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Beyond two-center tight binding: Models for Mg and Zr
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We describe a systematic approach to building ab initio tight-binding models and apply this to hexagonal
metals Mg and Zr. Our models contain three approximations to plane-wave density functional theory (DFT):
(i) we use a small basis set, (ii) we approximate self-consistency, and (iii) we approximate many-center
exchange and correlation effects. We test a range of approximations for many-center exchange-correlation and
self-consistency to gauge the accuracy of each in isolation. This systematic approach also allows us to combine
multiple approximations in the optimal manner for our final tight-binding models. Furthermore, the breakdown
of errors into those from individual approximations is expected to be a useful guide for which approximations
to include in other tight-binding models. We attempt to correct any remaining errors in our models by fitting
a pair potential. Our final tight-binding model for Mg shows excellent agreement with plane-wave results for
a wide range of properties (e.g., errors below 10% for self-interstitial formation energies and below 3% for
equilibrium volumes) and is expected to be highly transferable due to the minimal amount of fitting. Calculations
with our Zr model also show good agreement with plane-wave results (e.g., errors below 2% for equilibrium
volumes) except for properties where self-consistency is important, such as self-interstitial formation energies.
However, for these properties we are able to generate a tight-binding model which shows excellent agreement
with non-self-consistent DFT with a small basis set (i.e., many-center effects are captured accurately by our
approximations). As we understand the source of remaining errors in our Zr model we are able to outline the
methods required to build upon it to describe the remaining properties with greater accuracy.
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I. INTRODUCTION

In our previous work [1] we focused on building tight-
binding models for Mg and Zr (hexagonal metals) for
which only pairwise terms were calculated (i.e., two-center
models). The resultant models worked reasonably well for
near-equilibrium structures to which they were fit but led
to unphysical results for structures with large numbers
of many-center interactions (e.g., unrelaxed self-interstitials
were predicted to have negative formation energies). A major
problem was the use of a pairwise approximation for cal-
culating the hopping integrals; these include integrals of the
form 〈Iα|∑K VK |Jβ〉 where φIα (�r) = 〈�r | Iα〉 is an orbital on
atom I , φJβ (�r) is an orbital on atom J (I �= J), and VK is the
potential from atom K . Within our pairwise approximation
we set

∑
K VK ≈ VI + VJ , a standard approximation made in

tight-binding models, which means the effect of the local
environment is not accounted for in this integral. Thus, in
the current work we focus on improving our previous tight-
binding models by accounting for many-center effects more
accurately.

Previous attempts to account for many-center effects on
hopping integrals in tight-binding models can be divided
into three main groups: (i) implicitly accounting for the ef-
fects in two-center functions [2–6], (ii) scaling two-center
integrals by an environmentally dependent term [7–9], and
(iii) applying ab initio corrections for many-center effects,
notably exchange and correlation effects [10–13]. In our
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previous work we attempted to use method (i) by fitting
two-center hopping integrals to the ideal ones for a series
of near-equilibrium perfect crystal structures [1]. Unfortu-
nately we found that the ideal hopping integral, for a given
distance, varied significantly between defect and equilibrium
structures; thus we concluded that it was necessary to use cor-
rections with an explicit environmental dependence. Method
(ii) provides an explicit environmental dependence but relies
on the assumption that many-center effects can be approxi-
mated as a fraction of a two-center interaction. However, our
ab initio two-center hopping integrals contain nodes, often at
interatomic separations near equilibrium crystal bond lengths;
thus, many-center effects would spuriously be predicted as
zero for two atoms separated by this distance. It is therefore
unclear how to apply method (ii) to the current case. We
therefore chose to apply method (iii) in the current work.

