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Mechanically stable sphere packings are generated in three-dimensional space using the discrete element
method, which spans a wide range in structural order, ranging from fully amorphous to quasiordered structures,
as characterized by the bond orientational order parameter. As the packing pressure p varies from the marginally
rigid limit at the jamming transition (p ≈ 0) to that of more robust systems (p � 0), the coordination number
z follows a familiar scaling relation with pressure, namely, �z = z − zc ∼ p1/2, where zc = 2d = 6 (d = 3 is
the spatial dimension). While it has previously been noted that �z does indeed remain the control parameter
for determining the packing properties, here we show how the packing structure plays an influential role on the
mechanical (elastic) properties of the packings. Specifically, we find that the elastic (bulk K and shear G) moduli,
generically referred to as M, become functions of both �z and the structure, to the extent that M − Mc ∼ �z.
Here, Mc are values of the elastic moduli at the jamming transition, which depend on the structure of the packings.
In particular, the zero shear modulus, Gc = 0, is a special feature of fully amorphous packings, whereas more
ordered packings take larger positive values, Gc > 0. The finite Gc > 0 in the ordered packings excites acoustic
vibrations which add to floppylike modes controlled by �z and enhance the plateau in the vibrational density of
states.
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I. INTRODUCTION

Many previous studies (e.g., Refs. [1–4]) have established
peculiar mechanical and vibrational properties of disordered
particulate systems close to the jamming transition. The elas-
tic (bulk K and shear G) moduli, generically referred to as
M, follow power-law scalings with the packing pressure p,
and in particular, the shear modulus continuously vanishes
when approaching the transition, as G ∼ p1/2. Additionally,
the vibrational density of states (vDOS) exhibits a charac-
teristic plateau above the frequency ω∗, which goes to zero,
following a power-law scaling of ω∗ ∼ p1/2. These critical
behaviors of M and ω∗ can be explained by “isostaticity,”
where the excess contact number �z = z − zc (zc = 2d is an
isostatic number and d is the spatial dimension) is a central
parameter for controlling the material properties [5–9]. Both
the shear modulus G and the frequency ω∗ are linearly scaled
by �z ∼ p1/2, i.e., G ∼ �z and ω∗ ∼ �z. Interestingly, the
same scaling laws were also found in dimer packings [10–12].

Similar to disordered systems, even ordered particulate
systems are shown to exhibit critical scaling laws near the
jamming transition [13–18]. A seminal work [13] system-
atically modified the structure of the system by introducing
“disorder” and studied the effects of structural modifica-
tions on the distributions of the contact number and contact
force. More recently, Goodrich et al. [14] demonstrated that
although perfectly ordered crystals never show any critical
behavior, only a small amount of disorder is enough to make
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the system behave as a highly disordered system. In addi-
tion, Tong et al. [15] modified the structure by introducing
a polydispersity η and controlling η and established a phase
diagram in the packing pressure (p) and the polydispersity (η)
plane that identifies three phases, i.e., the crystal, disordered
crystal, and amorphous phases. They demonstrated that even
disordered crystals, which maintain an ordered lattice struc-
ture, show critical scaling behaviors near the jamming. Most
recently, Tsekenis et al. [16,17] showed that such disordered
crystals exhibit a power-law scaling in force and gap distri-
butions and a plateau in the vDOS, as do fully amorphous
systems. Finally, using a model of perceptron [19], Ikeda
[18] theoretically demonstrated that even weakly disordered
crystals show jamming scaling laws. Therefore, it is now es-
tablished that even ordered (but not perfectly ordered) systems
behave as highly disordered systems and show the critical
scaling laws near the jamming transition.

