundary structures and their energies accurately.
The grain boundary energies predicted by the MLPs are in agreement with those calculated by DFT, although no
grain boundary structures were included in training datasets of the present MLPs.
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I. INTRODUCTION

Grain boundaries are interfaces between differently ori-
ented crystals of the same phase [1]. The microstructures of
grain boundaries can affect various properties of polycrys-
talline materials, including mechanical, thermal, and electrical
properties [2–5]. Thus, an attractive topic in materials science
has been to establish the relationship between the properties
of crystalline materials and grain boundary structures. Many
theoretical studies have been done to cover a broad range
of grain boundary structures and their excess energies. Early
fundamental studies employed pair potentials, such as the
Lennard-Jones and Morse forms, to investigate the generic
properties of grain boundaries such as the presence of cusps
in a map of the rotation angle and the grain boundary energy
[6–8]. Empirical interatomic potentials such as the Finnis-
Sinclair (FS) potentials [9] and embedded atom method
(EAM) [10] potentials have been widely used to investigate
symmetric and asymmetric grain boundaries of metallic mate-
rials. Quantitative predictions are becoming possible [11–20],
and strong correlations between theoretical and experimental
grain boundary energies have been shown, especially for grain
boundaries in elemental Al and Ni, which exhibit low grain
boundary energies [21,22]. However, the prediction error in
the grain boundary energy may be significant in grain bound-
aries showing higher grain boundary energies. This error
originates from the fact that their microscopic grain boundary
structures differ from the atomic environment used to estimate
interatomic potentials.

Density functional theory (DFT) calculation [23,24] is an
alternative way to predict grain boundary properties accu-
rately. However, DFT calculation is practically impossible
to apply to large-scale models of grain boundaries owing to
its computational cost. Therefore, interatomic potentials that
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enable us to predict grain boundary properties accurately have
been in high demand. Over the last decade, many groups
have proposed frameworks to develop machine learning po-
tentials (MLPs) based on extensive datasets generated by
DFT calculation [25–46]. The MLPs significantly improve the
accuracy and transferability of interatomic potentials. Also,
MLPs themselves are becoming available, such as those in
the Machine Learning Potential Repository [47] developed by
one author of this paper.

In this paper, we demonstrate the predictive power of
MLPs in the MLP repository for grain boundary properties.
We systematically evaluate the structures and excess ener-
gies of 〈100〉 symmetric tilt grain boundaries (STGBs), 〈110〉
STGBs, and 〈100〉 pure-twist grain boundaries in the face-
centered-cubic (fcc) elemental metals Ag, Al, Au, Cu, Pd,
and Pt. They are compared with those obtained from EAM
potentials and DFT calculations. The MLP repository contains
a set of Pareto optimal MLPs with different tradeoffs between
accuracy and computational efficiency; hence, we care-
fully determine appropriate MLPs to predict grain boundary
properties.

II. METHODOLOGY

A. Modeling and structure optimization of grain boundaries

Macroscopic structures of grain boundaries are charac-
terized by five geometrical degrees of freedom. We choose
three variables to specify the direction of the rotation axis
and the rotation angle, which describe the misorientation
between crystal lattices, and two variables to specify the di-
rection of the boundary plane normal [1]. For a given set
of macroscopic variables, the microscopic structure is asso-
ciated with three degrees of freedom regarding rigid body
displacements: two components parallel to the boundary plane
and one component normal to the plane. Hence, the globally
optimal microscopic structure for a given set of macroscopic
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variables is achieved by optimizing the three microscopic
variables in terms of potential energy.

In this study, we investigate only STGBs and pure-twist
grain boundaries. The periodicity of an STGB is identified
from the orthogonal projection of its coincident site lattice
(CSL) to its boundary plane. Also, the periodicity of a pure-
twist grain boundary is given by the orthogonal projection of
its displacement shift complete (DSC) lattice to its boundary
plane. Therefore, we restrict the ranges of the two in-plane
microscopic variables to a domain defined by the periodicity
of the grain boundaries.

