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Intrinsic spin Hall effect in topological insulators: A first-principles study
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The intrinsic spin Hall conductivity of typical topological insulators Sb2Se3, Sb2Te3, Bi2Se3, and Bi2Te3 in
the bulk form, is calculated from first principles by using density functional theory and the linear response
theory in a maximally localized Wannier basis. The results show that there is a finite spin Hall conductivity
of 100–200 (h̄/2e)(S/cm) in the vicinity of the Fermi energy. Although the resulting values are an order of
magnitude smaller than that of heavy metals, they show a comparable spin Hall angle due to their relatively
lower longitudinal conductivity. The spin Hall angle for different compounds are then compared to that of recent
experiments on topological-insulator/ferromagnet heterostructures. The comparison suggests that the role of
the bulk in generating a spin current and consequently a spin torque in magnetization switching applications is
comparable to that of the surface including the spin-momentum locked surface states and the Rashba-Edelstein
effect at the interface.
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I. INTRODUCTION

A topological state of matter is distinguished by its insulat-
ing bulk, but conducting surface states that are robust against
disorder. The surface states in a topological insulator carry
opposite spins while propagating in opposite directions [1].
Due to their strong spin-orbit coupling, topological insulators
are capable of switching an adjacent thin-film ferromagnet
in a bilayer structure without the need to apply any external
magnetic fields [2]. Both the bulk and the surface states are
reported to be involved in generating an electric-field-induced
spin torque on the ferromagnet [3]. The spin polarization
on the surface is due to the spin-momentum locking [1,4]
of the surface states as well as the Rashba-Edelstein effect
[5,6] at the interface with the ferromagnet, while the bulk
of the topological insulator contributes via the intrinsic spin
Hall effect [7,8]. Several experimental studies [3,4,9] have
attempted to distinguish the contribution of the surface and the
bulk states through magnetization switching in topological-
insulator/ferromagnet heterostructures. However, theoretical
estimates of the intrinsic bulk contribution are limited. In this
work, we quantify the role of the bulk in spin generation
by calculating the intrinsic spin Hall conductivity of four
topological insulators namely Sb2Se3, Sb2Te3, Bi2Se3, and
Bi2Te3 by using first-principles calculations. These materials,
along with their alloys, are of the first experimentally realized
[1,10–12] three-dimensional topological insulators and have
been studied more extensively especially in terms of the spin
Hall effect.

The spin Hall effect is the accumulation of spin on the
surface of a material in response to an applied electric field.
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Dyakonov and Perel [13] introduced the idea of generating
spin polarization with a charge current via the Mott scattering
which is a spin-dependent scattering of a Coulomb potential
in the presence of spin-orbit coupling. They introduced a phe-
nomenological spin electric coefficient term, which models the
generation of a transverse spin current via an external electric
field. The scattering potential by impurities and phonons can
also result in an asymmetric scattering cross section leading
to the accumulation of spin, an effect called the extrinsic spin
Hall effect [14,15]. However, it has been shown [16] that
even in the absence of extrinsic effects, spin accumulation
occurs due to the finite spin-orbit coupling of the underlying
crystal. Therefore, the contribution of nonzero orbital angular
momentum in the Bloch wave functions along with an external
electric field gives rise to a spin accumulation, a phenomenon
known as the intrinsic spin Hall effect [17,18].

Topological insulators are a distinct state of quantum mat-
ter where the band structure is topologically different than
that of ordinary/trivial insulators due to inverted bands at the
Fermi level. Although insulating in the bulk, they are conduct-
ing on their surfaces where they meet a trivial insulator that
is the vacuum [12,19]. Recently, topological insulators have
been used to generate spin current to electronically switch the
magnetization of a proximal thin-film magnet [2]. Compared
to heavy metals, such as platinum [20] and tantalum [21],
which are also used as spin-current generators, topological
insulators are expected to consume less energy while yielding
the same spin Hall angle [8], which is beneficial in realizing
low power spintronics.

