NH₃ on anatase TiO₂(101): Diffusion mechanisms and the effect of intermolecular repulsion

Kræn C. Adamsen[®],¹ Esben L. Kolsbjerg,² Stig Koust,¹ Lutz Lammich,¹ Bjørk Hammer,²

Stefan Wendt¹,^{1,*} and Jeppe V. Lauritsen^{1,*}

¹Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark ²Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

(Received 6 July 2020; accepted 13 November 2020; published 1 December 2020)

We utilized scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations to study the diffusion of ammonia (NH₃) on anatase $TiO_2(101)$. From time-lapsed STM imaging, we observed monomeric and dimeric diffusion channels, and a general tendency to higher diffusion rates with increasing NH₃ coverage. In surface regions where several NH₃ molecules are adsorbed within a few sites, we further observed the diffusion of NH₃ molecules occurring in cascades, where the diffusion of one adsorbate triggers that of others. This eventually leads to apparent diffusion barriers that are lower than expected within a single-jump model. From the DFT calculations, we obtained mechanistic insights into the two observed NH₃ diffusion channels. Within the dimeric NH₃ diffusion channel, one NH₃ swings around another adsorbed NH₃ and experiences a reduced diffusion barrier, owing to the intermolecular bonding during the event.

DOI: 10.1103/PhysRevMaterials.4.121601

Titania (TiO₂) has numerous actual and potential applications in heterogeneous catalysis, sensors, photovoltaics, and solar-driven hydrogen production [1–3]. To improve the photoresponse of TiO₂, doping with nitrogen is a promising approach [4]. In this connection, the interactions of ammonia (NH₃) with various TiO₂ materials have been studied extensively [5–8]. The interaction of NH₃ with TiO₂ is also important for an improved understanding of selective catalytic reduction (SCR) catalysis to remove NO_x from exhaust gases [9,10] as well as the removal of NH₃ pollution from air and water [11].

Previous surface science studies of NH₃ on oxides have focused on the interaction with various rutile TiO₂ (r-TiO₂) surfaces [8,12–17]. These studies revealed that NH₃ adsorbs molecularly on r-TiO₂ surfaces, and NH₃ molecules are bound via their lone pairs to fivefold coordinated Ti (5f-Ti) atoms. Even r-TiO₂(110) surfaces with surface O vacancies do not lead to NH₃ dissociation [17]. Desorption energies were found to decrease from ~1.1 to 1.3 eV at low NH₃ coverage to ~0.6 eV at full monolayer (ML) coverage [14,17]. This coverage effect was traced back to repulsive NH₃ – NH₃ interactions [13,15,17].

Addressing the interaction of NH₃ with the technologically more relevant anatase TiO₂ (*a*-TiO₂), we recently reported about NH₃ adsorption on the most abundant (101) face [18]. The *a*-TiO₂(101) surface is well studied, and its interactions with a number of other relevant molecules have been investigated [19–23]. The *a*-TiO₂(101) surface is characterized by a sawtoothlike structure with ridges of twofold coordinated, bridging O atoms (O_{br}) along the $\langle 010 \rangle$ directions [19]. In addition to 5f-Ti sites, sixfold (fully) coordinated Ti sites (6f-Ti) also exist. Our previous study on NH₃ adsorption on *a*-TiO₂(101) revealed that isolated NH₃ molecules bind with an adsorption energy of ~1.2 eV to the 5f-Ti sites [18]. This NH₃ adsorption strength is weakened by ~0.28 eV as the coverage is increased to one ML (one ML is defined as the number of 5f-Ti sites, $5.16 \times 10^{14} \text{ cm}^{-2}$) [18], revealing strong repulsive interactions between NH₃ molecules on *a*-TiO₂(101).