However, in this paper, we will demonstrate that struc-
tural properties also play an influential role in determining
the material properties of the systems. We analyze jammed
particulate systems composed of monodisperse, frictionless,
Hookean particles. We prepare a wide range of structures,
ranging from fully amorphous to quasiordered structures,
which are distinguished by the orientational order parameter,
Q6 = 0.0 (disordered) to 0.5 (ordered) [20]. For Q6 = 0.0,
the system is highly disordered, whereas the crystallinelike,
ordered, lattice structure is observed for Q6 = 0.5 (see Fig. 1).
In this situation, the material properties of the systems gener-
ally depend on the packing pressure p as well as the structure
Q6. We observe that the excess contact number �z is always
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FIG. 1. Static structures in sphere packings for different values
of Q6. The packing pressure is p = 4 × 10−6. We present the radial
distribution function g(r) in (a) and the static structure factor S(q) in
(b).

scaled as �z ∼ p1/2, regardless of the value of Q6. Our main
result is that the elastic moduli, M = K (bulk modulus) and G
(shear modulus), are described as functions of �z and Q6:

M(�z, Q6) = Mc(Q6) + αM�z, (1)

where Mc = Kc, Gc are critical values at the jamming tran-
sition, and αM = αK , αG are constants (independent of both
�z and Q6). Therefore, M − Mc ∼ �z is controlled by �z
only and shows the same critical scaling regardless of the
structure Q6. However, structural effects appear in Mc at the
transition, and a shear modulus that is equal to zero Gc = 0
is a special feature of disordered packings [21–24]. For qua-
siordered packings, the shear modulus becomes finite and
positive, Gc > 0. We will also show that this difference in Gc

is reflected in the vibrational states of the systems.

II. SIMULATION MODEL

A. System preparation

Our system is composed of N = 1000, monodisperse, fric-
tionless particles with a mass m and diameter σ in three (d =
3) dimensional space under periodic boundary conditions. The
particles interact via a finite-range, purely repulsive, harmonic
potential, which has been employed in many previous simula-
tions (e.g., Refs. [1–4]):

φ(r) =
⎧⎨
⎩

k

2
(σ − r)2 (r < σ ),

0 (r � σ ),
(2)

where r is the distance between two particles, and k pa-
rameterizes the particle stiffness and sets an energy scale

through ε = kσ 2. Throughout this paper, we use σ , m, and
τ = (m/k)1/2 as units of length, mass, and time, respectively,
i.e., we set σ = m = k = τ = ε = 1.

We prepare sphere packings with different structures,
which are characterized by the orientational order parameter,
Q6 = 0.0 (disordered) to 0.5 (ordered) [20]. Here, we use
a protocol with thermal quenching from liquid conditions,
which has been employed as “Protocol 1” in Ref. [25]. Briefly,
we prepared equilibrated liquid configurations at a high tem-
perature of T = 10−3 and then quenched them to a very low
temperature, T = 10−16, by changing the cooling rate. The
slower rate creates more ordered configurations (the larger
Q6), whereas the faster rate leads to disordered packings (the
smaller Q6).

These packings are then put into the “packing finder”
(compression/decompression routine) [1] and brought to the
jamming transition point (where the pressure is p ≈ 10−8). Fi-
nally, we generate the final configurations at several different
packing pressures p by compressing the systems from the jam-
ming transition. Here we always remove the rattler particles
that have fewer than d = 3 contacting neighbors, which does
not alter material properties in the harmonic approximation
limit. We note that the excess contact number defined “without
rattlers” is a central parameter for controlling the material
properties [1–9]. A total of 100 configuration realizations are
prepared at each p and each Q6, and the values of the physical
quantities presented below (e.g., the elastic moduli M) are
obtained by taking the average of these 100 realizations.

B. Structural characteristics

Figure 1 presents the radial distribution function g(r) in (a)
and the static structure factor S(q) in (b) for different Q6 val-
ues and a pressure of p = 4 × 10−6. In the case of Q6 = 0.0,
we see a highly disordered structure [26]. However, as Q6 in-
creases toward 0.5, the system becomes a more ordered state.
Indeed, we can clearly observe sharp peaks in g(r), which
is a feature of the crystallinelike, ordered, lattice structure.
Additionally, S(q) shows clear enhancement of the long-range
spatial correlation at small wave numbers q. From the g(r) at
Q6 = 0.5, which exhibits the peaks at r � 1,

√
2,

√
3, 2, ...,

we conclude that the face-centered cubic (FCC) crys-
talline structure is developed in the present quasiordered
systems.

