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Mesoscopic structure of mixed type domain walls in multiaxial ferroelectrics
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The structure of a 180 ° uncharged rotational domain wall in a multiaxial ferroelectric film is studied in the
framework of an analytical Landau-Ginzburg-Devonshire (LGD) approach. Finite element modeling (FEM) is
used to solve numerically the system of the coupled nonlinear Euler-Lagrange (EL) second-order differential
equations for two components of polarization. We show that the structure of the domain wall and corresponding
metastable or stable phase of the film are controlled by a single parameter—the dimensionless ferroelectric
anisotropy factor μ. We fitted the static profile of a solitary domain wall, calculated by FEM, with kinklike
functions for polarization components, and extracted the five μ-dependent parameters from the fitting to FEM
curves. The surprisingly high accuracy of the fitting results for two polarization components in the entire μ

range allows us to conclude that the analytical functions, which are trial functions in the direct variational
method, can be treated as a high-accuracy variational solution of the static EL equations. We further derive
exact two-component analytical solutions of the static EL equations for a polydomain 180 ° domain structure
in a multiaxial ferroelectric film. Using these, we derive analytical expressions for the system free energy and
analyze its dependence on the film thickness and boundary conditions at the film surfaces. The single-domain
state is ground for zero polarization derivative at the surfaces, while the polydomain states minimize the system
energy for zero polarization at the surfaces. Counterintuitively, the energy of the polydomain states split into
two levels, “0” and “1,” for zero polarization at the surfaces, and each of the levels contains a large number of
close-energy sublevels, whose structure is characterized by a different number and type of domain walls. The
analytical solutions can become a useful tool for Bayesian analysis of high-resolution scanning transmission
electron microscopy images in ferroelectric films.

DOI: 10.1103/PhysRevMaterials.4.114410

I. INTRODUCTION

Multiaxial ferroelectrics are one of the most fascinating
representatives of materials with multiple interacting order
parameters and key objects for fundamental exploration of
nonlinear and cooperative phenomena at micro, nano, and
atomic scales [1–4]. These materials undergo a temperature-
driven phase transition accompanied by the appearance of a
spontaneous polarization vector [5,6]. The spatial distribu-
tion of the spontaneous polarization is often characterized by
a complex morphology of domain structure [7–10] and its
nontrivial temporal evolution [11,12]. This interest is further
stimulated by multiple applications in extant and emerging
technologies in industrial, medical, and consumer sectors,
including transducers, filters, sensors, ultrasonic motors and
actuators, electronics, and information storage [13,14].

Theoretical modeling and practical control of the domain
structure in multiaxial ferroelectrics is interesting from the
fundamental viewpoint and also is important for many ap-
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plications [5,6,15–20], but it is strongly complicated due to
a wide range of contributing physical processes [21]. These
involve interaction of domain walls with lattice potential bar-
riers [22], point and planar defects [23–25] including charged
acceptor/donor impurities and vacancies [26,27], electric and
elastic dipolar defects [28–30], twin and grain boundaries
[31], as well as screening conditions at surfaces and interfaces
[32,33]. In ferroelectric thin films and their multilayers, which
are intriguing objects of fundamental research and promis-
ing materials for nanoelectronics, decreasing the thickness
usually leads to the ferroelectricity suppression and critically
influences on the domain structure dynamics [34–36].

Seminal theoretical studies devoted to the structure of
mixed Ising-Bloch-type [37,38] and Ising-Bloch-Néel-type
[39,40] rotational domain walls in multiaxial ferroelectrics
have been performed using the continuum Landau-Ginzburg-
Devonshire (LGD) theory [41,42] implemented to the finite
element modeling (FEM) or phase-field algorithms [18]. The
approach allows obtaining accurate numerical results. How-
ever, due to the very complex nature of the above-mentioned
phenomena, the analytical theory of domain structure
thermodynamics and kinetics is in multiaxial ferroelectrics
thin films is studied only weakly, with exceptions for several
special cases [43–45]. Partially this dearth of studies has been
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related to the lack, until recently, of direct information on
domain-wall structure.

Recently, the emergence of the high-resolution scanning
transmission electron microscopy (HR STEM) has allowed
direct insight into the structure of ferroelectric domain walls
and interfaces at the atomic level. Enabled by the pioneering
work by Jia and co-workers [46–48], Chisholm et al. [49],
Nelson and co-workers [50,51], Das et al. [52], and others
[53–55] over a decade ago, the direct studies of domain-wall
structures have become common. It has been shown that
the comparison of the experimentally observed domain-wall
profiles with the functional forms derived from analytical the-
ory allows determination of the Landau-Ginzburg functional
parameters, such as gradient terms and boundary condi-
tions at the interfaces [56,57]. Very recently, this approach
was extended towards the Bayesian context and the con-
ditions for reliable elucidation of the unknown physics of
materials system [58,59]. However, the availability of high-
quality experimental data necessitates further development
of high-veracity universal analytical models for domain-wall
structure.

To fill the gap in the knowledge, here we consider the
dynamics of a 180 ° uncharged rotational domain wall in
a miltiaxial ferroelectric film within the framework of the
analytical LGD approach (see Sec. II). FEM is used to
solve numerically the system of the coupled nonlinear Euler-
Lagrange (EL) differential equations of the second order for
two components of polarization (see Sec. III). Next, using
the LGD approach, we derived and analyzed the analytical
solutions of the static EL equations for a polydomain 180 °
domain structure in a multiaxial ferroelectric film, which
contain enough free parameters to satisfy arbitrary boundary
conditions at the film surfaces (see Sec. IV). We analyze the
domain state free-energy dependence on the film thickness
and boundary conditions. Section V illustrates how the ana-
lytical solutions can be used for a Bayesian analysis of HR
STEM data in thin ferroelectric films. Section VI is a brief
summary. Calculation details of analytical solutions and free
energy with renormalized coefficients obtained by the direct
variation method are listed in Appendixes A and B, respec-
tively, in the Supplemental Material [62].

II. PROBLEM FORMULATION

Here we consider a stress-free ferroelectric film (or layer)
under the absence of free charges in it, and assume that
the polarization vector P of the ferroelectric has a specific
structure leading to the absence of a depolarization field,
namely divP = 0. The assumption corresponds to the case
of uncharged domain walls, and is consistent with the ideal
screening at the interfaces. However, in the general case the
depolarization fields will be present. External field is absent,
since we are interested in a domain structure relaxation to a
static equilibrium picture.

Without electrostriction and flexoelectric coupling, the ex-
plicit expressions of LGD energy density for polarization P
has the form

G =
∫

(gL + ggrad )dv +
∫

gSds. (1a)

FIG. 1. The geometry of a considered multiaxial ferroelectric
film with polarization vector P(x3) = {P1(x3), P2(x3), 0}. The film
is regarded thick enough, namely its thickness L � Rc, where Rc is
a correlation length.

Expressions for Landau (gL), gradient (ggrad), and sur-
face (gS) energies in the ferroelectrics with the second-order
paraelectric-ferroelectric phase transition are

gL = aiP
2
i + ai jP

2
i P2

j − PiEi,

ggrad = gi jkl

2

∂Pi

∂x j

∂Pk

∂xl
, (1b)

gS = aS
i

2
P2

i ,

where summation is performed over all repeated indexes. As
a rule, the coefficients ai linearly depend on the tempera-
ture T, ai = aTi(T − TC ); other coefficients are temperature
independent, but can be affected by elastic strains via elec-
trostriction effect [5,6]. The surface energy coefficients aS

i are
prior unknown because they depend on the surface/interface
chemistry.

Dynamic equations of state follow from the variation of
action S,

S =
∫ ∞

0
dt

∫ [
gL + ggrad − ρi

2

(
∂Pi

∂t

)2]
dv. (2)

The coefficient ρi > 0 in the kinetic term, ρi

2 ( ∂Pi
∂t )2.

Below we consider the two-component and one-
dimensional case, when the polarization vector P(x3) depends
only on the coordinate x3 that is normal to the film surface
(see Fig. 1). The vector structure P(x3) = {P1(x3), P2(x3), 0}
is consistent with the absence of depolarization field, since
divP ≡ 0 in the case.