So far, scanning tunneling microscopy (STM) studies addressing the diffusion of NH₃ barely exist. A low-temperature STM study reported on the motion of NH₃ molecules on Cu(100) induced by inelastic tunneling electrons [24], and STM diffusion studies on oxide surfaces have yet to be reported. Here, we use a combination of STM and density functional theory (DFT) to study the thermally activated diffusion of NH₃ on *a*-TiO₂(101). In some regions on the *a*-TiO₂(101) surface, we found cascadelike diffusion of NH₃ molecules that originates from NH₃ – NH₃ repulsion, as well as fast adsorbate diffusion as NH₃ dimers. As a result, the measured NH₃ hopping rates in these surface regions are greater than expected within a single-jump model. By means of DFT calculations, we unravel how NH₃ monomers and NH₃ dimers diffuse on *a*-TiO₂(101).

First, we discuss STM experiments [for experimental details, see the Supplemental Material (SM) [25]] conducted at room temperature (RT). The *a*-TiO₂(101) surface was exposed to NH₃ and subsequently inspected by STM. As shown in Figs. 1(a) and 1(b), NH₃ exposure at RT led to the appearance of isolated bright protrusions that are homogeneously distributed on the surface. These protrusions are ~ 1.2 Å high and appear in between the O_{br} rows. This is consistent with the predicted adsorption sites of NH₃ molecules being the 5f-Ti sites, and we assigned them to NH₃ molecules [18]. The NH₃ molecules appear in most instances as well-separated, isolated species. Specifically, they rarely occupy neighboring sites, which is consistent with the reported repulsion between NH₃

^{*}Corresponding authors: swendt@phys.au.dk, jvang@inano.au.dk

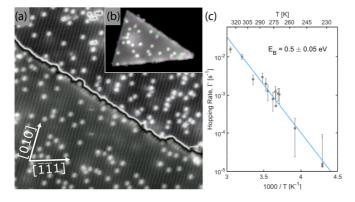


FIG. 1. (a) STM image (300 Å×300 Å; $V_S = +1.0V$; $I_T = 0.1nA$; RT) of the *a*-TiO₂(101) surface recorded following NH₃ exposure at RT. A repeated grayscale is used for the presentation of this image. The bright features on the terraces arise from NH₃ molecules. (b) Superposition of two sequential STM images from an STM movie (200 Å×200 Å) recorded within the same experiment. White protrusions are stationary NH₃ molecules. Five NH₃ diffusion events occurred: Diffused NH₃ molecules in the first (second) STM image are shown in green (pink). (c) Arrhenius plot of the NH₃ hopping rate Γ . For each point, we recorded STM movies and analyzed sequences of 50–100 STM images. The NH₃ coverage was 0.04–0.06 ML.

molecules [13,15,17,18]. The NH₃ coverage on this sample was ~ 0.05 ML, as found by analysis of the STM images.

Imaging the same area repetitively with rates up to three images per minute allowed us to record so-called STM movies. Movie M1 (see SM [25]) was recorded at RT and displays an apparent NH₃ hopping rate of $\sim 1 \times 10^{-3} \text{s}^{-1}$. As an example, Fig. 1(b) shows two overlapped consecutive images of Movie M1. In case there is no difference between the two images, the protrusions are presented in grayscale. Hopping events are indicated by color coding, whereby the original protrusion is shown in green and the new protrusion in pink (after the hopping event). In the presented example, there are five hopping events, three of them showing diffusion parallel to the O_{br} rows (in the $\langle 010 \rangle$ direction), and two across the O_{br} rows (in the $\langle 111 \rangle$ direction).

Because of the low NH₃ coverage of 0.04–0.06 ML, it was possible to trace the diffusion of individual NH₃ molecules. By marking all molecules in Movie M1 and obtaining their coordinates, we extracted the number of hopping events (frequency) and the total lengths of the diffusion path of each traced NH₃ molecule. The two dominating diffusion distances are 3.6 and 5.2 Å (shown in Fig. S1), which matches with the lattice distances along the $\langle 010 \rangle$ and $\langle 111 \rangle$ directions (parallel to and across the O_{br} rows, respectively). These two distances occur with nearly identical frequencies, indicating similar barriers for hopping in $\langle 010 \rangle$ and $\langle 111 \rangle$ directions.