We explore the globally optimal microscopic structure for
a set of macroscopic variables using a multistart method. The
multistart method involves local structure optimizations for a
given set of initial structures and regards the structure with
the lowest energy among the converged final structures as
the globally optimal structure. We use the conjugate gradient
method implemented in the LAMMPS code [48] for the local
structure optimizations. Initial microscopic structures are in-
troduced from a 4 × 4 grid for the two in-plane components
and a sequence for the component normal to the boundary
plane. In other words, one crystal is shifted relative to the
other crystal by a vector identified with an in-plane grid point
and a value from the sequence for the normal component.
For each initial microscopic structure, a calculation model
is generated using PYMATGEN [49]. This model contains two
parallel boundaries perpendicular to the c axis of the model,
separated by fcc layers corresponding to four repetitions of
a cell of the CSL. However, the local structure optimization
starting from some of the initial microscopic structures fails to
converge when using both the MLPs and the EAM potentials,
as shown in the next section. These structures are ignored in
finding the globally optimal microscopic structure. Note that
the optimization of the microscopic structure is performed
in the whole domain here, although it is more efficient to re-
strict the domain to its symmetrically nonequivalent domain.

B. Machine learning potentials

We employ MLPs in the Machine Learning Potential
Repository [47] developed by one author of this paper to
obtain the globally optimal microscopic structures of STGBs
and pure-twist grain boundaries. In the repository, a set of
Pareto optimal MLPs with different tradeoffs between accu-
racy and computational efficiency is available, from which
one can choose an appropriate MLP in accordance with the
target and purpose. Potential energy models of the MLPs are
either a polynomial model of Gaussian-type pairwise struc-
tural features or a polynomial model of polynomial invariants
for the O(3) group, which are derived by a group-theoretical
approach [50]. A brief description of the potential energy
models and the structural features used for developing the
MLPs is given in Appendix A.

The Pareto optimal MLPs in the repository have been
developed using a dataset generated from structure genera-
tors. For Ag, Al, Au, and Cu, we adopt the Pareto optimal
MLPs developed from a structure generator set composed of
the fcc, body-centered-cubic (bcc), hexagonal-close-packed
(hcp), simple cubic (sc), ω, and β tin structures. The dataset
is composed of 3000 structures constructed by introducing

random lattice expansion, random lattice distortion, and ran-
dom atomic displacements into a supercell of the equilibrium
structure for one of the structure generators. For Pd and
Pt, we employ another set of 82 prototype structures as the
structure generator set because the dataset derived from the
six structure generators is not available in the repository.
The dataset consists of 10 000 structures generated by the
same procedure as above. For all structures in the dataset,
DFT calculations were performed using the plane-wave-basis
projector augmented wave method [51] within the Perdew-
Burke-Ernzerhof exchange-correlation functional [52] as
implemented in the VASP code [53–55]. Note that the datasets
contain no structures generated from grain boundary models.

III. RESULTS AND DISCUSSION

First, we choose an accurate MLP requiring only a rea-
sonable computational time to investigate the whole set of
grain boundaries. A practical approach to selecting an MLP
from the whole set of Pareto optimal MLPs is to find an MLP
with high computational cost performance in terms of the
prediction error for a test dataset. It can be obtained from the
distribution of Pareto optimal MLPs shown in Appendix B.
Another practical approach is to examine the convergence
behavior of the target property in terms of the computational
cost using the whole set of Pareto optimal MLPs. We adopt
the latter approach to select an MLP in this study. Therefore,
we systematically calculate the grain boundary energies of
five grain boundaries using the whole set of Pareto optimal
MLPs for each elemental metal. They are the �5 〈100〉 STGB
(at 53.1◦), the �3〈110〉 STGB (at 70.5◦), the �3 〈110〉 STGB
(at 109.5◦), the �9 〈110〉 STGB (at 38.9◦), and the �5 〈100〉
pure-twist grain boundary (at 36.9◦), the calculation models
for which can be represented by a small number of atoms.