The coupled time-dependent EL equations obtained from
the variation of the action (2), allowing for the Landau-
Khalatnikov relaxation [60], acquire a relatively simple form:

2a1P1 + 4a11P3
1 + 2a12P1P2

2 − g44
∂2P1

∂x2
3

= −ρ1
∂2P1

∂t2
− �

∂P1

∂t
, (3a)

2a1P2 + 4a11P3
2 + 2a12P2P2

1 − g44
∂2P2

∂x2
3

= −ρ1
∂2P2

∂t2
− �

∂P2

∂t
, (3b)

where ρ1 > 0 is the kinetic coefficient, and � > 0 is
the Khalantikov coefficient. Below we assumed m3m
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cubic symmetry of the high-temperature phase, i.e.,
gL = ∑

i, j �=i(a1P2
i + a11P4

i + a12P2
i P2

j − PiEi ). We note
that a11 > 0, a12 > −2a11, g44 > 0, g11 > 0, and aS

1 � 0 for
the system stability; and consider negative coefficients
a1 < 0 corresponding to the bulk ferroelectric state
at T < TC .

The nonlinear coupled equations (3) are supplemented by
boundary conditions at the film surfaces x3 = ∓ L

2 :

(
Pi − λ1

∂Pi

∂x3

)∣∣∣∣
x3=−L/2

= 0,

(
Pi + λ2

∂Pi

∂x3

)∣∣∣∣
x3=+L/2

= 0, i = 1, 2. (4a)

Here the so-called extrapolation lengths [46,61], λi =
aS

i /g44, are introduced. The geometric sense of λi is shown
in Fig. S1a in the Supplemental Material [62] (see also figures
in Ref. [61]). The influence of the boundary conditions (4a)
on the polarization distribution is significant only in the near-
surface layers of thickness several correlation lengths, Rc =√−g44/(2a1), and is almost independent on the λi value.
Also, the influence of λi value on the polarization energy
decreases with the film thickness proportionally to the ratio
Rc/L, since it is a typical surface effect [35,36]. In result,
for thick films the number of domain walls and domains
mainly contribute to the free energy, and the surface energy
contribution vanishes as 1/L.

Further let us consider the case λ1 = λ2 = λ � 0 corre-
sponding to the equivalent film surfaces and positive surface
energy (e.g., we regard that aS

1 = aS
2 � 0 for the system stabil-

ity). It can be seen from Figs. S1b–S1d of the Supplemental
Material [62] that the same value of λ corresponds to the
solutions, which contain different numbers of domains and
can be of different parity, e.g., “even” with Pi(− L

2 ) = Pi(+ L
2 )

and ∂
∂x3

Pi(− L
2 ) = − ∂

∂x3
Pi(+ L

2 ), or “odd” with Pi(− L
2 ) =

−Pi(+ L
2 ) and ∂

∂x3
Pi(− L

2 ) = ∂
∂x3

Pi(+ L
2 ). Allowing for the

well-known circumstance that different (meta)stable states
with different numbers of domains have different en-
ergy, the number of domains can be controlled by initial
conditions.

For very thick films with L � 102Rc the conditions (4a)
have very little influence on the number of domains, which
are determined by initial conditions, and therefore one of-
ten needs to impose some additional conditions on the
polarization components, consistent with the initial con-
ditions. Such conditions are the conditions of periodicity
or antiperiodicity for every polarization component and its
derivative:

Pi

(
−L

2

)
= ±Pi

(
+L

2

)
,

∂

∂x3
Pi

(
−L

2

)
= ∓ ∂

∂x3
Pi

(
+L

2

)
, i = 1, 2. (4b)

Here the sign “+” corresponds to the periodic, and the sign
“−” to the antiperiodic boundary condition. The sign choice
is individual for each component.

Note that the boundary conditions (4a) and (4b) are far
from equivalent, and so a smooth transition between them
is absent in a general case. As a matter of fact, Eqs. (4a)
are obtained from the variation of the surface and bulk free
energy, and contain its parameters aS

i (since λi = aS
i /g44). To

the best of our knowledge Eqs. (4b), which do not contain
any information about the surface energy coefficients, can-
not be derived from the variational principle. Equations (4b)
are additional conditions, which are imposed on the solu-
tion to minimize the surface role. Actually, the (anti)periodic
conditions allow us to simulate an infinite crystal using
a small computation region {− L

2 , + L
2 }. This approach is

widespread in quantum-mechanics problems using periodic
(or “cyclic”) Born-Karmann boundary conditions for the so-
lution of Schrödinger equation and in DFT calculations. In
Appendix A of the Supplemental Material [62] we show that
the conditions (4a) with arbitrary extrapolation lengths are
more general that the conditions (4b). The full compatibility
between boundary conditions (4a) and (anti)periodic condi-
tions (4b) exists for the case λ1 = λ2 = λ � 0 considered in
the paper. Other types of solutions, e.g., the solutions with
mixed parity and without definite parity, can be realized for
the cases λ1 = −λ2 = λ > 0 and λ1 �= −λ2, respectively. For
these cases the boundary conditions (4a) are incompatible
with the conditions (4b).

The first integral of the system (3) is I (x) = gL − ggrad. The
conservation of this dynamic invariant, I (x) = const, means
that the system tendency to lower the domain-wall energy
(coming from the gradient energy ggrad) is compensated by the
ferroelectric nonlinearity energy (coming from the Landau en-
ergy gL). For FEM simulations, initial distributions are taken
either in the form of a random small-amplitude polarization,
or in the form of a solitary domain wall with superimposed
random fields, or in the form of a small-amplitude sinusoidal
modulation.

III. EQUILIBRIUM STRUCTURE OF TWO-COMPONENT
DOMAIN WALLS

A. Finite element modeling of a solitary domain wall

Here we analyze the structure of the equilibrium uncharged
180 ° domain walls in the second-order ferroelectric, which
are relaxed solution of Eqs. (3). To analyze the domain-wall
structure, we introduce the dimensionless coordinate x, film
thickness l , polarization components p1 and p2, ferroelectric
anisotropy factor μ, relaxation time τ, and kinetic coefficient
ρ:

x = x3

Rc
, l = L

Rc
, p1 = P1

PS
, p2 = P2

PS
,

μ = a12

2a11
, τ = − �

a1
, ρ = −ρ1

a1
. (5)

Here PS = √−a1/(2a11) is the spontaneous polarization
value, and Rc = √−g44/(2a1) is a correlation length (see
Appendix A in the Supplemental Material for details
[62]). For multiaxial perovskite-type ferroelectrics with
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ferroelectric Curie temperature >400 K (e.g.,
BaTiO3, (Pb, Zr)TiO3, BiFeO3, etc.), the val-
ues PS = (0.25 − 1) C/m2 and Rc = (0.2 − 2)
nm at room temperature (see Table SI in
Appendix A [62]). Thus, the dimensionless thickness l = 100
corresponds to sufficiently thin films with l = (20 − 200) nm.
The anisotropy factor μ varies from −0.2 to +4.5 and, as a
rule, is temperature-independent (except for, e.g., BaTiO3; see
Table SII [62]).

In fact, we postulated that the continuum media LGD
approach is valid, and, using it, solved Euler-Lagrange equa-
tions. The only criteria for the quantitative validity of the
LGD approach is the scale of continuous calculations—a
correlation radius Rc, which is equal to

√−g44/(2a1) for
the ferroelectric with the second-order phase transition. Rc is
temperature dependent since a1 = αT (T − TC ). The apparent
domain-wall width is calculated numerically or analytically
in Rc units. The scale Rc can be written in the form Rc =
R0

√
TC/(TC − T ), where R0 = √

g44/(2αT TC ) and T < TC .
Rc must be more that several lattice constants for semiquanti-
tative validity of LGD approach [36]. When 2Rc well exceeds
ten lattice constants LGD results become quantitatively valid.
Since Rc is minimal at T = 0 K and diverges at T → TC ,
its minimal value R0 defines the ranges of LGD approach
validity far from TC . The value αT TC are well known and
tabulated for most inorganic perovskite ferroelectrics. How-
ever, since the gradient coefficients gi jkl demonstrate a wide
discrepancy (from 1 to 2 orders of magnitude) from indirect
experiments, such as HR STEM and piezoresponse force mi-
croscopy (PFM) measurements of the apparent domain-wall
width in pristine and doped ferroelectrics, grown in the form
of single crystals or sintered in the form of thin films, and
the values of gi jkl calculated from DFT can strongly vary in
sign and magnitude, the discrepancy of R0 is rather strong (see
Table SI and references therein [62]). The reason for this dis-
crepancy can be dopants (cations or vacancies), elastic strains
in thin films, and oxygen octahedra tilt in antiferrodistortive
perovskites.