In this work we focus on the intrinsic ability of the bulk of
topological insulators in generating spin currents through the
spin Hall effect. We calculate the spin Hall conductivity of the
four compounds (Sb/Bi)2(Se/Te)3 from first principles, that
is by solving the Schrödinger equation in the framework of
density functional theory and using the solution to calculate
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the linear response coefficients. Previous theoretical studies
on the intrinsic spin Hall conductivity in topological insulators
are limited to those of HgTe [22] by using first principles and
Bi1−xSbx [23] and Bi2Se3 [24,25] by using a tight-binding and
an effective Hamiltonian. It is worth noting that the calcu-
lation of spin Hall conductivity requires integration over the
entire Brillouin zone and that all the bands below the Fermi
energy contribute toward the spin Hall effect. Hence, the ef-
fective Hamiltonian, which is valid only in the vicinity of the
Fermi energy, may not provide an adequate description of the
spin Hall conductivity. First-principles calculations are there-
fore necessary to accurately quantify the intrinsic strength of
spin generation in typical topological insulators, as well as
understanding the bulk contribution in magnetization switch-
ing applications. We furthermore provide estimates of the spin
Hall angle in different compounds using the large body of ex-
perimental studies on the topological-insulator/ferromagnet
heterostructures.

Section II provides an overview of the experimental studies
and techniques in estimating the spin Hall angle. Theo-
retical details of calculating the spin Hall conductivity are
given in Sec. III. The symmetry properties of the crys-
tal and the spin Hall conductivity tensor are discussed in
Sec. IV. Results are presented in Sec. V along with a com-
parison of different values of the spin Hall angle reported in
the literature. Section VI concludes the paper. Computational
details and the first-principles setup are presented in the Ap-
pendix.

II. REVIEW OF EXPERIMENTS

The ability of a material to generate a spin current via the
spin Hall effect is measured by the spin Hall angle (efficiency)
θ which is proportional to the ratio of the spin current density
Jγ
α to the charge current density Jβ , i.e., θ = (2e/h̄)Jγ

α /Jβ =
(2e/h̄)σγ

αβ/σββ where σ
γ

αβ is the spin Hall conductivity and
σββ is the longitudinal charge conductivity. The spin Hall
angle is usually measured via three different techniques
namely the spin-torque ferromagnetic resonance (ST-FMR),
the second harmonic Hall voltage, and the helicity-dependent
photoconductance. These methods are briefly introduced in
this section. In Sec. V, we show the spread of experimentally
reported values of θ in various topological materials using
different measurement schemes.

The ST-FMR technique was introduced by Liu et al. [26]
in the context of spin Hall effect in heavy-metal/ferromagnet
heterostructures such as platinum/permalloy bilayers. Later,
Mellnik et al. [2] utilized this technique for topological-
insulator/ferromagnet heterostructures. The ST-FMR method
is based on the spin-torque driven magnetization resonance
when a radio frequency (RF) charge current flows in the prox-
imal charge-to-spin convertor, i.e., heavy metal or topological
insulator. Additionally, a large constant magnetic field causing
the magnetic order to precess is also applied. Based on the
solution to the Landau-Lifshitz-Gilbert equation describing
the magnetization dynamics, the magnetoresistance of the
structure is expressed as a linear combination of a symmetric
and an antisymmetric Lorentzian function with respect to the
external magnetic field. The symmetric Lorentzian describing
the contribution of the spin current density to the spin torque

is used to quantify the spin Hall angle. The ST-FMR tech-
nique has been used in several experiments to demonstrate
magnetization switching in topological-insulator/ferromagnet
heterostructures [2–4,27–30].

The second harmonic technique was introduced by Garello
et al. [31] to measure spin-orbit torques in ferromagnetic
materials and was modified by Fan et al. [32] to measure
spin-transfer torque in topological-insulator/ferromagnet het-
erostructures. The setup of the second harmonic technique is
similar to that of the ST-FMR in that the spin torque acting on
the ferromagnet results from the charge-to-spin conversion in
a proximal heavy metal or topological insulator layer. How-
ever, the magnetic field that is used in the second harmonic
method is not static but rotates in a plane perpendicular to the
sample and parallel to the RF charge current. The first fre-
quency component of the resulting Hall voltage in the sample
is proportional to the RF current with the Hall resistance as the
proportionality constant. The second harmonic component is
shown to be proportional to the spin-transfer torque with a
proportionality constant that depends on the anomalous Hall
coefficient and the relative orientation of the magnetic field
and the magnetization. Experimental works that utilize this
measurement technique to quantify spin Hall angle include
Refs. [9,32,33].