In addition, Fig. 2 shows the probability distribution of
the unit bond vector ni j of connected particles i and j.
Here, we define the bond vector as ni j = (nx

i j, ny
i j, nz

i j ) =
(cos φi j sin θi j, sin φi j sin θi j, cos θi j ) and show the joint prob-
ability distribution P(θi j, φi j ) (see Ref. [23] for details).
For the case of Q6 = 0.0 in (a), we clearly observe a ran-
dom, isotropic distribution, P(θi j, φi j ) = (1/2π )(sin θi j/2)
[21–24]. In contrast, for the ordered case of Q = 0.5 in (b),
the distribution is completely different from this random dis-
tribution. The pronounced values in P(θi j, φi j ) imply ordered
structures, which is consistent with the indication of g(r) and
S(q).

III. RESULTS

In the present work, we study the mechanical (elastic)
and vibrational properties of disordered (Q6 = 0.0) to ordered
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FIG. 2. Probability distribution function P(θi j, φi j )
of the orientation angles of the unit bond vector ni j =
(cos φi j sin θi j, sin φi j sin θi j, cos θi j ) for Q6 = 0.0 in (a) and
Q6 = 0.5 in (b). Note 0 � φi j < 2π and 0 � θi j � π . The packing
pressure is p = 4 × 10−6. The solid lines demonstrate the random,
isotropic distribution, which coincides well with P(θi j, φi j ) for the
Q = 0.0 (disordered) case.

(Q6 = 0.5) systems and clarify their dependences on the Q6

value. The elastic moduli, the bulk K and shear G moduli,
are calculated by using the “harmonic formulation” [23,27]
(detailed formulations are given in Appendix). In this formu-
lation, we can calculate elastic moduli without applying any
explicit deformation field. Note that the elastic moduli are
composed of two components, the affine moduli which are
defined by imposed affine deformation and the nonaffine mod-
uli which come from additional nonaffine response [23,27].
Additionally, we diagonalize the Hessian matrix to obtain
vibrational eigenmodes and calculate the vDOS, g(ω), and its
characteristic frequency ω∗. Figure 3 plots the elastic moduli,
K, G, excess contact number, �z = z − zc, and frequency ω∗
as functions of the packing pressure p for different Q6 values.

A. Excess contact number �z

We first look at the contact number and find that it takes
the value of zc = 2d (1 − N−1) ≈ 2d = 6.0 at the transition,
regardless of the structural properties (Q6). Then, the excess
contact number, �z = z − zc, follows the same power-law
scaling, �z ∼ p1/2, for all of the studied Q6 values [see
Fig. 3(c)]. We note that perfectly ordered crystals can not
show such critical behavior. However, quasiordered systems,
which are not perfectly ordered but exhibit crystalline lattice

structures, as shown in Fig. 1, can show the scaling law
of �z ∼ p1/2. This observation is consistent with previous
simulation results [14,15]. Reference [14] found that only
a small amount of disorder makes the system behave as a
highly disordered system to exhibit the jamming scaling law.
Additionally, Ref. [15] demonstrated that for the case in which
polydispersity produces spatial fluctuations in the distribution
of the contact number, even the system with ordered lattice
structure shows critical scaling.