It is seen from Table SI [62] that 2R0 is not less than a
lattice constant (0.4 nm) for all cases, but can be very close to
the value for g44

∼= 10−10 C−2m3 J and a1
∼= 107 C−2 J m/K

questioning the applicability of LGD approach for the cases.
However, a surprising conclusion has been made in several
papers, which compares the domain-wall profiles, measured
experimentally or/and calculated from DFT and LGD. It ap-
peared that LGD is still applicable quantitatively for Ising,
Ising-Néel, Ising-Bloch-type walls in PbTiO3, when 2Rc is
about one lattice constant (see, e.g., Figs. 11 and 12 in
Ref. [40]). LGD is certainly valid for the case of the purely
Bloch-type walls in BaTiO3, as their width reaches the value
of about several nanometers even far from the paraelectric-
ferroelectric phase-transition point (see, e.g., Refs. [37,38]
and Fig. 6 for 250 K < T < 350 K in Ref. [42]), and BiFeO3

(compare Figs. 2 and 4 with Figs. 6–8 in Ref. [9]). Besides
these examples for classical perovskites PbTiO3, BaTiO3, and
BiFeO3, the modern material science and advanced nanotech-
nology allow us to tailor a great versatility of synthetized
ferroelectric materials (both classical and exotic), whose
gradient energy parameters (determining g44) and the ratio
“anisotropy/exchange” (determining μ) can vary in a very

wide range. Since we are mainly interested in the Bloch-Ising
domain-wall structure and obtained analytical solutions for
the case, the above examples and facts give us solid grounds
for applying LGD theory in a wide temperature range without
any concrete reference to concrete material.

The dimensionless EL equations, obtained from dynamic
Eqs. (3), have the form

−ρ
∂2 p1

∂t2
− τ

∂ p1

∂t
= − ∂2

∂x2
p1 − p1 + p3

1 + μp1 p2
2, (6a)

−ρ
∂2 p2

∂t2
− τ

∂ p2

∂t
= − ∂2

∂x2
p2 − p2 + p3

2 + μp2 p2
1. (6b)

To study the polarization relaxation to a stable or
metastable state, we set ρ = 0 and chose the calculation
time tmax much higher than the time τ of the polarization
relation to an equilibrium state, e.g., tmax � 100 τ . Initial
distribution of polarization used in FEM is chosen in the form
of a solitary Ising-type domain wall perturbed by a small
fluctuation:

p1(x, t = 0) = p0 tanh

(
x

b

)
+ δp1(x),

p2(x, t = 0) = δp2(x), (7a)

where the random fluctuation |δp1,2(x)| 
 |p0|.
The boundary conditions (4a) in the dimensionless vari-

ables acquire the form(
p1

λ1
∓ ∂ p1

∂x

)∣∣∣∣
x=∓l/2

= 0,

(
p2

λ2
∓ ∂ p2

∂x

)∣∣∣∣
x=∓l/2

= 0. (7b)

Here 1
λi

= aS
i

g44Rc
(i = 1, 2) are the dimensionless inverse

extrapolation lengths, which are not negative, and can vary
in a very wide range, 0 � λi < ∞, due to uncertainty of
available experimental parameters. For the case 1

λi
> 0 and

l < 100, either a solitary domain wall or a periodic domain
structure appears after the polarization relaxation to an equi-
librium state. In this work we mostly consider the case 1

λi
= 0

(i.e., very high λi → ∞), which corresponds to the “natural”
boundary conditions, d pi

dx |x=±l/2 = 0 [i.e., zero surface energy
in Eq. (1a)], and the alternative, λi = 0, which corresponds to
pi|x=±l/2 = 0.

The antiperiodic-periodic conditions (4b) consistent with
the initial condition (7a) and boundary conditions (7b), which
will be used for thick films with l � 100, have the form

p1

(
− l

2

)
= −p1

(
l

2

)
,

∂ p1

∂x

∣∣∣∣
− l

2

= ∂ p1

∂x

∣∣∣∣
l
2

,

p2

(
− l

2

)
= p2

(
l

2

)
,

∂ p2

∂x

∣∣∣∣
− l

2

= − ∂ p2

∂x

∣∣∣∣
l
2

. (7c)

The boundary problem (6) and (7) depends on the only
control parameter—ferroelectric anisotropy factor μ. The in-
equality −1 < μ should be valid for the system stability. The
numerical solutions of Eqs. (6) are shown in Figs. 2(a)–2(f)
for several values of the anisotropy factor μ.
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FIG. 2. The free energy (8) as a function of order parameter components p1 and p2 for different values of parameter μ: (a) μ = −0.95,
(b) μ = −0.5, (c) μ = 0, (d) μ = 1, (e) μ = 2, and (f) μ = 5. Red color denotes zero energy, while violet color is its minimal density
equal to −10 (a), −1 (b), −1/2 (c), and −1/4 (d)–(f) relative units. Capital letters “O” and “T” denote orthorhombic and tetragonal spatially
homogeneous phases, respectively.

The dimensionless LGD free energy density and the first
integral corresponding to Eqs. (6) have the form

G =
∫ l/2

−l/2
gV (x)dx + p2

1(−l/2)

λ1
+ p2

2(−l/2)

λ2

+ p2
1(l/2)

λ1
+ p2

2(l/2)

λ2
, (8a)

gV = −1

2

(
p2

1 + p2
2

) + 1

4

(
p4

1 + p4
2

) + μ

2
p2

1 p2
2

+ 1

2

[(
d p1

dx

)2

+
(

d p2

dx

)2]
, (8b)

I1[μ] = −1

2

(
p2

1 + p2
2

) + 1

4

(
p4

1 + p4
2

) + μ

2
p2

1 p2
2

− 1

2

[(
d p1

dx

)2

+
(

d p2

dx

)2]

=
{ −1

2(1+μ) , −1 < μ < 1,

− 1
4 , μ > 1.

. (8c)

The free energy (8) as a function of polarization compo-
nents p1 and p2 is shown in Fig. 2 for different μ values and
zero gradients consistent with the case λi → ∞. Two spatially
homogeneous phases (8) exist, namely as follows:

(1) Orthorhombic O phase with the minimal energy
density gLGD = − 1

2(1+μ) corresponding to polarization com-

ponents p1 = p2 = ± 1√
1+μ

[see Figs. 2(a)–2(c)]. The O phase
is stable at −1 < μ < 1.

(2) Tetragonal T phase with the minimal and energy den-
sity gLGD = − 1

4 corresponding to polarization components
p2

1 = 1, p2
2 = 0, or p2

1 = 0, p2
2 = 1 [see Figs. 2(e) and 2(f)].

The T phase is stable at μ > 1. The O → T transition takes
place at μ = 1, when the four potential minima merge and
transform in a circle [see Figs. 2(d)].

A detailed analysis of FEM results allows concluding that
we can distinguish (somewhat arbitrarily) several different
morphologies of the domain wall, shown in Figs. 3(a)–3(f),
where the control parameter μ determines the structure of the
uncharged 180 ° domain walls and values of polarization com-
ponents pi. The description of these areas is the following:

(1) The first region, “1,” where −1 < μ < 0, corresponds
to the O phase with Ising-Bloch domain walls [see Fig. 3(a)].
Far from the wall (i.e., at x → ±∞) the saturation expres-
sions, p1 → ± 1√

1+μ
and p2 → + 1√

1+μ
, are valid for the

polarization components. Thus |p1| = |p2| > 1 far from the
wall. The component p1 has an antisymmetric tanhlike profile
across the domain wall; and the component p2 has a sym-
metric profile with a sharp minimum well-localized at the
wall. The minimum height decreases with μ increase, and
disappears at μ → 0 [see Fig. 3(b)]. Because p1 is zero and
p2 is minimal at the wall, the contrast of the HR STEM
image across the wall looks like a “dark-dark” pattern for
−1 < μ < 0.