To extract information on the NH₃ diffusion barrier, we studied NH₃/a-TiO₂(101) samples at temperatures between 233 and 328 K by recording STM movies. In this temperature range, the diffusion is dominated by single jumps, and it was possible to trace the diffusion pathways of individual NH₃ molecules. In an automated analysis process described in the SM [25], the NH₃ molecules were marked in the STM movies and their coordinates recorded. For the Arrhenius plot

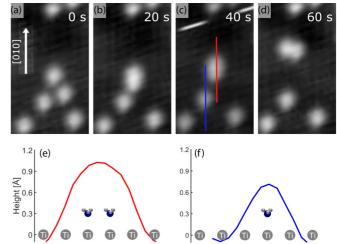


FIG. 2. (a)–(d) Sequence of STM images recorded at 130 K (50 Å×100 Å; 20 s/image), showing the formation, (a) \rightarrow (b), diffusion, (b) \rightarrow (c), and breakup, (c) \rightarrow (d), of an NH₃ dimer. (e), (f) STM height profiles along the lines drawn in (c). The profiles of an (e) NH₃ dimer and (f) NH₃ monomer are shown in red and blue, respectively. Within the dimer, two NH₃ molecules occupy nearest-neighbor 5f-Ti sites.

presented in Fig. 1(c), we used the hopping rate Γ [s⁻¹] regardless of the specific direction of the diffusion, i.e., we assumed that the diffusion barriers are identical in the $\langle 010 \rangle$ and $\langle 111 \rangle$ directions. This analysis yielded an energy barrier E_b of 0.5 ± 0.05 eV and a preexponential factor (attempt frequency) ν_0 of $t 10^6$ s⁻¹ [29].

To further study the diffusion of NH₃ on a-TiO₂(101), we lowered the temperature to 130 K, where single-jump hopping events are nearly frozen out. Surprisingly, we found evidence for rapid NH₃ diffusion through the formation of NH₃ dimers (see Fig. 2 and Movie M2 [25]). Previously, NH₃ dimer formation has been observed on Ru(0001) [30], but the diffusion of NH₃ dimers has yet to be investigated. In the lower part of the STM image depicted in Fig. 2(a), five separate monomeric NH₃ species can be seen. In the following STM image recorded within this movie [Fig. 2(b)], this situation changed such that two of the five NH₃ monomers formed a dimer-see the somewhat brighter protrusion close to the center of the STM image. Consider also that now only four species are located in this area. The newly created NH_3 dimer diffuses along the O_{br} row in the [010] direction several lattice distances [see Figs. 2(b) and 2(c)]. Finally, in Fig. 2(d), we again find five NH₃ monomers; thus, the NH₃ dimer dissociated into two NH₃ monomers. The two (new) NH₃ monomers close to the center in Fig. 2(d) are adsorbed farther away from the three stationary NH₃ monomers. The line profiles presented in Figs. 2(e) and 2(f) show that the NH₃ dimer is characterized by a larger STM height than the NH₃ monomer. In addition, we illustrate in Fig. 2(e) that NH₃ dimers form within the 5f-Ti rows along the (010) directions and that they are centered between two 5f-Ti sites. Note that diffusion of NH₃ dimers along the [111] direction (across the O_{br} rows) was not observed.

To model the two experimentally identified diffusion modes, we utilized DFT calculations (see SM [25] for details)

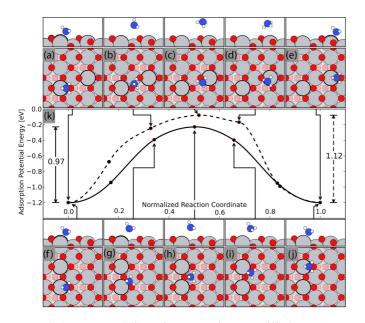


FIG. 3. DFT modeling of monomeric NH_3 diffusion. (a)–(e) Pathway across the O_{br} rows: Side and top views are shown. Surface O atoms (small red balls), bulk O atoms (small light red balls), and surface Ti atoms (large gray balls) are indicated. The initial and final 5f-Ti adsorption sites are highlighted by black circles. (f)–(j) Pathway parallel to the O_{br} rows. Presentation of the structures as in (a)–(e). (k) Corresponding energy landscapes. Diffusion pathways across (dashed line) and parallel to the O_{br} rows (solid line) are directly compared. Arrows point to the corresponding computed energies.