The photoconductive method has only recently been uti-
lized to study spin Hall effect in topological insulators [7,8].
Unlike the ST-FMR and the second harmonic method, the
photoconductive method does not rely on the presence of
a coupled ferromagnetic thin film to measure the spin Hall
angle. In this method, spin accumulation that appears on the
lateral edges of the sample due to a charge current is directly
probed. That is, by shining a laser light with modulated helic-
ity, the population of the spins can be locally changed. This
change in the population of the spins reflects in a transverse
spin-dependent voltage, which is shown to be proportional to
the spin Hall angle with a proportionality constant that de-
pends on the material geometry and transport properties such
as sample resistivity. Therefore, by measuring the helicity-
dependent photovoltage across the sample one can extract the
value of the spin Hall angle.

III. SPIN HALL CONDUCTIVITY

In the linear response theory, the spin conductivity σ
γ

αβ is a
tensor that connects the applied electric field Eβ to the a spin
current density Jγ

α which is the response of the system, i.e.,
Jγ
α = σ

γ

αβEβ . The spin Hall conductivity is then a component
in which α and β are perpendicular to each other. Utilizing the
Kubo formula, the spin conductivity can be written in terms
of a Berry-like curvature �

γ

αβ,n(k), also called the spin Berry
curvature, as follows [34]

σ
γ

αβ = −
(

e2

h̄

)(
h̄

2e

)∫
d3k

(2π )3

∑
n

f (εn,k)�γ

αβ,n(k), (1)

where f (εn,k) is the Fermi-Dirac distribution function. The
spin Berry curvature is given as

�
γ

αβ,n(k) = h̄2
∑
m �=n

−2Im{〈nk|J γ
α |mk〉〈mk|vβ |nk〉}

(εn,k − εm,k)2
, (2)
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where vβ is the velocity operator and J γ
α = {vασγ }/2 =

(vασγ + σγ vα )/2 is the spin velocity operator. The structure
of the spin Berry curvature suggests that the spin Hall effect
can be viewed as an intermixture of the Bloch functions in
the k space. It is worth noting that the integral of this cur-
vature over the k space is not quantized [17,22], unlike the
Berry curvature in integer quantum Hall systems. Based on
first-principles calculations, Eq. (1) has been used to study the
spin Hall effect in semiconductors [35–37] and heavy metals
[38–40]. Previous calculations on topological insulators have
been performed for HgTe [22] based on first principles and
also for Bi1−xSbx [23] and Bi2Se3 [24,25] based on a tight-
binding and an effective Hamiltonian, respectively. However,
first-principles calculations of the spin Hall conductivity for
(Bi/Sb)2(Se/Te)3 crystals have not been reported previously.

We evaluate Eq. (1) based on first principles for
(Bi/Sb)2(Se/Te)3 crystals. Although this equation can be
evaluated directly from the Bloch functions, a more com-
putationally efficient method involves the Wannier functions
instead. This method was introduced by Wang et al. [41]
for the calculation of anomalous Hall conductivity. Later, the
Wannier method was used to calculate the spin Hall con-
ductivity of transition metal dichalcogenides [37] and α-Ta
and β-Ta [39]. The Wannier method is based on maximally
localized Wannier functions [42] which are constructed by a
unitary gauge transformation of the Bloch basis. The corre-
sponding unitary matrices are obtained via an optimization
scheme in which the spread of the real space Wannier func-
tions is minimized iteratively. Due to the gauge freedom in
the Bloch basis, the Bloch functions calculated from first
principles are generally highly discontinuous in the k space.
Since the Wannier functions are related to the Bloch func-
tions through the Fourier transform, the gauge freedom is
also present in the Wannier basis. However, by maximally
localizing the Wannier functions, it is possible to find a
gauge that provides the most smooth Bloch basis which
enables the evaluation of the Brillouin zone integral over
a fine mesh through an efficient interpolation scheme. Re-
cently, Qiao et al. [39] have implemented this scheme in a
module of the WANNIER90 [43] open source code which we
utilize to calculate the spin Hall conductivity of topological
insulators.