(2) The second region, “2,” where 0 < μ < 1, corre-
sponds to the O phase with Ising-Bloch domain walls [see
Fig. 3(c)]. The expressions p1 → ± 1√

1+μ
and p2 → ± 1√

1+μ

are valid far from the wall, where |p1| = |p1| < 1. The
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FIG. 3. Profiles of polarization components p1 (red curves) and p2 (blue curves) calculated for different values of ferroelectric anisotropy
μ: (a) μ = −0.8, (b) μ = 0, (c) μ = 0.5, (d) μ = 0.99, (e) μ = 2, and (f) μ = 4. Solid and dashed curves represent FEM solution of Eqs. (6)
and its fitting with the trial functions (9), respectively. Numbers 1–4 denote the regions with different morphology of domain wall: “1” is for
the Ising-Bloch domain wall in the O phase; “1 → 2” is for the Ising wall at the domain boundary; “2” is for the simple Ising-Bloch domain
wall in the O phase, “3” for is for the steplike Ising-Bloch-type domain wall in T phase; and “4” is for the purely Ising domain wall in T phase.
Film thickness l � 100.

component p1 has an antisymmetric tanhlike profile across the
domain wall; and the component p2 has a symmetric profile
with a maximum at the wall. Both the domain-wall width for
the p1 and p2 components and the maximum height for the p1

component increase with μ increase; at that the wall becomes
very thick and diffuse at μ → 1 [see Fig. 3(d)]. At μ = 1
the value p2

1 + p2
2 is invariant, and so the exceptional case

of “isotropic” ferroelectric is realized by solution of Eqs. (6).
Because p1 is zero and p2 has a sharp maximum at the wall,
the contrast of the HR STEM image across the wall looks like
a “dark-bright” thin pattern for 0 < μ < 1.

(3) The third region, “3,” where 1 < μ < 3, corresponds
to the T phase with mixed-type Ising-Bloch domain walls
[see Fig. 3(e)]. Far from the wall, where p1 → ±1 and p2 →
0. The component p1 has an antisymmetric double-step-like
profile across the domain wall, and the component p2 has a
symmetric profile with a flat maximum that is centered at the
wall. Both the step width for p1 and the height and width of p2

maximum gradually decrease with μ increase, and eventually
disappears at μ = 3. An energy estimate shows that steplike
Ising-Bloch and purely Ising walls coexist at μ = 3. Because
p1 has a zero plateau and p2 has a flat maximum at the wall,
the contrast of the HR STEM image across the wall looks like
a “dark-bright” thick pattern for 1 < μ < 3.

(4) The fourth region, “4,” where μ > 3, corresponds
to the T phase with purely Ising-type domain walls [see
Fig. 3(f)]. The component p2 is absent and the component
p1 has an antisymmetric tanhlike profile across the domain
wall and saturates far from the wall, where p1 → ±1. Since
p2 ≡ 0, the domain-wall profile is μ independent. Because p1

is zero at the wall and p2 is absent, the contrast of the HR
STEM image across the wall looks like a “dark” pattern for
μ > 3.

B. Analytical solutions for a solitary domain wall in a thick film

To find equilibrium analytical solutions, the direct varia-
tional method is applied for Eqs. (6) using the trial functions
in the form of two kinks superposition and constants:

p1(x) = a0 + a1

2

[
tanh

(
x + xw

w

)
+ tanh

(
x − xw

w

)]
, (9a)

p2(x) = a2 + b2

2

w

xw

[
tanh

(
x + xw

w

)
− tanh

(
x − xw

w

)]
.

(9b)

The constant amplitude a0 ≡ 0 to satisfy the antisymmetric
boundary conditions for p1(x) [see Eqs. (7c)]. The amplitudes
a1 and a2 define polarization components far from the wall,
because p1(x → ±∞) → ±a1 and p2(x → ±∞) → a2. The
amplitude b2 contributes to the p2 extremum at the wall, since
p2(0) → a2 + b2

w
xw

tanh( xw

w
). The length w and shift xw de-

fine the width of the p1(x) and p2(x) domain walls. These five
variational parameters can be determined after substitution
of Eqs. (9) in the free energy (7), further integration and
minimization of the free energy over these parameters. This
allows us to obtain analytical dependencies for the variational
parameters on the control parameter μ (see Appendix B in the
Supplemental Material [62]).
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TABLE I. Parameters in Eqs. (9) corresponding to exact solution of the Eqs. (6), and limiting casesa.

Parameters in Eqs. (9)

μ value Amplitude a1 Amplitude a2 Amplitude b2 Width w Shift xw

μ → −1 tends to +∞ tends to +∞ tends to −∞ √
2 0, as defined from B.C.b

μ = 0 1 1 0
√

2 0, as defined from B.C.c

μ → 1 undefined undefined undefined diverges undefinedd

μ = 3 1 0 1
√

2 undefinede

μ > 3 1 0 0
√

2 0, as defined from B.C.

aThe constant amplitude a0 ≡ 0 to satisfy the antisymmetric boundary conditions for p1(x).
bThe abbreviation “B.C.” means boundary conditions.
cFor μ = 0 the equations become decoupled.
dFor μ = 1 the first-order phase transition occurs in domain morphology.
eFor μ = 3 the energy is xw independent.

The choice of the trial functions (9) is based on the fact
that the functions are exact and stable solutions of Eqs. (6) for
zero anisotropy, μ = 0, and relatively high anisotropy, μ � 3.
Corresponding values of parameters a1, a2, b2, w, and xw are
listed in Table I. The solution (9) also describes the instability
limit at μ → −1 and the first-order phase transition at μ = 1
(see Table I for details). When we impose the antiperiodic-
periodic conditions (7c) for FEM results, the shift xw should
be zero for the stability of the numerical solution in thick films
at −1 < μ < 1 (O phase) and μ > 3 (T phase).

The variational procedure makes sense only if the trial
functions (9) correspond to sufficiently accurate fitting of
the numerically calculated domain-wall profiles. To verify
this, we performed FEM at l � 100 imposing antiperiodic-
periodic conditions (7c), and obtained that the functions (9)
surprisingly well fit the numerical profiles point-in-point for
all μ values in the range −1 < μ < 5 (compare solid and
dashed curves in Figs. 3).

From the fitting of FEM results we extracted the variational
parameters a1, a2, b2, w, and xw, whose dependencies on μ are
presented in Figs. 4(a) and 4(b). Using the direct variational
method, we derived simple analytical expressions for the μ

dependence of the amplitudes a1 and a2:

a1 =
{

±
√

1
1+μ

, −1 < μ < 1,

±1, μ > 1,

a2 =
{

±
√

1
1+μ

, −1 < μ < 1,

0, μ > 1.
(10a)

Expressions (10a) are almost exact [see blue and black
curves in Fig. 4(a), where the case corresponding to the sign
“+” is shown]. Using the conservation of the first integral
at the domain wall and Eqs. (10a), we derived approximate
expressions for the amplitude b2:

b2 ≈

⎧⎪⎨
⎪⎩

∓
√

1
1+μ

∓ 1, −1 < μ < 1,

± xw

w
coth

( xw

w

)
, 1 < μ < 3,

0, μ > 3.

(10b)

The upper signs in the expression (10b) corresponds to red
curves in Fig. 4(a).

The domain-wall width w and shift xw have a strong
peculiarity in the same region 0.9 < μ < 1.1 and can be ap-
proximately described by the spline-interpolation functions:

w ≈
⎧⎨
⎩

spline, −1<μ<1,

spline, 1 < μ < 3,√
2, μ > 3,

xw ≈
⎧⎨
⎩

0, −1 < μ < 1,

spline, 1 < μ < 3,

0, μ > 3.

(10c)

Expressions (10c) correspond to brown and green curves in
Fig. 4(b). The variational method determining the analytical

FIG. 4. (a) Dependencies of the polarization amplitudes a1, a2,

and b2 (solid black, blue dotted, and solid red curves respec-
tively) on the control parameter—ferroelectric anisotropy factor μ.
(b) Dependencies of the shift xw and width w on the parameter μ

(green and brown curves respectively). Numbers 1–4 in the upper
row denote regions with different morphology of domain walls,
whose profiles are shown in Fig. 2. Regions “1” and “2” correspond
to the “dark-dark” and “dark-bright” Ising-Bloch domain walls in
O phase; regions “3” and “4” correspond to the mixed Ising-Bloch
and purely Ising domain walls in T phase. Solid, green, and brown
curves are spline-interpolations plotted through the symbols (circles
and boxes) calculated by FEM.
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dependencies of parameters a1, a2, b2, w, and xw on μ is
described in Appendix B in the Supplemental Material [62].