using a fully stoichiometric a-TiO₂(101) slab consisting of four TiO₂ trilayers, spanning 1×2 surface unit cells. We used the ASE package (ASE = atomic simulation environment) [31] in combination with the GPAW [32] DFT code. We employ the optB88-vdW functional [33] which is known to describe both hydrogen bonds and more dispersive interactions well.

Addressing monomeric NH₃ diffusion, Figs. 3(a)-3(e) shows the most favorable pathway for diffusion along the [111] direction, and Figs. 3(f)-3(j) illustrate the most favorable diffusion pathway along the [010] direction (parallel to the O_{br} rows). In each case, the initial and final 5f-Ti adsorption sites are marked by black circles. The corresponding energy landscapes are presented in Fig. 3(k).

In the case of diffusion of an NH₃ molecule across the O_{br} rows (along the [111] direction) [see Figs. 3(a)-3(e)], one of the H atoms of the NH₃ molecule forms a hydrogen bond to the O_{br} that is crossed [Fig. 3(b)]. Because of this, the NH₃ lone pair points into the vacuum [Figs. 3(c) and 3(d)] instead of to the surface, as is the case when adsorbed on a regular 5f-Ti adsorption site. Subsequently, the NH₃ molecule rolls over the O_{br} atom [Figs. 3(c) and 3(d)] before it reaches the next 5f-Ti site [Fig. 3(e)]. As can be seen in Fig. 3(k), this diffusion pathway is characterized by an energy barrier of 1.12 eV (dashed curve). The weakest bonding occurs when the NH₃ molecule rolls over the O_{br} atom [Fig. 3(c)].

In the case of NH₃ monomer diffusion *parallel* to the O_{br} rows (along the $[0\bar{1}0]$ direction) [see Figs. 3(f)–3(j)], the NH₃ molecule prefers a slightly curved pathway via the neighboring fully coordinated 6f-Ti site [Fig. 3(h)]. No "rollover"

occurs within this pathway. The NH_3 molecule is weakest bound when it passes the 6f-Ti site [Fig. 3(h)]. We found a barrier of 0.97 eV [see the solid curve in Fig. 3(k)], which is slightly lower than the one computed for NH_3 diffusion across the O_{br} row.

We further modeled the diffusion of NH₃ dimers on a-TiO₂(101) (see Fig. 4). Once formed, NH₃ dimers are very diffusive in the [010] direction (parallel to the O_{br} rows), as evidenced by the experimental observation of such movements at low temperatures (see Fig. 2). We identified two possible NH₃ dimer diffusion pathways in the [010] direction. In the starting configuration, two NH₃ molecules are adsorbed at neighboring 5f-Ti sites [Figs. 4(a) and 4(e)]. In each case, one NH₃ molecule is moving either "left" [Figs. 4(a)–4(d)] or "right" [Figs. 4(e)–4(h)] around the stationary NH₃ molecule. The stationary NH₃ molecule solely rotates and slightly shifts its position.

In case of the pathway right around the stationary NH₃ molecule, the moving NH₃ molecule tilts and forms a hydrogen bond to the stationary NH₃ molecule [see Fig. 4(b)]. The hydrogen bound NH₃ dimer can then rotate around the 5f-Ti site at which the stationary NH₃ molecule is adsorbed [Figs. 4(b) and 4(c)]. Finally, the moving NH_3 molecule has reached the 5f-Ti site on the other side of the stationary NH₃ molecule [Fig. 4(d)], i.e., the NH₃ dimer has diffused one lattice space in the $[0\overline{1}0]$ direction. As shown in Fig. 4(j) (dashed curve), this diffusion pathway is characterized by a barrier of 0.82 eV. The diffusion pathway left around the stationary NH₃ molecule [Figs. 4(e)-4(h)] proceeds analogously to the pathway right around the stationary NH₃ molecule. The computed diffusion barrier [see Fig. 4(j) (solid curve)] is with 0.75 eV a little lower than that for diffusion right around the stationary NH_3 molecule. For a direct comparison, Fig. 4(i) shows the two identified dimer diffusion pathways together (top view). In agreement with the experimental observations, we found by DFT modeling that NH₃ dimer diffusion is more facile than NH₃ monomer diffusion (0.75 - 0.82 eV vs) $0.97 - 1.12 \,\text{eV}$. This difference of the diffusion barriers is related to a strong hydrogen bond that forms upon diffusion between the two NH_3 within the dimer [34].