B. Elastic moduli M = K, G

In Figs. 3(a) and 3(b), we clearly observe that the elastic
moduli K and G depend on the structural properties Q6. Par-
ticularly, when approaching the jamming transition as p → 0,
the shear modulus G vanishes continuously, following G ∼
p1/2, in a fully amorphous state of Q6 = 0.0, whereas it con-
verges to a finite value for the ordered cases with Q6 > 0. We
also plot K and G as functions of �z instead of p, in Figs. 4(a)
and 4(b) (symbols). As validated below, we can describe K
and G as functions of �z and Q6 [Eq. (1)]:

K (�z, Q6) = Kc(Q6) + αK�z,

G(�z, Q6) = Gc(Q6) + αG�z, (3)

where αK � 0.11 and αG � 0.04 are constants.
To validate Eq. (3), Fig. 4 plots K − K0 in (c) and G − G0

in (d) as functions of �z − �z0, where the subscript “0”
denotes values at the lowest pressure, p = 4 × 10−7. Both
K − K0 and G − G0 conveniently collapse on a single curve
as a function of �z − �z0 for different Q6 values:

K − K0 = αK (�z − �z0),

G − G0 = αG(�z − �z0), (4)

which determine the values of αK � 0.11 and αG � 0.04. In
Figs. 4(a) and 4(b) (lines), we also plot Eq. (3) to the numer-
ical data of K and G by using fixed values of αK � 0.11 and
αG � 0.04 and adjusting the values of Kc and Gc. Equation (3)
(lines) fits well to the numerical data (symbols) for all the Q6

cases, where Kc and Gc are determined as functions of Q6, as
plotted in Fig. 5. These results validate Eq. (3) for both of the
elastic moduli K and G.

Equation (3) separates the dependences of K and G on
the excess contact number �z from those on the structure
Q6. Interestingly, the scaling behaviors of K − Kc and G − Gc

are both only controlled by �z, regardless of Q6. This result
indicates that the isostaticity [5–9] controls the mechanical
(elastic) properties near the jamming transition, regardless
of whether the systems are disordered or ordered systems.
However, structural effects emerge for critical values of Kc

and Gc at the transition.
Figure 5 plots Kc and Gc as functions of Q6. The bulk mod-

ulus Kc decreases as Q6 increases from Q6 = 0.0 (disordered)
to 0.5 (ordered). In contrast, the shear modulus Gc increases
with increasing Q6. These tendencies of a more ordered sys-
tem with a smaller bulk modulus and larger shear modulus are
also observed in atomic glasses [28]. The zero critical value
of Gc = 0 is a particular feature of fully amorphous packings
(Q6 = 0.0), which is based on the random and isotropic distri-
bution of the bond vectors between the particles in contact [see
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FIG. 3. Dependences on the packing pressure p of the quantities for different Q6 values. We plot the (a) bulk modulus K , (b) shear modulus
G, (c) excess contact number �z = z − zc, and (d) characteristic frequency in vDOS, ω∗, as functions of p. The lines represent power-law
scalings with respect to p. The error bars in (a)–(c) are calculated from 100 configuration realizations.

Figs. 2(a)]. A detailed discussion on this point is given in our
previous work [23]. In contrast, for quasiordered packings,
the bond distribution is neither random nor isotropic [see
Figs. 2(b)], which produces the finite value of Gc > 0.

C. Vibrational density of states

Next, the vDOSs are studied for different structures Q6.
Figure 6 shows the g(ω) for different values of Q6 = 0.0 to
0.5. In previous simulations [1,2], the vDOS has been studied
in the case of Q6 = 0.0 (disordered packings). As shown in
Fig. 6(a), g(ω) shows the characteristic plateau, where the
vibrational eigenmodes show floppylike motions [4]. The on-
set frequency of the plateau ω∗ is controlled by the excess
contact number �z [5–9]. Upon approaching the transition,
ω∗ vanishes, following the power-law scaling of ω∗ ∼ �z.