The high accuracy of the fitting results (shown in Figs. 3
and 4) in the entire range −1 < μ < 5, which uses only five
μ− dependent parameters for two polarization components,
allows us to conclude that the analytical functions (9), which
are trial functions in the direct variational method, can be
treated as the high-accuracy variational solution of the static
EL equations with cubic nonlinearity.

IV. ANALYTICAL POLYDOMAIN SOLUTIONS

A. Analytical polydomain solutions for the “rotational” walls

For the case of negative ferroelectric anisotropy factor μ �
−1 the system of Eqs. (6a) becomes unstable. Here we explore
stable polydomain solutions of Eqs. (6) for the case μ > −1
and l < 100. After introducing new variables in Eqs. (6),
p = p1 + p2 and a = p1 − p2, one could get the following
equations for them [see Eq. (A.5b) in Appendix A of the
Supplemental Material [62]]:

−p + 1 + μ

4
p3 + 3 − μ

8
p a2 − ∂2 p

∂x2
= 0, (11a)

−a + 1 + μ

4
a3 + 3 − μ

8
a p2 − ∂2a

∂x2
= 0. (11b)

It is seen that Eqs. (11a) and (11b) are independent of each
other for the specific case μ = 3, when they can be solved
separately using elliptic Jacobi functions. The solution for
μ = 3 has the form of elliptic sine (“snoid”) functions:

p(x3) =
√

2m

1 + m
sn

(
x + xw1√

1 + m

∣∣∣∣m
)

,

a(x3) =
√

2n

1 + n
sn

(
x + xw2√

1 + n

∣∣∣∣n
)

, (12)

where two “modules,” 0 � m � 1 and 0 � m � 1, and two
“shifts,” xw1 and xw2, of snoids should be defined from the
boundary conditions, as shown below.

Next, using the relations p1 = (p + a)/2 and p2 =
(p − a)/2, one obtains from Eqs. (12) the expressions for p1

and p2 in the form of two snoids superposition:

p1(x) = 1

2

[√
2m

1 + m
sn

(
x + xw1√

1 + m

∣∣∣∣m
)

+
√

2n

1 + n
sn

(
x + xw2√

1 + n

∣∣∣∣n
)]

, (13a)

p2(x) = 1

2

[√
2m

1 + m
sn

(
x + xw1√

1 + m

∣∣∣∣m
)

−
√

2n

1 + n
sn

(
x + xw2√

1 + n

∣∣∣∣n
)]

. (13b)

Since the solution (13) is dependent on four free parame-
ters, modules m and n and shifts xw1 and xw2, it pretends to
be a general solution, but we cannot say that it is the one,
because the existence and uniqueness theorem is not valid
for solutions of nonlinear differential equations. The modules

m and n define the shape and the period of the polarization
profile (13).

1. Natural and zero boundary conditions
for the polarization components

It is shown in Appendix A in the Supplemental Material
[62] that the modules m and n satisfy the same transcendental
equations for the two limiting cases of the boundary condi-
tions (7b), λi = 0 and λi → +∞, namely

2
√

1 + mK(m)Nx = l,

2
√

1 + n K(n)Ny = l. (14a)

Here K(k) is the complete elliptic integral of the first kind,
which determines the half-period 2K(k) of the elliptic func-
tions. Also we introduced the numbers Nx = 0, 1, 2 . . . and
Ny = 0, 1, 2, . . . corresponding to the number of “nodes” of
p(x) and a(x) functions, which satisfy Eqs. (11a) and (11b),
respectively. The situation with these nodes is similar to the
eigensolutions of a wave equation, when the boundary condi-
tions are satisfied by an infinite set of solutions with a different
number of half waves for a fixed thickness l .

At the same time, we obtained that the shifts xw1 and
xw2 depend on the boundary condition type, namely, and for
the natural boundary conditions d pi

dx |x=±l/2 = 0 they have a
relatively simple form:

xw1 = l

2

(
1 ± 1

Nx

)
,

xw2 = l

2

(
1 ± 1

Ny

)
, (λi → +∞). (14b)

For zero polarization conditions pi|x=±l/2 = 0 the shifts are
given by more complex expressions

xw1 = l

2

(
1 ± 1 − (−1)q

Nx

)
,

xw2 = l

2

(
1 ± 1 − (−1)s

Ny

)
, (λi = 0), (14c)

where q and s are independent integers. From Eqs. (14) the
par of integers {Nx, Ny} characterizes the domain structure of
the solution (13) at a given l . However, the characterization
is not unique due to the two possible signs “±” and different
powers q and s in Eqs. (14b) and (14c).

The case Nx = 0 (or Ny = 0, or both) requires a sepa-
rate consideration, since it corresponds to the limiting cases
m → 1 (or/and n → 1), respectively. The shift xw1,2 diverges
as −ln(

√
1 − k) at k → 1 (k = m, n) and the solutions (12)

and (13) formally become undefined. More rigorous consider-
ation shows that the case corresponds to “nodeless” solutions,
which are trivial and independent on the film thickness,

p(x3)
Nx→0→

{
0, λi = 0,

1, λi → +∞,

a(x3)
Ny→0→

{
0, λi = 0,

1, λi → +∞.
(14d)
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Using the “decoupled” form (12) of the solution (13) in a
general case, the “decoupled” free energy, G[p, a], is equal to

G[p, a] = 1

l

∫ l
2

− l
2

dx

{
− p2 + a2

4
+ p4 + a4

8

+ 1

4

[(
d p

dx

)2

+
(

da

dx

)2]}
≡ G[m, n], (15a)

G[m, n] = Gc[m] + Gc[n],

Gc[k] = − 1

6(1 + k)2

(
2 + k − 2(1 + k)

E(k)

K(k)

)
, (15b)

where E(k) is the complete elliptic integral of the second type.
Since the energy is independent on xw1, 2, it is the same for
both cases λi = 0 and λi → +∞. The case m → 1 (or n → 1)
is exceptional, and corresponding contributions to Eq. (15a)
should be rewritten as follows:

Gc[m]
Nx→0→

{
0, Nx → 0, λi = 0;
− 1

8 , Nx → 0, λi → +∞.
(15c)

The normalized energy G[m, n] of the polydomain states
as a function of l was calculated from Eqs. (15) for different
numbers of domain walls inside the film, {Nx, Ny}. Results are
shown in Fig. 5(a) for λi → +∞, and in Fig. 6(b) for λi = 0.
The energy is normalized on a “bulk” value Gb = 1/4. Typical
distribution of polarization components p1 (red curves) and p2

(blue curves) calculated with Eqs. (13) for different Nx and Ny

are shown in Figs. 5(b)–5(g) for λi → +∞, and in Figs. 6(b)–
6(g) for λi = 0.

The metastable and stable polydomain states have negative
energy, which monotonically decreases with l increase for
a fixed {Nx, Ny} in both cases λi → +∞ and λi = 0 [see
Figs. 5(a) and 6(a)]. The single-domain state with Nx = Ny =
0 is absolutely stable for λi → +∞ (corresponding energy re-
lief corresponds to the potential well) and unstable for λi = 0
(corresponding energy relief corresponds to the saddle point)
[compare horizontal dashed lines in Figs. 5(a) and 6(a)]. The
critical thickness of the film, lcr, below which the ferroelectric
phase disappears, is individual for the concrete polydomain
state {Nx, Ny}, and, as a rule, it increases with sum Nx + Ny

increase [see vertical dotted lines in Figs. 5(a) and 6(a)]. Only
the single-domain state {0, 0} has no critical thickness at λi →
+∞. The states {0, 1}, {1, 1}, {1, 2}, {1, 3} … and {1, N} have
the same minimal lcr ≈ π . The states {0, 2}, {2, 2}, {2, 3}, . . .

and {2, N} have the same lcr ≈ 2π . The states {0, 3}, {3, 3},
{3, 4}, . . . and {3, N} have the same lcr ≈ 3π . In general, all
states with the same N = min{Nx, Ny} have the same lcr[N],
which increases with N increase. The critical thickness can
be derived from Eqs. (14a) in the limit m → 0 (or n → 0),
namely

lcr[N] ≈ πN (N > 0). (16)

For a fixed l and λi → +∞ the energy of the polydo-
main states increases with the sum Nx + Ny increase [see
Fig. 5(a)], and the lowest polydomain state is {0, 1} = {1, 0}.
The energy of {0, 2} state is slightly lower that the energy
of {1, 1} state, but this state has twice bigger lcr. For l > lcr

the energies of {1, 1} and {0, 2} states become very close

and approach the energy of the single-domain state in the
limit l � lcr. The same trend is evident for all other states
{Nx, Ny} and {0, Nx + Ny}. It is important that the energy
of all polydomain states tends to the single-domain state
energy G = −Gb in the limit l → +∞ for the case λi →
+∞.