Comparing the experimental diffusion data presented in Fig. 1(c) with the computed diffusion barriers (Figs. 3 and 4), there seems to be a contradiction. Even if dimer diffusion would be entirely dominating, there is a difference of at least 0.25 eV between the experimentally (0.50 eV) and any of the theoretically deduced diffusion barriers. We attribute this difference (i) to repulsive interactions between adsorbed NH₃ molecules that become increasingly important when many NH₃ molecules are adsorbed in close proximity, and (ii) to the approximations made in the DFT simulations (see SM [25]).

We observed clear examples of repulsive interactions between adsorbed NH₃ molecules in STM movies recorded at RT, one of which is illustrated in Figs. 5(a)-5(f). Specifically, we found that NH₃ molecules are hopping much more frequently if their distances to each other are smaller than 10-13 Å (see Fig. S2). In Fig. 5(a), five separated NH₃ molecules are seen in the scanned area on *a*-TiO₂(101). Before the acquisition of this STM image, the imaged five NH₃ molecules did not move for ~120 s. Thus, at these specific

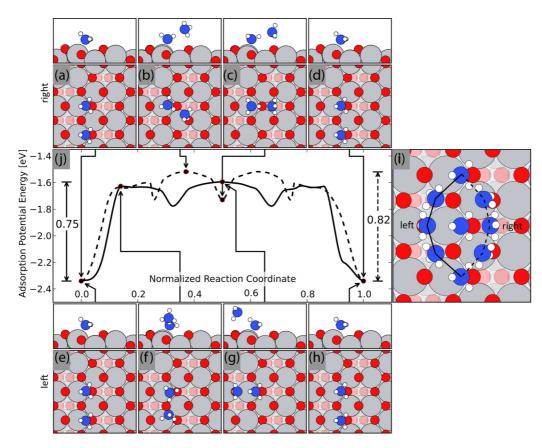


FIG. 4. DFT modeling of dimeric NH_3 diffusion parallel to the O_{br} rows. (a)–(d) The moving NH_3 molecule takes the pathway on the right around the stationary NH_3 molecule. Side and top views are shown. Presentation of the structures as in Fig. 3. (e)–(h) The moving NH_3 molecule takes the pathway on the left around the stationary NH_3 molecule. (i) Direct comparison of the two pathways (top view). (j) Diffusion energy landscapes. Dashed and solid lines correspond to the pathways on the right and left around the stationary NH_3 molecule, respectively. Arrows point to the corresponding computed energies.

adsorption sites, the nearest-neighbor distances between the NH_3 molecules (~12 Å and larger) were favorable (no strong repulsion). Then, suddenly three of the five NH_3 molecules

diffused several lattice distances [see Fig. 5(b)]. Presumably, a single diffusion event has occurred that triggered the diffusion of the other NH₃ molecules (diffusion in cascades). Following

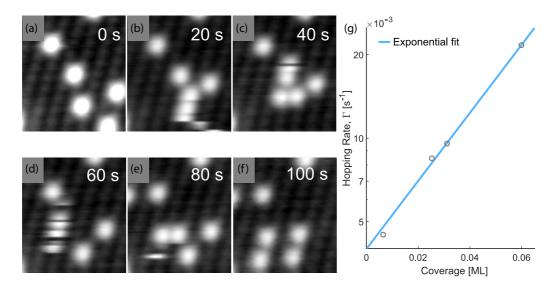


FIG. 5. (a)–(f) Sequence of STM images (40 Å×50 Å; 20 s/image) showing "cascade diffusion" of five NH₃ molecules at RT. The imaged five NH₃ molecules did not hop within 120 s (six images) prior to the image shown in (a). From image (a) to image (b), several hopping events occurred, and this cascade of hopping events of neighboring NH₃ molecules continued for ~100 s until in image (f), the five molecules reached an arrangement that persisted for four images (~80 s). (g) Hopping rate at RT as a function of the NH₃ coverage.