Figure 1 shows the convergence behavior of the grain
boundary energy in terms of the computational time, obtained
using the whole set of Pareto optimal MLPs. The grain bound-
ary energy is identical to the lowest energy among the grain
boundary energies of the microscopic structures. The grain
boundary energy of a microscopic structure is measured from
the energy of the equilibrium fcc structure. The computational
time corresponding to the model complexity of an MLP is
the elapsed time normalized by the number of atoms for a
single point calculation of the energy, the forces, and the stress
tensors [56]. As can be seen in Fig. 1, the grain boundary
energy converges well in all of the elemental metals and
grain boundaries. Consequently, successive calculations for
the whole set of grain boundaries are performed using the
MLP that requires the lowest computational time among the
MLPs showing convergence.

Table I lists the model parameters of the selected MLPs.
As a consequence of the convergence behavior, fast MLPs
are selected for Ag and Cu, while computationally expensive
MLPs are selected for the others. Table I also shows the
prediction errors for the datasets used in developing the MLPs.
The MLPs for Pd and Pt show significant prediction errors,
which originate from the fact that the datasets contain many
hypothetical structures such as the graphite-type structure.
Although the selected MLPs exhibit significant prediction
errors for such abnormal structures, they show much smaller
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FIG. 1. Grain boundary energies of �5 〈100〉 STGB at 53.1◦, �3 〈110〉 STGB at 70.5◦, �3 〈110〉 STGB at 109.5◦, �9 〈110〉 STGB at
38.9◦, and �5 〈100〉 pure-twist grain boundary at 36.9◦ for elemental Ag, Al, Au, Cu, Pd, and Pt, predicted using the Pareto optimal MLPs.
The grain boundary energies computed by DFT calculation are also shown by broken lines.

prediction errors for typical metallic structures, including
grain boundary structures, as shown above.

We also examine the transferability of the MLPs to the
prediction of the grain boundary structures and energies

because the datasets used in developing the MLPs con-
tain no grain boundary structures. Therefore, we evaluate
the grain boundary energies of the �3 〈110〉 STGB (at
70.5◦), the �3 〈110〉 STGB (at 109.5◦), the �9 〈110〉 STGB
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TABLE I. Model parameters of the MLPs used to estimate the grain boundary structures and energies. The identification of the feature
type, the model type, and the polynomial orders can be found in Appendix A.

Ag Al Au Cu Pd Pt

MLP-ID pair-44 gtinv-336 gtinv-111 pair-23 gtinv-722 gtinv-533
RMSE (energy) (meV/atom) 2.2 0.8 0.7 2.2 6.3 12.9
RMSE (force) (eV/Å) 0.010 0.008 0.012 0.013 0.097 0.172
Time (ms/step)/atom [56] 0.05 1.85 0.66 0.04 0.52 0.63
Number of coefficients 815 1100 475 285 500 1595
Feature type Pair Invariants Invariants Pair Invariants Invariants
Cutoff radius (Å) 7.0 8.0 6.0 7.0 6.0 6.0
Number of radial functions 15 15 10 10 5 5
Model type 2 3 3 2 4 2
Polynomial order (function F ) 3 3 3 3 2 2
Polynomial order (invariants) 3 3 3 3
Spherical harmonics truncation {l (2)

max, l (3)
max} [4, 4] [4, 4] [4, 0] [4, 2]

(at 38.9◦), the �5 〈100〉 STGB (at 53.1◦), and the �5 〈100〉
pure-twist grain boundary (at 36.9◦) by DFT calculation, and
compare them with those predicted using the MLPs. Figure 1
shows the DFT values of the grain boundary energy only for
the grain boundary structures, DFT calculations for which
converge successfully [57]. They are close to the grain bound-
ary energies of the selected MLPs. Therefore, the selected
MLPs should have high predictive power for grain boundary
structures and their energies even though no grain boundary
structures were used to develop the MLPs.