It is seen from Figs. 5(b)–5(g) that the profile and ampli-
tude of the polydomain solution (13) is determined by the
film thickness l and by the “nodes” pair {Nx, Ny}. Simple
Ising-type domains with quasisinusoidal profile for l slightly
bigger than lcr [see Fig. 5(b)], or with strongly anharmonic
“snoidal” profile for l � lcr [see Fig. 5(e)], correspond to the
same numbers Nx = Ny. Rather complex phase-shifted asym-
metric Bloch-Ising type profiles, which are quasiharmonic for
l ≈ lcr [see Fig. 5(c)] and strongly anharmonic for l � lcr

[see Fig. 5(f)], correspond to the close numbers Nx = Ny −
1. Simple in-phase [i.e., p1(x) = p2(x) + 1] and symmetric
[i.e., p1,2(x) = p1,2(−x)] Bloch-Ising-type profiles, which are
quasiharmonic for l ≈ lcr [see Fig. 5(d)], and strongly an-
harmonic for l � lcr [see Fig. 5(g)], correspond to the pairs
{0, Ny} or {Nx, 0}.

For a fixed l and λi = 0 the energy of the polydomain
states increases with Nx or/and Ny increase [see Fig. 6(a)],
and the lowest polydomain states are {1, 1}, {1, 2}, and {1, 3},
respectively. The energy of the {0, 1} state is almost the same
as the energy of the {1, 3} state only for l < 3π ; at l � 3π it
tends to −Gb/2, while the energy of the {1, Ny} states tends to
−Gb in the limit l � lcr. The same trend is evident for all other
states {Nx, Ny} (Nx,y � 1), whose energy eventually tends to
−Gb in the limit l → +∞. The energy of {0, Ny} eventu-
ally tends to −Gb/2 in the limit l → +∞. It is important
that in the limit l → +∞ the energies G of all polydomain
states “split” into two levels—the ground domain state “0”
with G0 = −Gb and the excited state “1” with G1 = −Gb

2 ,
which are separated by the “gap” of width 
G = Gb

2 . Each of
these two levels splits on the infinite set of sublevels, which
are characterized by a multiple close-energy polydomain
morphologies with number {0, Ny} and {Nx, Ny} (Nx,y � 1),
respectively.

The two-level energy structure of the polydomain states
for λi = 0 principally differs from the single level existing
in the case λi → +∞ [compare Figs. 5(a) and 6(a)]. Since
zero polarization at the film surfaces can be realized experi-
mentally by creation of the ultrathin nonferroelectric passive
layers at the surfaces [63], this suggests possible strategies
to switch the polarization state between the sublevels 0 and
1. Imagine that we have excited (e.g., by electric field) the
film polarization to the one of the polydomain states 1.
When the system is released, it tries to thermalize its energy
excess, and, if the dissipation is very small in a film with-
out imperfections [i.e., ρ � τ 2 in Eqs. (6)], it can oscillate
with some period between the excited states 1 and ground
state 0.

It is seen from Figs. 6(b)–6(g) that the profile and ampli-
tude of the polydomain solution (13) is determined by the
film thickness l and by the “nodes” pair {Nx, Ny}, but the
details of domain pattern slightly differ from the ones shown
in Figs. 5(b)–5(g). Simple Ising-type domains with a quasis-
inusoidal profile for l slightly bigger than lcr [see Figs. 6(b)],
or with strongly anharmonic “snoidal” profile for l � lcr
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FIG. 5. (a) Energy of the metastable polydomain states as a function of dimensionless film thickness l for different numbers of domain
walls inside the film, {Nx, Ny}, denoted near the curves. (b)–(g) Distribution of polarization components, p1 (red curves) and p2 (blue curves), in
the film of thickness l = 25 (b)–(d) and l = 100 (e)–(g) calculated using Eqs. (13) for different numbers Nx = 4 and Ny = 4 (b),(e); Nx = 5 and
Ny = 6 (c),(f); Nx = 0 and Ny = 4 (d),(g). The absolutely stable single-domain state with Nx = Ny = 0 is shown for comparison by a dashed
line. Natural boundary conditions are used for polarization components: d pi

dx |x=±l/2 = 0, i.e., λi → +∞ for all plots (a)–(g). Ferroelectric
anisotropy factor μ = 3, and energy scale factor Gb = 1/4.

[see Fig. 6(e)], correspond to the same numbers Nx = Ny.
Rather complex phase-shifted asymmetric Bloch-Ising-type
profiles, which are quasiharmonic for l ≈ lcr [see Fig. 6(c)],
or strongly anharmonic for l � lcr [see Fig. 6(f)], correspond
to the close numbers Nx = Ny − 1. Simple antiphase [i.e.,
p1(x) = −p2(x)] and antisymmetric [p1,2(x) = −p1,2(−x)]
Bloch-Ising type profiles, which are quasiharmonic for l ≈
lcr [see Fig. 6(d)], and strongly anharmonic for l � lcr [see
Fig. 6(g)], correspond to the pairs {0, Ny} or {Nx, 0}.

To resume the analysis of the limiting cases λi → ∞ and
λi = 0, analytical solutions (13), which contain four free pa-
rameters (m, n, xw1, and xw2), are suitable candidates for
a general equilibrium solution of nonlinear differential EL
equations (6) for μ = 3, since the number of free parameters
is enough to satisfy arbitrary boundary conditions (7) at the
film surfaces. The solutions (13) are degenerated for a fixed
boundary condition, because they contain different numbers
of domain walls proportional to Nx for p1 + p2 and to Ny for

114410-10



MESOSCOPIC STRUCTURE OF MIXED TYPE DOMAIN … PHYSICAL REVIEW MATERIALS 4, 114410 (2020)

FIG. 6. (a) Energy of the polydomain states as a function of dimensionless film thickness l for different numbers of domain walls inside
the film, {Nx, Ny}, denoted near the curves. (b)–(g) Distribution of polarization components, p1 (red curves) and p2 (blue curves), in the film of
thickness l = 25 (b)–(d) and l = 100 (e)–(g) calculated using Eqs. (13) for different numbers Nx = 4 and Ny = 4 (b),(e); Nx = 5 and Ny = 6
(c),(f); Nx = 0 and Ny = 4 (d),(g). The unstable single-domain state with Nx = Ny = 0 is shown for comparison by a dashed line. Ferroelectric
anisotropy factor μ = 3, and Gb = 1/4. Zero boundary conditions are used for polarization components, pi|x=±l/2 = 0, i.e., λi = 0 for all plots
(a)–(g).

p1 − p2. The analysis of the free energy (15) dependence on
the number of domains for a fixed film thickness l allows us
to select the single- or polydomain solution corresponding to
the minimal energy [see Figs. 5(a) and 6(a)]. We obtained that
the single-domain state corresponds to the minimal energy for
the case of zero polarization derivative at the film surfaces
[namely for λi → ∞ in Eq. (7b)], while the Ising-Bloch poly-
domain states with the total number of rotational domain walls

Nx + Ny � 1 minimize the system energy for zero polarization
at the film surfaces [namely for λi = 0 in Eq. (7b)]. In the
case λi = 0 the energy of polydomain states splits into two
levels 0 and 1, and each of the levels is the great number
of the close-energy sublevels (infinite in the limit l → ∞),
whose domain structure is characterized by the pair of nodes
{0, Ny} for the level 1 and {Nx, Ny} for the level 0, where
Nx,y � 1.
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2. Periodic-antiperiodic conditions
for the polarization components

If the periodic-antiperiodic conditions (7c) are valid for
two components of polarization, one can put m = n and xw1 =
−xw2 = xw in the solution (13), while it is not the only pos-
sibility in the case. Anyway, the two parameters, m and xw,
remained undefined from Eqs. (13) in the case of Eqs. (7c).
The free energy G is minimal for m → 1 and n → 1 corre-
sponding to a solitary domain wall. In the simultaneous limit
m = n → 1 the solution (13) transforms into a solitary wall
solution (9), namely p1(x3) = 1

2 [tanh( x+xw√
2

) + tanh( x−xw√
2

)]

and p2(x3) = 1
2 [tanh( x+xw√

2
) − tanh( x−xw√

2
)]. These expressions

become identical with Ivanchik solution [43] after elementary
calculations (see Appendix A in the Supplemental Material
[62] for details).