We briefly review the procedure for evaluating Eq. (1).
First, the band structure is calculated on a relatively coarse
mesh in the plane wave basis. The resulting Bloch functions
are then projected onto Wannier functions. The Wannier func-
tions are maximally localized via an optimization process
which provides the optimal unitary transformation between
the Bloch basis and the Wannier basis. The matrix elements
are then calculated in the Wannier basis. Finally, the spin
Berry curvature is integrated on the whole Brillouin zone on a
fine mesh via interpolation.

Although the spin conductivity is a 27-component tensor,
not all components need to be evaluated separately. Recently,
symmetry was utilized to determine the nonzero components
of the spin conductivity tensor and simplify the calculations
in MoS2 and WTe2 [40] and TaAs family of Weyl semimetals
[44]. In the next section, based on the work of Seemann et al.
[45], we discuss the symmetry of (Bi/Sb)2(Se/Te)3 crys-
tals and show how it simplifies the spin conductivity tensor

FIG. 1. The conventional and the primitive unit cell of the trig-
onal crystal of the four binary compounds (Bi/Sb)2(Se/Te)3 where
Bi or Sb elements are denoted by light circles and Se or Te elements
by dark circles. The primitive vectors are drawn in red where α is the
angle between each pair and θ is the polar angle. The first Brillouin
zone along with the reciprocal vectors and the special points are
shown on the right.

where many components become zero and the rest are not all
independent.

IV. CRYSTAL STRUCTURE AND SYMMETRIES

The four binary compounds (Bi/Sb)2(Se/Te)3 share the
same crystal structure which is classified as the trigonal crystal
with a single threefold high symmetry axis. The symmetry
of the crystal is described by the symmorphic space group
R3m (#166). Figure 1 illustrates the conventional hexagonal
unit cell and the primitive rhombohedral unit cell of these
compounds along with the first Brillouin zone. There are
five atoms per unit cell denoted in the figure. The symmetry
of the crystal can predict several properties of the system
such as the number of degeneracies and the selection rules
to identify the components of the linear response tensor that
evaluate to zero.

For instance, the group of the wave vector at the 
 point
of the Brillouin zone is homomorphic to the point group D3d ,
and, therefore, the energy levels at the 
 point are labeled
by the irreducible representation of the double group for
group D3d . Since these irreducible representations are two
dimensional [46,47], there are only twofold degeneracies
at the 
 point which represent the Kramers doublets and
are protected by the time-reversal symmetry. The group of
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the wave vector at other points of the Brillouin zone is a
subgroup of D3d , and, therefore, the bands do not merge into
degenerate ones anywhere in the Brillouin zone. It is possible
that accidental degeneracies appear at a number of points
in the Brillouin zone where some energy levels get close to
each other. These points lead to spikes in the Kubo formula,
where the energy difference between different levels appears
in the denominator and could make the integration over the
Brillouin zone challenging.

Symmetry restricts the spin conductivity tensor through
selection rules which determine the zero matrix elements
of a given operator. These symmetry properties of the spin
conductivity tensor have been worked out by Seemann et al.
[45] based on an earlier method by Kleiner [48]. Within this
method, which takes the Kubo formula as the starting point,
the components of the spin conductivity tensor are derived
in terms of each other through the symmetry elements of
the space group of the underlying crystal. Depending on the
magnetic space group classification, i.e., the magnetic Laue
group, the general form of the tensor changes.

The crystal structure of (Bi/Sb)2(Se/Te)3 which is de-
scribed by the space group R3m corresponds to the non-
magnetic Laue group 3m11′. The spin conductivity tensor is
denoted by σ

γ

αβ where α, β, and γ represent the direction of
the spin current, the direction of the electric field, and the
spin polarization, respectively. The general form of this tensor
according to the symmetry restrictions is as follows [45]

σx =
⎛
⎝ 0 σ

y
xx 0

σ
y
xx 0 −σ

y
xz

0 −σ
y
zx 0

⎞
⎠, (3)

σy =
⎛
⎝σ

y
xx 0 σ

y
xz

0 −σ
y
xx 0

σ
y
zx 0 0

⎞
⎠, (4)