In the current work we deal with many-center electrostatic
contributions without approximation by explicitly calculating
up to three-center integrals. These integrals can be done an-
alytically by representing atomic orbitals and potentials as
sums of Gaussian functions, the implementation used in this
work, or from interpolation of pretabulated two-dimensional
values, as used in the FIREBALL code [10]. Unlike electrostatic
terms, many-center exchange-correlation contributions cannot
be split into a sum of three-center terms due to the nonaddi-
tivity of the exchange-correlation potential (νxc). Furthermore
we cannot analytically calculate integrals involving νxc. Thus,
for exchange and correlation we treat up to two-center terms
exactly by using pretabulated integrals and approximate the
remaining many-center effects using the techniques described
in the methods section.
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The choice of hexagonal metals, Mg and Zr, in this work
is motivated by our interest in modeling and understand-
ing corrosion processes in both. Mg is highly abundant,
biodegradable, and the lightest of the structural metals. These
properties mean Mg alloys are useful materials for applica-
tions such as biomedical implants and automotive parts as
lighter parts means better fuel efficiency [14,15]. However,
the use of Mg alloys is currently limited due to their generally
poor resistance to aqueous corrosion [16]. Zirconium alloys
are commonly used for the cladding of nuclear fuel rods. In
operation, the rods are cooled by pressurized water or steam,
leading to buildup of an oxide layer and hydrogen pickup by
the alloy. This corrosion limits the safe operational life of
the fuel and therefore needs to be reduced when designing
improved alloys [17].

In order to study corrosion using tight binding, we need
models that are accurate for structures that are far from equi-
librium. Studying aqueous corrosion of Mg will require, in
particular, a model which describes surfaces (the site of cor-
rosion) well and leads to accurate electronic structure as the
metal will become charged during corrosion processes. For Zr
we need to be able to describe radiation induced defect struc-
tures accurately, notably point defects and dislocations and
how they interact with each other. With these considerations
we have chosen to test the ability of our models to predict
a wide range of properties including formation energies of
self-interstitials and vacancies, the hcp (0001) surface energy,
near-equilibrium structural properties, and the bulk structure
density of states.

We will first give a brief description of our methodology; a
more detailed description of many aspects can be found in our
previous paper [1]. Our focus will then be on ways of correct-
ing many-center exchange-correlation effects as we examine a
range of corrections in isolation to assess the accuracy of each
approximation which goes into our model. This allows us to
combine not just the most accurate individual approximations
but those which have favorable error-cancellation properties.
We will subsequently focus on corrections for the large self-
consistency effects found for Zr. Finally, we present results
from the tight-binding models we developed in this work;
focusing on accuracy, limitations, and possible improvements
to the models.

II. METHODS

A. The Harris-Foulkes functional

The Harris-Foulkes functional represents the starting point
for our tight-binding calculations [18,19]. This functional ap-
proximates the Kohn-Sham functional with a Taylor series
expansion around a reference density; this is most easily seen
in the Hohenberg-Kohn [20] formulation:

E [n] = E [n(0)]︸ ︷︷ ︸
E0

+
∫

δE

δn(�r)

∣∣∣∣
n(0)

q(�r)d�r︸ ︷︷ ︸
E1

+ 1

2

∫∫
δ2E

δn(�r)δn(�r′)

∣∣∣∣
n(0)

q(�r)q(�r′)d�rd�r′

︸ ︷︷ ︸
E2

+ . . .

= E0 + E1 + E2 + . . . , (1)

where n(0) is the reference density and q(�r) is the differ-
ence between the actual density and reference density: q(�r) =
n(�r) − n(0)(�r). In our case E0 is the energy generated by
the sum of atomic densities. Only the kinetic energy and
nonlocal pseudopotential terms require explicit knowledge of
the atomic orbitals and can be precalculated. The remaining
terms in E0 can be calculated without approximation without
reference to orbitals and most can be precalculated: A single
integral over the density is needed, however, for exchange
and correlation. E1 represents the energy from the first order
electronic relaxation; its calculation requires the building of
a Hamiltonian and density matrix based on the potential gen-
erated by the reference density. Higher order terms account
for contributions from self-consistency. In the current work
we generally truncate the expansion at E1 (non-self-consistent
models) but also explore the use of approximations for E2

(self-consistent models) for Zr.