The solution (13) can be considered as a trial function
for −1 < μ < 3. For instance, in the case of the boundary
conditions (7c) the trial functions for polydomain solutions
are

p1(x) = a1 + b1

2

√
2m

1 + m

[
sn

(
x + xw√

1 + m

∣∣∣∣m
)

+ sn

(
x − xw√

1 + m

∣∣∣∣m
)]

, (17a)

p2(x) = a2 + b2

2

w

xw

√
2m

1 + m

[
sn

(
x + xw√

1 + m

∣∣∣∣m
)

− sn

(
x − xw√

1 + m

∣∣∣∣m
)]

, (17b)

where “free” parameters, constant offsets ai and amplitudes
bi, are introduced in the same way as in Eqs. (9). They should
be determined by using the direct variational method similarly
to the case of a solitary domain wall considered in the previous
Sec. III.

B. Analytical solutions for the Ising polydomains

For the case of high positive ferroelectric anisotropy μ > 3
the stable polydomain solution of Eqs. (6a) becomes of Ising
type and μ independent, since the p2 component is absent.
The corresponding polarization profile has the snoidal form:

p1(x3) =
√

2m

1 + m
sn

(
x + xw√

1 + m

∣∣∣∣m
)

, p2(x3) ≡ 0. (18a)

The snoid modulus m and shift xw should be determined
from the boundary conditions (7). For the two limiting cases,
λi = 0 and λi → +∞, the modulus m satisfies the con-
dition 2N

√
1 + m K(m) = l , where the integer number N

regulates the number of solution “nodes” [compare with
Eqs. (14a)]. The shift xw = l

2 (1 ± 1
N ) for λi → +∞, or xw =

l
2 (1 ± 1−(−1)s

N ) for λi = 0 [compare with Eqs. (14b) and
(14c)]. Using the solution (18a), the free energy was derived
as

G[m] = 1

l

∫ l
2

− l
2

dx

[
− p2

2
+ p4

4
+ 1

2

(
d p

dx

)2]

≡ − 1

3(1 + m)2

(
2 + m − 2(1 + m)

E(m)

K(m)

)
. (18b)

The first integral is I (m) = − m
(1+m)2 . As it can be seen,

Eqs. (18) are the particular case of Eqs. (13)–(15) for the case
Nx = Ny = N . Thus, the solutions (18a) and their energy (18b)
are presented among other curves with Nx = Ny, which are
shown in Figs. 5 and 6. To resume, the analytical polydomain
solution (18a), which contains two free parameters (m and
xw2), is a suitable candidate for a general stable solution of EL
equations (6) for μ > 3, since the number of free parameters
is enough to satisfy the boundary conditions (7) at the film
surfaces. The solution (18) is degenerated for a fixed boundary
condition, because it contains a different number of domains
(N or N + 1). The analysis of the free energy (18b) depen-
dence on the number of domains for a fixed film thickness l
allows us to select the single- or polydomain solution corre-
sponding to the minimal energy [see curves {1, 1}, {2, 2}, and
{3, 3} in Figs. 5(a) and 6(a)]. The single-domain state corre-
sponds to the minimal energy for the case of polarization zero
derivative at the surface [namely for λi → ∞ in Eq. (7b)],
while the Ising polydomains minimize the system energy for,
e.g., zero polarization at the surface [namely for λi → 0 in
Eq. (7b)].

V. POSSIBLE APPLICATIONS OF ANALYTICAL RESULTS
FOR BAYESIAN ANALYSIS AND INFORMATION

PROCESSING

A. Bayesian analysis of domain-wall profiles

Let us consider a model situation when we know the
ferroelectric film thickness L, the temperature T is fixed,
and most of the ferroelectric material parameters in Eqs. (1)
are determined from independent experiments, or tabulated.
For instance, the parameters ai, aii, and ai j can be de-
termined from the measurements of dielectric permittivity
and spontaneous polarization temperature dependencies in a
bulk homogeneous ferroelectric [5,6]. Much more complex
is to determine the gradient coefficients gi jkl , and the error
originated from gi jkl estimation using the intrinsic width of
differently oriented uncharged domain walls [5,6] is typi-
cally high (∼50–100%) due to wall pinning and “trembling”
near lattice defects and other imperfections. Moreover, the
direct determination of extrapolation lengths λi, introduced in
Eq. (7b), is a true challenge, because the surface energy coeffi-
cients aS

i in Eq. (1b) depend on the surface/interface chemistry
and surface defects in a prior unknown way, and only indirect
estimates have been done for several particular cases [46].
The only exception may be the deposition of artificial dead
layers [63] at the film surfaces, which yield pi(±l/2) = 0 and
so λi = 0. Hence, the dimensionless control parameter μ can
be regarded known for a fixed temperature, while the dimen-
sionless extrapolation and correlation lengths, λi

∼= g44Rc

aS
i

and

Rc
∼= √

g44/|2a1|, are prior unknown.
In the previous section we calculated the energy lev-

els G[m, n] given by Eqs. (15). The redefinition G[m, n] ≡
G(Nx, Ny ) is possible, since the relation between the pair of
modules {m, n} and integers {Nx, Ny} determining the domain
numbers is established by, e.g., Eq. (14a) for μ = 3 in par-
ticular cases λi → +∞ and λi → 0. Since these results can
be extended for the case of arbitrary μ > −1 by applica-
tion of direct variational method, as described above, we can
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assume that the energy levels describing different polarization
states pi(x, Nx, Ny, Rc, λ), the expected (i.e., averaged over
all realizations) polarization state 〈pi(x, Rc, λ),〉 and energy
G(Rc, λ) can be calculated for the posterior known sets of
parameters λ = {λi} and Rc. Namely

〈pi(x, Rc, λ)〉 =
Nx,y=Nm∑
Nx,y=0

pi(x, Nx, Ny, Rc, λ)W [Nx, Ny|Rc, λ],

(19a)

〈G(Rc, λ)〉 =
Nx,y=Nm∑
Nx,y=0

G(Nx, Ny, Rc, λ)W [Nx, Ny|Rc, λ],

(19b)

where i = 1, 2, and we introduced the designation λ = {λi}
for the sake of brevity. The maximal number of the energy
states Nm is defined from the condition Nm = Trunc[ l

π
], ob-

tained from Eq. (16) for lcr (Nm). For example, Nm = 6 for
l = 20 [see Figs. 5(a) and 6(a)].

The conditional prior probability W [Nx, Ny|g, λ] of the
state pi(x, Nx, Ny, Rc, λ) realization under the validity of
“event”—realization of the parameters {Rc, λ} in the film—is
expressed via the energy levels G(Nx, Ny, Rc, λ) and canonic
statistic sum Z (g, λ) in a conventional way:

W [Nx, Ny|Rc, λ] = kNx,y

Z (Rc, λ)
exp

[
−G(Nx, Ny, Rc, λ)

kBT

]
,

(19c)

Z (Rc, λ) =
Nx,y=Nm∑
Nx,y=0

G(Nx, Ny, Rc, λ). (19d)

Here the statistical weight kNx,y the of the state
pi(x, Nx, Ny, Rc, λ ) is equal to 2 (when degeneration p1 →
−p1 exists) or 4 (when degeneration p1 → ±p2 exists) de-
pending on μ value.

Using the Bayesian approach described in Refs. [58,59],
we can determine the posterior conditional probability
W [Rc, λ|Nx, Ny] of the {Rc, λ} parameters:

W [Rc, λ|Nx, Ny] = W [Nx, Ny| Rc, λ]

W [Nx, Ny]
W [Rc, λ], (20a)

where the “marginal” or “unconditional” probability
W [Nx, Ny] of the state pi(x, Nx, Ny ) realization is the sum
and/or integral over all prior probabilities W [Rc, λ] of the
{Rc, λ} events:

W [Nx, Ny] =
∫ Rmax

Rmin

dRc

∫ ∞

0
dλ W [Rc, λ]W [Nx, Ny| Rc, λ].