σz =
⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠· (5)

As seen from the above equations, several components
are zero, while not all nonzero components are independent.
For instance, σ x

zy = −σ
y
zx. There are only four independent

components of the tensor namely σ
y
xx, σ

y
xz, σ x

zy, and σ z
xy. Here,

we calculate all these four nonzero components of the spin
conductivity tensor. The majority of the magnetization switch-
ing experiments involve the spin current in the [111] direction
(z direction here, i.e., σ x

zy component) which is referred to spin
Hall conductivity herein unless otherwise stated. We note that
since we are dealing with nonmagnetic space groups which
contain the time-reversal operator as a group element, the
Onsager reciprocity relations are satisfied [45]. As a con-
sequence, the inverse spin Hall conductivity has an equal
magnitude to that of the direct one.

V. RESULTS & DISCUSSIONS

First-principles calculations within the density functional
theory are performed to obtain the band structure and the spin
Hall conductivity of the four topological insulators Sb2Se3,

FIG. 2. The band structure (left) and the spin Hall conductivity
(right) of the four topological insulators Sb2Se3, Sb2Te3, Bi2Se3, and
Bi2Te3. The energy axis is relative to the Fermi energy denoted by
the gray horizontal line.
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FIG. 3. Other components of the spin conductivity tensor al-
lowed by the symmetry namely σ y

xx and σ x
zy. The σ y

xx component is
negligible.

Sb2Te3, Bi2Se3, and Bi2Te3. The details of the first-principles
setup and the calculation of spin Hall conductivity are pre-
sented in the Appendix. Figure 2 illustrates the band structure
of these four compounds on the left column as well as their
corresponding spin Hall conductivity, σ x

zy, as a function of
the energy level on the right column. Both the band structure
and the spin Hall conductivity are obtained in the Wannier
basis. The bands shown in the energy window of the figure
are composed of the s and p orbitals. The fully occupied d
orbitals make highly narrow bands far below the Fermi level
and, therefore, their contributions to the spin Hall effect is
negligible. However, they are included in the pseudopotentials
used for the first-principles calculations of the Kohn-Sham
orbitals.

As seen from Fig. 2, the spin Hall conductivity is nonzero,
albeit small compared to that of heavy metals, and is constant
inside the gap and also to some extent beyond the gap. This
suggests that the bulk in topological insulators could generate
a finite spin current even when the Fermi level is located inside
the gap and at zero temperature. Due to their finite spin Hall
conductivity and limited longitudinal charge conductivity, the
spin Hall angle of bulk topological insulators is comparable
to that of heavy metals. Therefore, bulk topological insulators

FIG. 4. The band-projected spin-Berry curvature, �x
zy,n(k), in the

vicinity of the Fermi energy for Sb2Se3, Sb2Te3, Bi2Se3, and Bi2Te3.
The energy axis is relative to the Fermi energy denoted by the gray
horizontal line.

are an excellent candidate for energy-efficient charge-to-spin
conversion in spin-based devices.

The spin Hall conductivity in all of the four compounds
studied here show mostly a similar dependence on the Fermi
energy. That is, the spin Hall conductivity has a constant mag-
nitude inside the energy gap and has peaks at certain energy
levels where bands get too close to each other and result in
accidental degeneracies. The values of spin Hall conductivity
of Sb2Se3, Sb2Te3, Bi2Se3, and Bi2Te3 at the Fermi level are
93.8, 113, 147, and 218 (h̄/2e)(S/cm), respectively. These
values are of the same order of magnitude as the ones reported

114202-5



S. M. FARZANEH AND SHALOO RAKHEJA PHYSICAL REVIEW MATERIALS 4, 114202 (2020)

TABLE I. Comparison of spin Hall conductivity σ x
zy and the spin Hall angle (efficiency), θ = (2e/h̄)σ x

zy/σyy, from first-principles calcula-
tions and experimental observations.