B. Approximating E0

E0 can be split up into contributions from the isolated
atoms (E atom

I ), a pairwise sum of potentials (representing
attraction or repulsion between them), and a correction for
many-center exchange and correlation effects (EMB

xc ):

E0 =
∑

I

E atom
I + 1

2

∑
I �=J

VIJ (RIJ ) + EMB
xc [n(0)], (2)

where I and J are atom indices, VIJ is the pair potential, and
RIJ is the distance between two atoms. The pair potential can
be calculated and tabulated in advance, leading to rapid eval-
uation. The sum over atomic energies will cancel out when
comparing energies of different structures: as a result, we gen-
erally work with the cohesive energy, defined as the difference
between the energy of the system we are interested in and the
free atoms. We can obtain this by subtracting

∑
I E atom

I from
E0, leaving just pairwise and multicenter contributions. EMB

xc
can either be calculated using numerical integration, which is
expensive, or be approximated.

We approximate EMB
xc contributions by using a Taylor

expansion of the exchange-correlation energy density (εxc)
around an effective density which differs for each atom (n̄I ).
It is unclear how to do a similar analysis to include gradient
corrections, hence this is an approximation to the many-center
LDA Exc value. The total Exc can be calculated this way as:

Exc ≈ Ẽxc =
∑

I

∫
nI (�r) {εxc(n̄I ) + ε′

xc(n̄I )(n(�r) − n̄I )

+ 0.5ε′′
xc(n̄I )(n(�r) − n̄I )2}d�r. (3)

The first order terms can be eliminated by an appropriate
choice of effective density,

n̄I =
∑

J

∫
nI (�r)nJ (�r)d�r∫

nI (�r)d�r ,
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leaving:

Ẽxc =
∑

I

εxc(n̄I )
∫

nI (�r)d�r + 1

2
ε′′

xc(n̄I )

[∫
n(�r)n(�r)nI (�r)d�r − 2n̄I

∫
n(�r)nI (�r)d�r + n̄2

I

∫
nI (�r)d�r

]
. (4)

In order to get the many-center correction within this approx-
imation we need to subtract off the one-body and two-body
terms:

�ẼMB
xc = Ẽxc

[∑
I

nI

]
−

∑
I

Ẽxc[nI ]

− 1

2

∑
I �=J

(Ẽxc[nI + nJ ] − Ẽxc[nI ] − Ẽxc[nJ ]). (5)

If we truncate equation (4) at zeroth order we recover the
uniform density approximation we introduced in our previous
paper [1]. This approximation requires only two-center inte-
grals to be calculated (to get the effective densities), and is
thus highly efficient. However, we can calculate up to second
order [the full expression in equation (4)] with three-center
integrals; we test both zeroth-order and second-order approx-
imations in the current work.

C. Approximating E1

E1 approximations can be split into those for hopping
integrals and crystal-field integrals (〈Iα|∑K �=I VK + νxc|Iβ〉).
For hopping integrals we approximate many-center exchange
and correlation effects using the McWEDA method. This is
described in detail in Ref. [11]; we note that within this
approximation two-center exchange correlation is treated ex-
actly for hopping integrals while many-center effects are
calculated as an approximation to the local density approx-
imation (LDA) many-center effects in a similar fashion to
our approximate E0 corrections. In terms of efficiency, this
requires three-center integrals over the density; these have a
similar computational cost to the integrals used to calculate
electrostatic terms. For crystal-field terms we test both the
McWEDA method and the Sankey-Niklewski (SN) many-
center correction with two-center terms treated exactly (the
whole method, two-center and correction, is referred to as
just the SN correction below) [1,13]. In both cases many-
center exchange and correlation effects are approximations
to the LDA result. There are two main differences between
these corrections: (i) the SN correction treats up to two-
center exchange and correlation exactly, while the McWEDA
crystal-field correction treats all exchange and correlation ap-
proximately, and (ii) the SN correction ignores off-diagonal
terms while the McWEDA correction does not.

D. Approximating E2

We approximate self-consistency within a tight-binding
framework by using the methods described in Ref. [21].
Briefly, this involves representing the charge density in terms
of charge density moments. Solving the Harris-Foulkes equa-
tions for a given set of input charge density moments allows
us to obtain a new set of moments from the density matrix.
We vary the input charge density moments until we obtain a

set of output moments that is sufficiently close to the input
moments used to calculate them; i.e., we solve the Harris-
Foulkes functional self-consistently with respect to the charge
density moments.