Here, we can recognize the plateau even in ordered pack-
ings up to Q6 = 0.5, as shown in Figs. 6(b)–6(d). Most recent
simulations [16,17] also demonstrated a plateau in g(ω) of
polydisperse crystalline systems. We note that the plateau in
g(ω) is enhanced for order packings, as discussed below, but
the characteristic frequency ω∗ can still be defined for all the
cases of Q6 = 0.0 to 0.5. Figure 3(d) plots ω∗ as a function
of p and demonstrates ω∗ ∼ p1/2 and thus ω∗ ∼ �z for all Q6

cases.
One noteworthy point is that the plateau in g(ω) is en-

hanced as the system becomes more ordered with larger Q6

values. As demonstrated in Figs. 3 to 5, the shear modulus Gc

becomes finite, not vanishing, in ordered packings. This finite

shear modulus excites some amount of transverse acoustic
modes at low frequencies, which enhances the plateau value
of g(ω). Therefore, for ordered packings, acoustic modes
controlled by the shear modulus G add to the floppylike
modes controlled by the excess contact number �z, whereas
for disordered packings, the acoustic modes vanish and the
floppylike modes are dominant.

We note that the plateau in g(ω) is closely related to the
so-called boson peak which is observed in the reduced form
of vDOS, g(ω)/ω2 [29–32]. The boson peak frequency ωBP at
which g(ω)/ω2 takes a maximum value was reported to be
lower than ω∗ but follow the same scaling law of ω∗, i.e.,
ωBP ∼ ω∗ ∼ �z [33]. Also, it was proposed that the boson
peak (and so the plateau) is controlled by the local elastic
moduli fluctuations [34–36]. The relevant length scales in
the local moduli distributions (and the boson peak) can be
extracted from particles’ displacement field in the local elastic
response [37–39] or the nonaffine elastic response [40–42],
which could be studied for the present quasiordered systems
in the future.

IV. CONCLUSION

In summary, we have studied particulate systems near the
jamming transition by varying their structural properties from
fully amorphous to quasiordered structures. We found that
“excess” elastic moduli, �M = M − Mc (M = K, G), follow
the scaling law of �M ∼ �z, regardless of whether there are
ordered or disordered structures. However, the critical values
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of Mc at the transition depend on the structure. As the system
becomes more ordered, the bulk modulus Kc decreases while
the shear modulus Gc increases. In particular, the zero shear
modulus Gc = 0 is the nature of fully amorphous packings,
while ordered packings have a positive shear modulus of
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FIG. 5. Dependences on the structure Q6 of the critical values of
the elastic moduli Kc (upper panel) and Gc (lower panel). The inset
to the lower panel plots Gc on the log scale.

Gc > 0. A characteristic plateau in the vDOS and the onset
frequency following ω∗ ∼ �z are observed, which are again
common between disordered and ordered systems. However,
for ordered packings, the finite shear modulus Gc > 0 induces
transverse acoustic modes which add to the floppylike modes
controlled by �z and enhance the plateau in the vDOS.

Our results demonstrate that the scaling laws of the
mechanical (elastic) and vibrational properties, which are
controlled by �z, are independent of the structural prop-
erties. This is consistent with the theoretical predictions of
Refs. [5–9], which do not assume a specific structure type.
However, what we found here is that critical values of Kc

and Gc are controlled by the structural properties. The shear
modulus only vanishes at the transition for disordered packing
but not for ordered packings.

The present work and previous studies [13–18] have es-
tablished that quasiordered systems can behave as highly
disordered systems. It would be interesting to investigate
how quasiordered systems share the material properties of
disordered systems. For example, recent studies [33,43–45]
unveiled the existence of localized vibrational modes in dis-
ordered systems and their vDOS following g(ω) ∼ ω4. In
particular, it was found that the localized modes are controlled
by the excess contact number near the jamming transition
[5,6,9,46]. Another anomalous property could be the elastic
response [37–42], sound attenuation [47–52], and anharmonic
(nonlinear) properties, including thermal activation [53–55],
contact change [56–58], and plastic events [59–63]. We may

115602-5



MIZUNO, SAITOH, AND SILBERT PHYSICAL REVIEW MATERIALS 4, 115602 (2020)

 0

 0.2

 0.4

 0.6

10-3 10-2 10-1 100

g
(ω

)

(a)

ω

 0

 0.2

 0.4

 0.6

10-3 10-2 10-1 100

g
(ω

)

(b)

ω

 0

 0.2

 0.4

 0.6

10-3 10-2 10-1 100

g
(ω

)