Experiments Ab initio (this work)

Ref. Material Method Thickness nm |σ x
zy| (h̄/2e)(S/cm) θ σyy (S/cm) |σ x

zy| θ

[2] Bi2Se3 ST-FMR 8 1.1 − 2.0 × 103 2.0 −3.5 5.7 × 102 1.47 × 102 0.26
[32] (Bi0.5Sb0.5)2Te3 Second harmonic 3 180 −425 2.227 × 102 a1.77 × 102 0.79
[27] Bi2Se3 ST-FMR 5 − 10 0.02 −0.34 1 × 103 1.47 × 102 0.15
[28] Bi2Se3 ST-FMR 20 0.1 2.50 × 103 1.47 × 102 0.06
[3] Bi2Te3 ST-FMR 8 4.0 × 103 1.0 3.75 × 103 2.18 × 102 0.06
[29] (Bi, Sb)2Te3 Hall resistance 8.0 0.4 2.488 × 102 a1.77 × 102 0.71
[29] Bi2Se3 Hall resistance 7.4 0.16 9.434 × 102 1.47 × 102 0.15
[4] Bi2Se3 ST-FMR 20 0.3 1.0 × 103 1.47 × 102 0.15
[33] (Bi1−xSbx )2Se3 Second harmonic 5 160 2.44 × 102 a1.09 × 102 0.45
[8] Bi2Se3 Photoconductance 9 0.0085 1.18 × 103 b2.72 × 101 0.023
[9] Bi2Te3 Second harmonic 6 0.08 1.5 × 103 2.18 × 102 0.15

Sb2Se3 9.38 × 101

Sb2Te3 1.13 × 102

aThese values of σ x
zy for alloys are obtained by a weighted average over that of nonalloy compounds.

bThis value reflects the σ z
xy component of the spin conductivity tensor.

in the literature for slightly different materials by different
methods [22,23]. As one goes from low spin-orbit strength of
Sb2Se3 to the relatively higher spin-orbit strength of Bi2Te3,
the magnitude of the spin Hall conductivity at the Fermi level
increases monotonically.

There are three other nonzero components of the spin con-
ductivity tensor, allowed by the symmetry, namely σ

y
xx, σ

y
xz,

and σ z
xy. Figure 3 illustrates the values of these components

over the energy. These components are associated with in-
plane spin currents which cause the spin to accumulate on
the lateral edges of the sample. As seen from the figure,
the values of the σ

y
xx component are minute for all the four

compounds. The values of σ
y
xz and σ z

xy components at the
Fermi energy are, respectively, 113 and 0 for Sb2Se3, 154
and 100 for Sb2Te3, 162 and 27.2 for Bi2Se3, and 314 and
406 for Bi2Te3, all in units of (h̄/2e)(S/cm). Although the
majority of the experimental works involve the magnetization
switching via the out-of-plane spin current, i.e., σ x

zy, the three
other in-plane components also show comparable values. This
has a consequence in an experimental setup. For instance, in a
typical setup where there is usually a substantial perpendicular
electric field (z direction), either from the substrate or the
gates, the component σ

y
xz leads to a spin accumulation at the

lateral edges of the sample.
A more detailed insight into the origin of the finite spin

Hall conductivity inside the gap can be gained by studying the
contributions of the bands in the vicinity of the Fermi energy.
Figure 4 depicts the band projected spin-Berry curvature, i.e.,
�x

zy,n(k), for energies close to the band gap. The bands are
colored by the sign and magnitude of the spin-Berry cur-
vature, i.e., sgn(�x

zy,n(k)) log |�x
zy,n(k)|. The conduction and

the valence bands show large contributions to the spin-Berry
curvature, especially close to the Fermi energy. Moreover, the
sign of �x

zy,n(k) flips suddenly as the energy nears the band
gap. The strong magnitude of the spin-Berry curvature and its
sudden sign flip at the Fermi energy suggests that the spin
Hall conductivity is related to the topological order of the

bands. We also note that previous calculations on trivially
gapped semiconductors [36] show a residual finite spin Hall
conductivity inside the gap, but its origin does not seem to be
topological.