(20b)
In practice one can determine the probability W [Nx, Ny] by

the fitting of analytical profiles (17) to the domain-wall pro-
files, which are measured experimentally. Thus, expressions
(20) illustrate that the energies (15), corresponding to the ana-
lytical solutions (13) or (17), and statistical probabilities (19)
can be used for a Bayesian analysis of domain-wall profiles
reconstructed from atomic displacements measured by HR
STEM in thin ferroelectric films (see Refs. [58,59]).

As a toy model, let us assume that Rc is determined reliably
from the intrinsic width of domain walls, and consider only
two possible and equiprobable events, λ = +∞ and λ = 0.
Under these conditions, Eqs. (20) acquire much simpler form:

W [λ|Nx, Ny] ∼= W [Nx, Ny| λ]

W [Nx, Ny| 0] + W [Nx, Ny| ∞]
, (21a)

where λ = +∞ or λ = 0.
Alternatively, when all λ values can be regarded

quasiequiprobable in the region {0, λmax}, we can put
W [Rc, λ] ≈ 1

λmax
and simplify Eqs. (20) as follows:

W [λ|Nx, Ny] ∼= W [Nx, Ny| λ]∫ λmax

0 dλ W [Nx, Ny| λ]
. (21b)

Expressions (21) demonstrate that the Bayes formula al-
lows us to estimate the posterior probability of different λ

values realization, since the posterior probability is propor-
tional to the prior one. The treelike diagram illustrating the
application of the Bayes formula for Eqs. (21) is shown in
Fig. 7. The diagram demonstrates possible paths between the
prior guess for extrapolation length (λ = 0 or λ = ∞) and
posterior measurement of the domain state corresponding to
the sublevels 0 with domain numbers L0 = {Nx, Ny}, or sub-
levels 1 with domain numbers L1 = {0, Ny} ∪ {Nx, 0}, where
Nx,y � 1 [see Figs. 5(a) and 6(a) for details].

B. Information processing

Let us consider a rather thick ferroelectric film (l � 100)
with zero polarization at its surfaces (pi|x=±l/2 = 0), whose
versatile domain morphology is determined by the maxi-
mal number of domain walls Nm � 1, where Nm is defined
from the condition Nm = Trunc[ l

π
]. The corresponding en-

ergy structure is similar to the right part of the two-level
system shown in Fig. 6(a), at that the level 1 is divided on
2Nm sublevels with a node structure {0, Ny} ∪ {Nx, 0}, and
the level 0 is divided on N2

m sublevels with a node structure
{Nx, Ny}, where Nx,y � 1. The energies of sublevels 1 are very
close to G1 = −1/2, and the energies of all sublevels 0 are
very close to G0 = −1 (in Gb units). “Very close” means
that the energy difference between the sublevels 
Gx,y is
smaller than thermal fluctuations energy kBT , and decreases
with l increase, so that each of the complex levels 0 and 1
presents itself a great number of polarization states, which
are almost indistinguishable at kBT � 
Gx,y. However, since
each sublevel is characterized by a different number (and often
configuration) of domain walls, the two-level system can be
considered as a very big multibit that potentially can imitate a
quantum bit (q-bit) better the larger the number Nm.

Let us imagine that we initially excite the film polarization
to the one of the 2Nm polydomain states 1. When the system
is released, it tries to thermalize its energy excess, and, if
the dissipation is very small in a film without imperfections
[i.e., ρ � τ 2 in Eqs. (6)], it can oscillate with some period
between the excited states 1 and the ground states 0. Since
each level has a great number of sublevels, the oscillations
between the levels can be used for, e.g., racetrack memory
and q-bit operation imitation, which utilizes the parallelism of
the polarization states evolution.
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FIG. 7. The treelike diagram illustrating the Bayes formula for Eqs. (21), where we introduce the domain number N = {Nx, Ny}, and
the designations for domain structure of the energy levels 0 and 1, L0 = {Nx, Ny} and L1 = {0, Ny} ∪ {Nx, 0}, respectively (Nx,y � 1). Other
designations: W[A] is a probability of the event A, W[B|A] is the probability of event B under the condition A, and W[A�B] is a mutual
probability of event AB. All paths between the prior guess for extrapolation length (λ = 0 or λ = ∞) and posterior measurement of domain
numbers (N = L0 or N = L1) illustrate the symmetry of Bayes formula W [B|A] W [A] = W [A ∩ B] = W [A|B] W [B ].

To elaborate on the idea, we preliminarily study the oscil-
latory dynamic of domain structure under the absence and in
the presence of losses, for initial seeding in the form of a ran-
dom polarization distribution and for the boundary condition
pi|x=±l/2 = 0. We obtained that in some cases the polarization
vector oscillates (with or without damping in dependence on
the loss factor τ ) between several metastable domain states,
without smearing to all available states. This result can be
considered as the direct demonstration of the Fermi-Pasta-
Ulam-Tsingou (FPUT) paradox [64] (other names are FPU
problem or recurrence [65]), which states that the energy in a
weakly coupled nonlinear system avoids thermalization and
travels between the available modes of the system without
diffusing to all available modes.

VI. SUMMARY

We considered the dynamics of a 180 ° uncharged rota-
tional domain wall in a multiaxial ferroelectric film within
the framework of the analytical LGD approach. FEM was
used to solve numerically the system of the coupled non-
linear EL differential equations of the second order for two
components of polarization. It appeared that the static wall
structure (e.g., Ising, Ising-Bloch, or mixed type) and corre-
sponding (meta)stable phase of the film are dependent on the
single control parameter—dimensionless factor of ferroelec-
tric anisotropy μ, that can vary in a continuous range −1 < μ.
Using spline interpolations, we fitted the static profile of a
solitary domain wall, calculated by FEM, with multipara-

metric hyperbolic kinklike functions for the two-component
polarization, and extracted the five μ-dependent parameters
from the fitting to FEM curves. The surprisingly high accuracy
of the fitting results in the entire range −1 < μ < 5, allows
us to conclude that the analytical functions, which are trial
functions in the direct variational method, can be treated as the
high-accuracy variational solution of the static EL equations
with cubic nonlinearity.

Next, using the LGD approach, we derived and analyzed
the two-component and one-component analytical solutions
of the static EL equations for a polydomain 180 ° domain
structure in a multiaxial ferroelectric film. The analytical so-
lutions in the form of elliptic Jacobi functions, which contain
two and four free parameters, respectively, are suitable candi-
dates for a general stable solution of EL equations, since the
number of free parameters is enough to satisfy the wide class
of boundary conditions at the film surfaces. The solutions are
degenerate for definite boundary conditions, because they can
contain a different number of domains for p1 and p2 compo-
nents. However, the analysis of the free-energy dependence on
the number of domains for a fixed film thickness allowed us to
select those single- or polydomain analytical solutions which
correspond to the minimal energy. In particular, we obtained
that the single-domain state corresponds to the minimal en-
ergy for the case of the polarization zero derivative at the film
surfaces, while the solution with Ising-Bloch domain walls
minimizes the system energy for zero polarization at the film
surfaces. The analytical solutions can become a useful tool for
Bayesian analysis of domain-wall profiles reconstructed from
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atomic displacements measured by HR STEM in ferroelectric
films [58,59].

For thick films with zero polarization at the surfaces the
energy of the polydomain states split into two levels 0 and 1.
Each of the levels 0 or 1 contains a large number of the close-
energy sublevels, whose domain morphology is characterized
by different structure of nodes for the two-component polar-
ization p = {p1, p2}, namely {0, Ny} for level 1 and {Nx, Ny}
for the level 0, where 1 � Nx,y � Nm and Nm � 1. Since zero
polarization at the surface can be realized experimentally rela-
tively easily by creation of subsurface nonferroelectric passive
layers, one can switch the polarization state between levels
0 and 1. Under certain favorable conditions, the two-level
system can oscillate with some period between the excited
states 1 and ground state 0, and the oscillations can be used
for, e.g., racetrack memory and q-bit operation imitation.

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [66].
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