this, several further diffusion events were observed, leading to the different configurations in Figs. 5(c)-5(e), until the NH₃ molecules eventually settled in a new configuration [Fig. 5(f)] where all molecules are well separated. No diffusion occurred during the following 80 s.

To evaluate the influence of NH₃ coverage on the diffusion quantitatively, we recorded several STM movies at RT on samples where the coverage varied between 0.005 and 0.05 ML [see Fig. 5(g)]. The results show that the hopping rate Γ increases exponentially with increasing NH₃ coverage (notice the logarithmic scale). We explain this pronounced coverage effect on NH₃ diffusion by repulsion between NH₃ molecules. Accordingly, for a meaningful comparison of experimentally observed diffusion data with the computed diffusion barriers, the NH₃ coverages in the experiments must be very low. As soon as $NH_3 - NH_3$ repulsion comes into play, Γ increases because adsorbate arrangements with NH₃ - NH₃ distances larger than \sim 10–13 Å are clearly preferred. Our diffusion data summarized in Fig. 1(c) represent the collective measurement of thermally activated single-jump diffusion and diffusion events induced by repulsion.

For comparison, we also studied the diffusion of water dimers on *a*-TiO₂(101) (see Fig. S3). Fast diffusion of water dimers has been observed on Pd(111) [35], several other metallic surfaces (see Ref. [36] and references therein), and on rutile TiO₂(110) [37]. Indeed, we also observed the formation of water dimers on *a*-TiO₂(101) [25], and we find similarities between the diffusion behaviors of water and NH₃. As found for NH₃, the water dimers diffuse faster than monomers, and dimer diffusion occurs exclusively parallel to the O_{br} rows. The latter resembles the situation for water on rutile

- M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C 4, 145 (2003).
- [2] U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48, 53 (2003).
- [3] X. Chen and S. S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev. 107, 2891 (2007).
- [4] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293, 269 (2001).
- [5] O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates Jr., Photochemical activity of nitrogendoped rutile TiO₂(110) in visible light, J. Phys. Chem. B 108, 6004 (2004).
- [6] R. P. Vitiello, J. M. Macak, A. Ghicov, H. Tsuchiya, L. F. P. Dick, and P. Schmuki, N-Doping of anodic TiO₂ nanotubes using heat treatment in ammonia, Electrochem. Commun. 8, 544 (2006).
- [7] J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li, and N. Q. Wu, Origin of photocatalytic activity of nitrogen-doped TiO₂ nanobelts, J. Am. Chem. Soc. 131, 12290 (2009).
- [8] Y. K. Kim, S. Park, K. J. Kim, and B. Kim, Photoemission study of N-doped TiO₂(110) with NH₃, J. Phys. Chem. C **115**, 18618 (2011).

TiO₂(110). However, the water dimers on rutile TiO₂(110) are quite stable [37], whereas the dimers on a-TiO₂(101) split frequently again into monomers (see Fig. S3). Interestingly, the NH₃ dimers on a-TiO₂(101) are very short lived, too. Extending these findings, we believe that the diffusion of H-bonded molecule clusters on a selected surface resemble each other irrespectively of the specific adsorbate.