(c)

ω

 0

 0.2

 0.4

 0.6

10-3 10-2 10-1 100
g
(ω

)

(d)

ω

FIG. 6. The vDOS for different Q6 values. We plot g(ω) as a function of the frequency ω for Q6 = 0.0 in (a), 0.1 in (b), 0.3 in (c), and
0.5 in (d). Lines of different colors represent different packing pressures, p = 4 × 10−3 (red), 4 × 10−4 (blue), 4 × 10−5 (orange), 4 × 10−6

(green), and 4 × 10−7 (purple), from right to left.

expect that quasiordered systems share many of these proper-
ties and phenomena, which could be addressed in the future.
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APPENDIX: HARMONIC FORMULATION
OF ELASTIC MODULI

Here we briefly describe the harmonic formulation of elas-
tic moduli, which is given in e.g., Refs. [23,27]. We start with
the total energy of system E ,

E =
∑
(i, j)

φ(ri j ), (A1)

where the summation
∑

(i, j) runs over all the pairs of inter-
acting particles i and j, and ri j is distance between those
particles. The elastic modulus is then formulated as the second
derivative of E with respect to the corresponding strain.

The elastic modulus, M = K, G, has two components, the
affine modulus, MA = KA, GA, and the nonaffine modulus,
MN = KN , GN , such that

M = MA − MN . (A2)

The affine modulus MA is formulated as the second derivative
of the energy E with respect to the homogeneous affine strain
εM , εM = εK for volume-changing bulk deformation and εM =

εG for volume-preserving shear deformation;

MA = 1

V

∂2E

∂εM
2

= 1

V

∑
(i, j)

∂2φ(ri j )

∂εM
2

, (A3)

where V is the volume of system. Specifically, when we use
the Green-Lagrange strain for εM , then MA is formulated as
the so-called Born term;

KA = 1

V

∑
(i, j)

(
φ′′(ri j ) − φ′(ri j )

ri j

)
ri j

2

9
,

GA = 1

V

∑
(i, j)

(
φ′′(ri j ) − φ′(ri j )

ri j

)
rx

i j
2ry

i j
2

ri j
2

, (A4)

where φ′(ri j ) and φ′′(ri j ) represent first and second derivatives
of φ(ri j ) with respect to ri j , and rx

i j, ry
i j, rz

i j are Cartesian
coordinates of ri j , i.e., ri j = (rx

i j, ry
i j, rz

i j ).
On the other hand, the nonaffine modulus MN is formulated

in terms of the Hessian matrix H , as

MN = 1

V
(�M · H−1 · �M ), (A5)

with

�M = − ∂2E

∂εM∂r
= −V

∂σM

∂r
, (A6)

where r = [r1, r2, ..., rN ] (3N-dimensional vector) represents
configuration of particles, σM = (1/V )(∂E/∂εM ) is the conju-
gate stress to the strain εM that is the (negative) pressure σM =
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−p for εM = εK , and the shear stress σM = σs for εM = εG;

p = − 1

V

∂E

∂εK
= − 1

V

∑
(i, j)

φ′(ri j )
ri j

3
,

σs = 1

V

∂E

∂εG
= 1

V

∑
(i, j)

φ′(ri j )
rx

i jr
y
i j

ri j
. (A7)

Since �M can be also written as

�M = ∂F
∂εM

, (A8)

where F = −∂E/∂r is the interparticle force field acting on
the N particles, �M means the field of forces which arise from

an elementary affine deformation εM . In amorphous solids,
�M generally causes a force imbalance on particles, leading
to an additional nonaffine displacement field of the particles,
δRnaM , which is formulated as the linear response to the force
field �M ;

δRnaM = H−1 · �M . (A9)

The nonaffine modulus MN is therefore the product of those
two vector fields, �M and δRnaM ;

MN = 1

V
(�M · δRnaM ), (A10)

which is interpreted as an energy relaxation during the non-
affine deformation.
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