We summarize the recent experimental works on spin Hall
effect in topological insulators in Table I. For each exper-
iment mentioned in this table, several properties are listed
such as the material, the measurement method, the thickness
of the topological insulator, the magnitude of the spin Hall
conductivity (if reported) |σ x

zy|, the spin Hall angle θ , and
the longitudinal charge conductivity σyy. The first-principles
results in this work are listed in the last two columns where
the magnitude of the spin Hall conductivity |σ x

zy| is obtained
at the Fermi energy and the value of the spin Hall angle is
estimated by using the longitudinal conductivity σyy corre-
sponding to each experiment, i.e., θ = (2e/h̄)|σ x

zy|/σyy. For
the nonstoichiometric compounds we report only estimates of
the first-principles spin Hall conductivity by taking a weighted
average over that of the stoichiometric ones. We note that
since there are no experimental data available for Sb2Se3

and Sb2Te3 compounds, only the first-principles results are
reported. It should be noted that the photoconductive experi-
ment measures a different component of the spin conductivity
that is σ z

xy. Therefore, the corresponding first-principles values
of σ z

xy are reported instead.
To compare different experimental techniques and to put

the reported values of spin Hall angle into perspective,
Table I’s data are plotted in Fig. 5. This figure shows the spin
Hall angle of different crystals versus the average atomic num-
ber of their unit cell. In this figure the experimental data points
are denoted by circles and triangles whereas our estimates of
the spin Hall angle based on first-principles calculations are
denoted by + and × symbols with the same color as their
corresponding experimental value reported in other works. As
seen from the figure the majority of the data points lie in
the 0.1 < θ < 1.0 range which is comparable to the values
reported for the heavy metals such as 0.056 < θ < 0.16 for
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FIG. 5. Comparison of spin Hall angle of various bulk topolog-
ical insulators reported experimentally and computed in this work
from first principles. The horizontal axis specifies the average atomic
number of the atoms in the unit cell.

platinum [26] and 0.12 < θ < 0.15 for tantalum [21]. As
mentioned previously, this suggests that for the same spin
current, topological insulators require a lower value of charge
current compared to heavy metals, which possess a relatively
higher conductivity by more than an order of magnitude.

The first-principles results show a reasonable match with
most data points especially for Bi2Se3 which has several data
points. However, two of the data points [32,33] related to the
second harmonic Hall voltage method are orders of magnitude
higher than that of other methods. This large discrepancy is re-
lated to the measurement of the spin-orbit torques. Generally,
there are two different spin torques, fieldlike and dampinglike
torques, that affect the second harmonic voltage. The spin Hall
angle is related to the dampinglike torque (which is caused by
the spin current). In studies [32,33] that report a very large
spin-torque ratio, the contribution of the fieldlike torque in the
Hall voltage is not taken into account. However, in a recent
study [9], which makes a distinction between the two torques
and measures the dampinglike torque separately, it was shown
that the resulting spin-torque ratio is comparable to the spin

Hall angle reported by other techniques such as ST-FMR
method. Another possible reason for this discrepancy could
be magnon scattering which incidentally was reported to be
negligible in Ref. [9]. As mentioned by Yasuda et al. [33],
in certain configurations, the second harmonic methods tend
to overestimate the spin Hall angle because the nonlinearity
of the transverse Hall voltage is dominated by an asymmet-
ric magnon scattering and not by the spin-orbit torque. The
photoconductive experiments [8] provide a lower bound be-
cause no interface or ferromagnetic effects are present and
therefore, the reported spin Hall angle could be attributed
to the intrinsic spin Hall effect in the bulk. Since the first
principles results also reflect only the bulk contribution, one
expects a better match with the photoconductive data points
than with the other methods. However, in the case of Bi2Se3,
the first-principles estimate of the spin Hall angle 0.023 is
higher, by a factor of 3, than the value reported by Liu et al.
[8] that is 0.0085. This discrepancy could be related to the
premises in Ref. [8] where it is assumed that the spin accumu-
lation at the lateral edges of the sample, due to a longitudinal
charge current in the y direction, are z polarized because of
the σ z

xy component. However, based on the symmetry study in
Sec. IV, in the presence of an electric field in the z direction,
there is another component σ

y
xz with a larger contribution to

the spin accumulation at the edges of the sample which could
have affected the measured photovoltage in Ref. [8].