In summary, we utilized high-resolution STM and DFT calculations to study the diffusion of NH₃ on anatase $TiO_2(101)$. Via recording STM movies and conducting an Arrhenius analysis, we found an apparent diffusion barrier of ~ 0.5 eV at 0.05 \pm 0.01 ML NH₃ coverage. However, even at this low coverage, the diffusion of NH₃ can be affected by repulsive adsorbate interactions. In addition, we uncovered monomeric and dimeric NH₃ diffusion channels via STM. Short-lived NH₃ dimers form on the surface despite the repulsion between the NH₃ monomers. The NH₃ dimers diffuse clearly faster than the NH₃ monomers. Our DFT simulations provide detailed mechanistic insights into the NH₃ diffusion. In qualitative agreement with the STM experiments, the NH₃ dimer pathways are characterized by barriers that are ~ 0.22 eV lower in energy than the ones computed for NH₃ monomers (of ~ 1.0 eV). We anticipate that the gained knowledge on the diffusion of NH_3 on anatase $TiO_2(101)$ is useful for an understanding of the diffusion of NH₃ and other hydrogen-bonded adsorbates on oxide surfaces in general.

We acknowledge support from the Innovation Fund Denmark (IFD), File No. 6151-00008B (ProNOx), the Villum Fonden (Investigator grant, Project No. 16562), and Haldor Topsoe A/S.

- [9] G. Busca, L. Lietti, G. Ramis, and F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: A review, Appl. Catal. B 18, 1 (1998).
- [10] I. E. Wachs, Catalysis science of supported vanadium oxide catalysts, Dalton Trans. 42, 11762 (2013).
- [11] S. Yamazoe, T. Okumura, Y. Hitomi, T. Shishido, and T. Tanaka, Mechanism of photo-oxidation of NH₃ over TiO₂: Fourier transform infrared study of the intermediate species, J. Phys. Chem. C 111, 11077 (2007).
- [12] E. L. Roman, J. L. Desegovia, R. L. Kurtz, R. Stockbauer, and T. E. Madey, UPS synchrotron radiation studies of NH₃ adsorption on TiO₂(110), Surf. Sci. **273**, 40 (1992).
- [13] U. Diebold and T. E. Madey, Adsorption and electronstimulated desorption of NH₃/TiO₂(110), J. Vac. Sci. Technol. A 10, 2327 (1992).
- [14] E. Farfan-Arribas and R. J. Madix, Characterization of the acid-base properties of the TiO₂(110) surface by adsorption of amines, J. Phys. Chem. B **107**, 3225 (2003).
- [15] J. N. Wilson and H. Idriss, Reactions of ammonia on stoichiometric and reduced TiO₂(001) single crystal surfaces, Langmuir 20, 10956 (2004).
- [16] C. L. Pang, A. Sasahara, and H. Onishi, Scanning tunnelling microscopy study of ammonia adsorption on TiO₂(110), Nanotechnology 18, 4 (2007).