After confirming the transferability of the MLPs, we cal-
culate the energies of the grain boundary structures: 〈100〉
STGBs (�5, �13, �17, �25, �29, �41), 〈110〉 STGBs (�3,
�9, �11, �17, �19, �27, �33, �41, �43), and 〈100〉 pure-
twist grain boundaries (�5, �13, �17, �25, �29, �37, �41).
Most of them are represented by large-scale models, hence
they cannot be calculated by DFT calculation because of the
large computational resources required. The number of atoms
included in the grain boundaries ranges from 96 to 2112.
Figure 2 shows the optimized STGB structures of some
STGBs in Ag. Figure 3 shows the rotation angle dependence
of the grain boundary energy obtained using the MLPs and
EAM potentials [58–63]. The values of the grain boundary
energy in Al, Cu, and Pd computed using the MLPs are
consistent with those computed using the EAM potentials
and those computed by DFT calculation. Therefore, both the
MLPs and the EAM potentials have high predictive power for
the grain boundary structures and their energies. In Ag, Au,
and Pt, the values of the grain boundary energy computed
using the MLPs are almost the same as those computed by
DFT calculation, whereas they deviate from those computed
using the EAM potentials. The MLPs should be more reliable

than the EAM potentials for obtaining not only the grain
boundary structures and their energies but also the other defect
structures in Ag, Au, and Pt. Note that a fine sequence is
required for the component normal to the boundary plane
to obtain converged microscopic structures when using the
EAM potentials for Ag and Au. This implies that the EAM
potentials for Ag and Au lack accuracy for predicting the
potential energy surface around the globally optimal micro-
scopic structure.

For every grain boundary, the grain boundary energies in
Cu, Pd, and Pt are higher than those in Ag, Al, and Au, as
shown in Fig. 3. This trend can be qualitatively understood
by considering a simple approximation within the elasticity
theory. Using the Read-Shockley equation [65], the shear
stress component of the grain boundary energy is obtained by
integrating the contributions of dislocations distributed evenly
on the interface. Given the shear modulus G and cubic lattice
constant a, the excess energies of grain boundaries are approx-
imately proportional to a coefficient Ga. By employing the
Voigt averages calculated from the elastic constants of single
crystals [66], the coefficients for Ag, Al, Au, Cu, Pd, and Pt
are estimated as 1.3, 1.0, 1.2, 1.8, 1.8, and 2.2, respectively,
which are normalized by the coefficient for Al. They can be
classified into two groups, which is consistent with the grain
boundary energy trend.

IV. CONCLUSION

We have examined the predictive power of MLPs in an
MLP repository for grain boundary properties by systemati-
cally evaluating the grain boundary energy for 〈100〉 STGBs,
〈110〉 STGBs, and 〈100〉 pure-twist grain boundaries in the

FIG. 2. Optimized structures of (a) �5 〈100〉 STGB (at 53.1◦), (b) �13 〈100〉 STGB (at 67.3◦), (c) �3 〈110〉 STGB (at 70.5◦),
and (d) �33 〈110〉 STGB (at 20.0◦) in Ag. They are represented by 160, 416, 96, and 1056 atoms, respectively. They are visualized using
ATOMEYE [64], and colors are assigned to atoms according to their local von Mises shear strain invariant.
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FIG. 3. Rotation angle dependence of the grain boundary energy for 〈100〉 STGBs, 〈110〉 STGBs, and 〈100〉 pure-twist grain boundaries for
elemental Ag, Al, Ag, Cu, Pd, and Pt, predicted using the MLPs. For comparison, the grain boundary energies predicted using EAM potentials
for Ag [58,59], Al [60], Au [58,61], Cu [62], Pd [61], and Pt [61] are shown by open symbols. The grain boundary energies computed by DFT
calculation are also shown by crosses.

fcc elemental metals Ag, Al, Au, Cu, Pd, and Pt. In every
elemental metal, the values of the grain boundary energy
computed using the MLP are consistent with those computed
by DFT calculation. We emphasize that the training datasets

used to develop the MLPs contain no grain boundary struc-
tures. Therefore, the consistency indicates that the MLPs have
high predictive power for the grain boundary structures and
their energies. The present results also imply that the MLPs

123607-5



NISHIYAMA, SEKO, AND TANAKA PHYSICAL REVIEW MATERIALS 4, 123607 (2020)

in the repository, including those for other systems, should be
useful in accurately predicting grain boundary properties and
other complex defect properties.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scien-
tific Research (B) (Grant No. 19H02419) and a Grant-in-Aid
for Scientific Research on Innovative Areas (Grant No.
19H05787) from the Japan Society for the Promotion of Sci-
ence (JSPS).