The charge density moments enter the Harris-Foulkes func-
tional through the E2 term for which we approximate only the
Hartree contribution.

E2 ≈ δEHa = 1

2

∫
δn(�r)δn(�r′)

|�r − �r′| d�rd�r′ (6)

We represent these changes in density in terms of atom-
centered charge density moments:

δn(�r) =
∑
Ilm

QIlmgIlm(�r), (7)

where QIlm are charge density moments, gIlm are atom-
centered multipoles, the index I runs over atoms, and the
combined lm indices run over multipoles. Each multipole
function is expressed as:

gIlm(�r) = e−αI (|�r− �RI |)2
KIlm(�r − �RI ), (8)

where KIlm is a spherical harmonic function representing the
angular dependence while the radial dependence is repre-
sented by a single Gaussian function, which has been found
to be sufficient in previous studies [21,22]. We use spherical
harmonics with l = 0,1,2 in the current work, which corre-
spond to monopoles, dipoles, and quadrupoles, respectively.
The parameter αI varies between elements and is derived from
the Hubbard parameter.

αI = π

8
U 2

I (9)

This is calculated ab initio in the current work. With the
charge density moments defined, the approximate E2 energy
can be written as:

E2 ≈ 1

2

∑
Ilm,Jl ′m′

QIlmQJl ′m′

∫
gIlm(�r)gJl ′m′ (�r′ − �RIJ )

|�r − �r′| d�rd�r′

≈ 1

2

∑
Ilm,Jl ′m′

QIlmQJl ′m′ BIlm,Jl ′m′ ( �RIJ ). (10)

This leads to the following corrections to the Hamiltonian
being required:

δHIαJβ = 1

4

∑
Klm,l ′m′

QKlm
(
Ml ′m′

JβIα

(
BJl ′m′Klm + BKl ′m′Jlm

)
+ Ml ′m′

IαJβ (BIl ′m′Klm + BKl ′m′Ilm)
)

(11)

Mlm
IαJβ ( �RIJ ) =

∫
φIα (�r)Klm(�r)φJβ (�r − �RIJ )d�r. (12)
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E. Conventions for naming methods

We employ the same naming convention for methods as
our previous paper. Firstly, LCAO is the name given to the
method whereby we calculate E0 and E1 terms in the Harris-
Foulkes functional without approximation. The scf-LCAO
method involves using the Kohn-Sham functional with our
small basis sets and is thus fully self-consistent. Other method
names are based on the ways in which they approximate
the LCAO method. Approximation to LCAO is divided into
three parts: hopping integral approximations (H), crystal-field
integral approximations (XT), and E0 approximations (PP).
The overall method name is created by writing each label fol-
lowed by any approximations to LCAO used. For example, the
method name H_Ex_XT_Mc_PP_2b means hopping terms
are treated exactly (Ex), crystal-field terms are treated with
the McWEDA approximation (Mc), and E0 terms are treated
exactly up to two-body (2b). For self-consistent models an
extra scf label is added to the method name followed by
a number representing the order of the multipole expansion
used; scf0, scf1, and scf2 represent methods using up to
monopoles (zeroth-order), dipoles, and quadrupoles, respec-
tively. For example, H_Ex_XT_Ex_PP_Ex_scf0 represents
the LCAO method with self-consistency approximated by a
zeroth-order multipole expansion.

The hopping integral methods used in this paper are
two-body exchange-correlation (2bxc), the McWEDA ap-
proximation (Mc), and exact (Ex). The crystal field methods
used are two-body (2b), two-body plus the SN correction
(2b_mbSN), McWEDA (Mc), and exact (Ex). For E0 terms
the methods we use are two-body (2b), a fitted two-body
pair potential (fit), the uniform density approximation to ze-
roth order (uden0), to second order (uden2), and exact (Ex).
Multiple approximations can follow each main label; for ex-
ample, in the “H_Mc_XT_Mc_PP_fit_uden0” method E0 is
calculated using a combination of the fitted pair potential and
the zeroth-order uniform density approximation. Note that the
2b approximation for crystal-field and pair-potential terms is
equivalent to the 2bxc approximation.