- [17] B. Kim, Z. J. Li, B. D. Kay, Z. Dohnalek, and Y. K. Kim, The effect of oxygen vacancies on the binding interactions of NH₃ with rutile TiO₂(110)-1×1, Phys. Chem. Chem. Phys. 14, 15060 (2012).
- [18] S. Koust, K. C. Adamsen, E. L. Kolsbjerg, Z. Li, B. Hammer, S. Wendt, and J. V. Lauritsen, NH₃ adsorption on anatase-TiO₂(101), J. Chem. Phys. **148**, 5 (2018).
- [19] U. Diebold, N. Ruzycki, G. S. Herman, and A. Selloni, One step towards bridging the materials gap: surface studies of TiO_2 anatase, Catal. Today **85**, 93 (2003).
- [20] Y. B. He, A. Tilocca, O. Dulub, A. Selloni, and U. Diebold, Local ordering and electronic signatures of submonolayer water on anatase TiO₂(101), Nat. Mater. 8, 585 (2009).
- [21] D. C. Grinter, M. Nicotra, and G. Thornton, Acetic acid adsorption on anatase TiO₂(101), J. Phys. Chem. C 116, 11643 (2012).
- [22] M. Setvin, B. Daniel, U. Aschauer, W. Hou, Y. F. Li, M. Schmid, A. Selloni, and U. Diebold, Identification of adsorbed molecules via STM tip manipulation: CO, H_2O and O_2 on TiO₂ anatase (101), Phys. Chem. Chem. Phys. **16**, 21524 (2014).
- [23] M. Setvin, M. Buchholz, W. Y. Hou, C. Zhang, B. Stoger, J. Hulva, T. Simschitz, X. Shi, J. Pavelec, G. S. Parkinson, M. C. Xu, Y. M. Wang, M. Schmid, C. Wöll, A. Selloni, and U. Diebold, A multitechnique study of CO adsorption on the TiO₂ anatase (101) surface, J. Phys. Chem. C **119**, 21044 (2015).
- [24] J. I. Pascual, N. Lorente, Z. Song, H. Conrad, and H.-P. Rust, Selectivity in vibrationally mediated single-molecule chemistry, Nature (London) 423, 525 (2003).
- [25] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevMaterials.4.121601 for Movies M1 and M2, experimental and computational details, the automated analysis process of the STM images (movies), diffusion distances extracted from Movie M1, histograms of moved and stationary NH₃ molecules at RT, the influence of the approximations made in the DFT simulations, and the diffusion of water dimers on *a*-TiO₂(101), which includes Refs. [26–28].
- [26] S. Koust, L. Arnarson, P. G. Moses, Z. Li, I. Beinik, J. V. Lauritsen, and S. Wendt, Facile embedding of single vanadium atoms at the anatase TiO₂(101) surface, Phys. Chem. Chem. Phys. 19, 9424 (2017).
- [27] G. Goubert, Y. Dong, M. N. Groves, J. C. Lemay, B. Hammer, and P. H. McBreen, Monitoring interconversion between stereochemical states in single chirality-transfer complexes on a platinum surface, Nat. Chem. 9, 531 (2017).

- [28] E. L. Kolsbjerg, M. N. Groves, and B. Hammer, An automated nudged elastic band method, J. Chem. Phys. 145, 9 (2016).
- [29] Compared to reported values for NH/r-TiO(110) [15,17], this preexponential factor is unusually low. We have carefully checked our data for possible reasons for this surprising result. For example, we tested whether NH₃ diffusion in cascades described below is a possible reason. The exact origin of the low preexponential factor needs further exploration.
- [30] S. Maier, I. Stass, J. I. Cerda, and M. Salmeron, Bonding of ammonia and its dehydrogenated fragments on Ru(0001), J. Phys. Chem. C 116, 25395 (2012).
- [31] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dulak, J. Friis, M. N. Groves, B. Hammer, C. Hargus *et al.*, The atomic simulation environment-a Python library for working with atoms, J. Phys.: Condens. Matter 29, 30 (2017).
- [32] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen *et al.*, Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method, J. Phys.: Condens. Matter 22, 253202 (2010).
- [33] J. Klimes, D. R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys.: Condes. Matter 22, 5 (2010).
- [34] The strong hydrogen bond between the NH molecules in the dimer leads to a relatively strong bond of the moving NH molecule and a low dimer diffusion barrier. In contrast, in case of NH₃ monomer diffusion, the NH₃ molecule experiences its weakest bonding when it is bound either to the O_{br} atom through its hydrogens, leaving its lone pair pointing into the vacuum, or to the fully coordinated 6f-Ti site via its lone pair. In these configurations, the NH₃ molecule is very loosely bound, resulting in high diffusion barriers that are close to the desorption energy (1.2 eV).
- [35] S. Mitsui, M. K. Rose, E. Fromin, D. F. Ogletree, and M. Salmeron, Water diffusion and clustering on Pd(111), Science 297, 1850 (2002).
- [36] W. Fang, J. Chen, P. Pedevilla, X.-Z. Li, J. O. Richardson, and A. Michaelides, Origins of fast diffusion of water dimers on surfaces, Nat. Commun. 11, 1689 (2020).
- [37] J. Matthiesen, J. Ø. Hansen, S. Wendt, E. Lira, R. Schaub, E. Lægsgaard, F. Besenbacher, and B. Hammer, Formation and Diffusion of Water Dimers on Rutile TiO₂(110), Phys. Rev. Lett. **102**, 226101 (2009).