VI. CONCLUSIONS

First-principles calculations of the spin Hall conductiv-
ity of typical topological insulators Sb2Se3, Sb2Te3, Bi2Se3,
and Bi2Te3 show finite values at the Fermi energy. These
values are lower by an order of magnitude than those of
heavy metals. However, due to their relatively low current
conduction capability, the spin Hall angle in topological in-
sulators is comparable to that reported in heavy metals. We
compare theoretical results against experimental observations
of spin Hall angle via direct helicity-dependent photovoltage
measurements as well as in bilayers of topological insula-
tors and ferromagnets using ST-FMR and second harmonic
techniques. The spin Hall angle values from first-principles
calculations tend to underestimate the measured values. This
is because in experiments, mechanisms other than the intrinsic
spin Hall effect may be present, which are not included in
our theoretical calculations. Yet, theoretical results are within
an order of magnitude of measured values. Overall, the first-

TABLE II. Setup parameters of the first-principles calculations and post processing Wannier methods.

Bi2Se3 Bi2Te3 Sb2Se3 Sb2Te3

Pseudopotential type Projector augmented waves [52]
Exchange-correlation functional Generalized gradient approximation [56]
Kinetic Ecut (Ry) 56 56 55 34
Charge Ecut (Ry) 457 457 249 242
k mesh 8 × 8 × 8
Number of bands 90 90 70 70

Wannier projections s and p orbitals
Wannier k mesh 50 × 50 × 50 (adaptive 4 × 4 × 4 mesh)
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principles estimates of the spin Hall angle suggest that the
intrinsic bulk contribution plays a significant role in spin
generation and magnetization switching in bilayers of topo-
logical insulators and thin-film magnets. We acknowledge
the limitation of first-principles study in terms of accuracy.
The general band gap problem of density-functional theory
calculations certainly affects the calculations, but the effect on
the energy levels below the Fermi energy is minimal. Another
issue pertains to the accuracy of the Brillouin zone integration.
Since these materials have a large unit cell and, therefore, a
large Wannier basis, the integration over the Brillouin zone
is quite demanding. We have utilized an adaptive integration
scheme to achieve an optimal tradeoff between complexity
and accuracy. In our calculations, the numerical error is es-
timated to be less than 10% for a reasonable mesh size on
a large CPU cluster (see Supplemental Material [49]). For
a higher accuracy, one might need additional computational
power.
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APPENDIX: COMPUTATIONAL DETAILS

First-principles calculations are performed within the
framework of density functional theory which is implemented
in QUANTUM ESPRESSO suite [50,51]. Projector augmented-
wave [52] pseudopotentials [53] are utilized to reduce the
cutoff energies and improve computational efficiency. The

TABLE III. The parameters describing the crystal structure in-
cluding the lattice constant a, the angle between primitive vectors α,
and the z component of the atomic positions of the five atoms in the
primitive unit cell. The positions are relative to the most bottom atom
denoted in Fig. 1 and are in Cartesian coordinates (in Å units).

a (Å) α (◦) z1 z2 z3 z4 z5

Bi2Se3 10.27 23.56 0.00 6.44 11.92 18.01 23.49
Bi2Te3 10.64 24.20 0.00 6.53 12.37 18.59 24.43
Sb2Se3 10.01 23.53 0.00 6.32 11.60 17.59 22.87
Sb2Te3 10.74 23.26 0.00 6.76 12.44 18.91 24.59

detailed setup description and parameters are listed in Table II.
The crystal parameters of Sb2Se3 are obtained from Ref. [54].
The initial crystal parameters and atomic positions of
the other three compounds are obtained from Materials
Project [55]. The structural relaxation is preformed on the
crystals to set the total force to zero. The crystal parameters
such as the lattice constant a and the angle between primitive
vectors α along with the relaxed atomic positions in the unit
cell are provided in Table III.

The Bloch basis of the first-principles results are converted
to the Wannier basis by projecting into s and p orbitals, which
comprise the bands in the vicinity of the Fermi level. The
initial projected Wannier functions are optimized to obtain a
maximally localized set via WANNIER90 code [43]. Utilizing
the post processing module of the WANNIER90 code developed
by Ref. [39], the maximally localized Wannier functions are
then used to calculate the spin Hall conductivity by evaluating
the matrix elements that appear in the Kubo formula and
integrating the Berry-like curvature over the Brillouin zone.
The numerical details of the Wannier methods are listed in
Table II as well.
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