F. Fitting the pair potential

Generating our tight-binding models involves replacing the
ab initio pair potential in E0 with a fitted pair potential. This
is a common method in tight-binding models to account for
errors introduced by the various approximations (e.g., small
basis sets used and neglect of many-center effects). Our start-
ing point is to fit an analytical form to the ab initio pair
potential. We use four free parameters (Ai) and use a func-
tional form based on the work of Krishnapriyan et al. [2] and
described in more detail in our previous paper [1].

f (r) = f0ζ (r)N (r)T (r)

ζ (r) = exp

(
p∑

i=1

Ai(r − r0)i

)

N (r) =
nnodes∏
n=1

r − rn

r0 − rn

T (r) = exp

(
d

r − rc

)
, (13)

where d is set to 0.5 a0, r0 is a reference bond length, f (0)
is the value of the (initial) pair potential at r0, rc is a cutoff
distance, and rn is the position of a node. The number of nodes
was fixed to that of the initial pair potential, but their positions
were allowed to vary in the fit. Note that, in the current case,
each pair potential had only a single node. Also note that the
tail function [T (r)] ensures that the fitted potential decays to
zero outside the radius of each atom (all basis functions also
decay to zero by this point).

We judge the goodness of fit (GOF) to a given property P

as GOF = w

√
(P−P0 )2

P0
, where P0 is the reference value of the

property and w is a weight (larger meaning more important).
When fitting to dissociation curves (where GOF is evaluated
at each dimer separation), the total GOF was taken as the
average GOF for each structure; this means that adding more
structures will not automatically increase the GOF value. The
total objective function for fitting is simply the sum of all
individual GOF values.

We fit the Mg pair potential to reproduce plane-wave re-
sults for hcp equilibrium volume (V0), bulk modulus (B0),
and LCAO dissociation energies between 2.0 a0 and 5.0 a0.
The fitting to short-ranged dissociation energies is to ensure
that the pair potential remains sufficiently repulsive at short
distances which would not otherwise be represented in the
objective function. The weights for V0, B0, and the dissoci-
ation energy curve were 50, 5, and 10, respectively. We fit the
Zr pair potential to reproduce plane-wave results for hcp V0,
hcp B0, bcc V0, the separation between hcp and bcc energies
at equilibrium (�Ebcc), and LCAO dissociation energies be-
tween 2.0 a0 and 5.0 a0. The weights for Zr were 50, 5, 50, 10,
115 for hcp V0, hcp B0, bcc V0, �Ebcc, and the dissociation
curve, respectively. In both cases weights were chosen such
that the relative error of V0 was 10 times as important as
B0; this simply reflects that we believe a 1% error in V0 is
as acceptable as a 10% error in B0. The weights chosen for
the dissociation energy curves were simply those found to be
large enough to affect the outcome of the fitting procedure;
the effects of systematically tuning these weights were not
investigated.

We found that our Mg model predicted an unphysical
maximum at ≈2 a0 in the dissociation energy curve (see
ESI [23] for the relevant figure). Though these separations
are unlikely to occur in any simulations we nonetheless fit
a repulsive exponential to dissociation energies in this range;
this was multiplied by a tail function with a cutoff of 2 a0 such
that the potential could not affect interactions at any larger
separations, thus this fit could be carried out after the main fit
to the pair potential.

G. Computational details

Plane-wave calculations were carried out using CASTEP,
while all other calculations were carried out using the PLATO

tight-binding code [24,25]. We used the PBE functional for
all calculations unless explicitly stated otherwise [26]. For
plane-wave calculations we used cutoff energies of 450 eV
for Zr and 500 eV for Mg; for all other calculations we used
the same single-zeta spd basis sets as in Ref. [1], unless
explicitly stated otherwise. Note that our spd basis was tuned
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TABLE I. Effects of various E0 approximations on selected structural and defect properties for Mg. The interstitial energy is for the
octahedral site. The surface energy is for the unrelaxed surface. LCAO involves calculating E0 without approximation; the accuracy of other
methods can be judged by their agreement with the LCAO method.