APPENDIX A: POTENTIAL ENERGY MODELS

This section summarizes potential energy models used for
developing MLPs in the Machine Learning Potential Repos-
itory [47]. In MLPs of the repository, the short-range part of
the total energy for a structure is expressed by the sum of the
atomic energy. The atomic energy is given by a function of
invariants for the O(3) group [50,67] as

E (i) = F
(
d (i)

1 , d (i)
2 , . . .

)
, (A1)

where d (i)
n denotes a structural feature or an invariant derived

from order parameters representing the neighboring atomic
density of atom i. In the repository, a set of structural features
derived only from radial functions (feature type = pair)
and a set of polynomial invariants of the O(3) group derived
from radial and spherical harmonic functions (feature type
= invariants) are employed for developing MLPs.

The repository uses polynomial functions as function F
representing the relationship between the atomic energy and
a given set of structural features, D = { d1, d2, . . . }. The poly-
nomial functions with regression coefficients { w } are given

as follows:

F1(D) =
∑

i

widi

F2(D) =
∑

{i, j}
wi jdid j (A2)

F3(D) =
∑

{i, j,k}
wi jkdid jdk

...

A potential energy model is identified with a combination of
the polynomial functions and structural features.

In this paper, MLPs with the following four types of the po-
tential energy model are selected as listed in Table I, although
six types of the potential energy model have been introduced
in the repository. When a set of pairwise structural features is
described as D(i)

pair, the model (model type = 2, feature
type = pair) is a polynomial of the pairwise structural
features with their cross terms, expressed as

E (i) = F1
(
D(i)

pair

) + F2
(
D(i)

pair

) + F3
(
D(i)

pair

) + · · · . (A3)

The other three models are derived from the polynomial in-
variants. A set of the polynomial invariants is expressed by
the union of sets of pth-order polynomial invariants D(i)

p as

D(i) = D(i)
pair ∪ D(i)

2 ∪ D(i)
3 ∪ D(i)

4 ∪ · · · . (A4)

The model (model type = 2, feature type =
invariants) is given by a polynomial of the polynomial
invariants as

E (i) = F1(D(i) ) + F2(D(i) ) + F3(D(i) ) + · · · . (A5)

The model (model type = 3, feature type =
invariants) is the sum of a linear polynomial form of

( )

FIG. 4. Distribution of MLPs for Ag, Al, Au, Cu, Pd, and Pt [47]. The elapsed time for a single point calculation is estimated using a single
core of Intel® Xeon® E5-2695 v4 (2.10 GHz). The closed red circles show the Pareto optimal points of the distribution.
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the polynomial invariants and a polynomial of pairwise
structural features, described as

E (i) = F1(D(i) ) + F2
(
D(i)

pair

) + F3
(
D(i)

pair

) + · · · . (A6)

The model (model type = 4, feature type =
invariants) is the sum of a linear polynomial form of
the polynomial invariants and a polynomial of pairwise
structural features and second-order polynomial invariants.
This is written as

E (i) = F1
(
D(i)

) + F2
(
D(i)

pair ∪ D(i)
2

) + · · · . (A7)

APPENDIX B: PARETO OPTIMALITY

Figure 4 shows the Pareto optimal MLPs for elemental Ag,
Al, Au, Cu, Pd, and Pt. The distribution of MLPs is obtained
by a systematic grid search to find optimal parameters control-
ling the accuracy and computational efficiency. The prediction
error is estimated using the root mean square (RMS) error of
the energy for the test dataset. The computational efficiency
is estimated using the elapsed time to compute the energy, the
forces, and the stress tensors of a structure with 284 atoms.
The prediction error converges more slowly than the grain
boundary energy, which originates from the fact that the pre-
diction error is estimated from the test dataset composed of a
wider variety of structures.
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