Unrelaxed Relaxed hcp(0001)
Hcp V0 Vacancy Interstitial Surface E

Method
(
a3

0 per atom
)

EF (eV) EF (eV) (J m−2)

H_Ex_XT_Ex_PP_2b 137.8 1.34 2.84 0.94
H_Ex_XT_Ex_PP_uden0 158.5 1.08 2.52 0.84
H_Ex_XT_Ex_PP_uden2 164.2 0.92 2.00 0.78
LCAO 155.9 1.08 2.33 0.84

to reproduce properties of the solid system. For plane-wave
calculations we used pseudopotentials with core charges of 10
and 12 for Mg and Zr, respectively. For all other calculations
we used Goedecker type pseudopotentials with core charges
of 2 and 4 for Mg and Zr, respectively; these are the same
pseudopotentials commonly used in the CP2K code [27,28].
Note that we used a Zr pseudopotential that was optimized for
an LDA functional, due to the lack of availability of a suitable
Goedecker pseudopotential optimised for the PBE functional.
All relaxed structures were optimized using plane-wave calcu-
lations; only single-point energy calculations were carried out
with the tight-binding models. Further methodological details
can be found in the ESI [23].

III. RESULTS

A. Approximating E0

The effects of our E0 approximations can be seen by
comparing LCAO results to those of H_Ex_XT_Ex_PP_2b,
H_Ex_XT_Ex_PP_uden0, and H_Ex_XT_Ex_PP_uden2 (Ta-
ble I for Mg, ESI [23] for Zr). The pairwise approximation for
E0 is exact except for its neglect of many-center exchange-
correlation terms.

The zeroth-order uniform density approximation is gener-
ally found to dramatically improve results compared to the
pairwise approximation; equilibrium volumes are very close

to the LCAO values and defect energies are generally greatly
improved (the exceptions being the Zr relaxed octahedral
and split self-interstitials). Surprisingly, including the second-
order term in the uniform density approximation leads to less
accurate results than truncating after the zeroth order term.
The reasons for this can be seen in Fig. 1 for Mg (ESI [23]
for Zr), which shows the many-center exchange-correlation
contributions to E0 under various approximations. Focusing
on the Mg results, it can be seen that the LDA approximation
leads to far larger many-center effects than the generalized
gradient approximation (GGA). Our uniform density cor-
rection is an approximation to these (larger than required)
LDA many-center terms. When we take only the zeroth-
order term we obtain a relatively small fraction of the LDA
many-center correction and are left with a correction which
approximates the GGA many-center energy well. If we go to
a higher order correction we obtain a greater fraction of LDA
many-center energy, meaning we overcorrect with respect
to the GGA many-center energy. The second-order uniform
density approximation overcorrects an increasing amount as
volume is decreased and thus the correction spuriously stabi-
lizes large volume structures. To summarize, the zeroth-order
uniform density approximation works well for Mg due to
error cancellation; this term underestimates the repulsive LDA
many-center effects by an amount similar to the attractive
many-center gradient corrections. For Zr, similar results are

(a) (b)

FIG. 1. Many-center (three-center and above) contributions to exchange-correlation E0 for hcp Mg using various approximations. (a) Ab-
solute energies, (b) energies relative to the GGA value. LDA corrections refer to the uniform density approximation. Note that energies are for
the whole (two-atom) unit cell. The calculations used to obtain these curves are described in the ESI [23].
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TABLE II. Effects of various E1 approximations on selected structural and defect properties for Mg. The interstitial energies are for the
octahedral site. LCAO involves calculating E1 without approximation; the accuracy of other methods can be judged by their agreement with
the LCAO method.

Unrelaxed Relaxed Unrelaxed hcp(0001)
Hcp V0 Vacancy Interstitial Interstitial Surface E

Method
(
a3

0 per atom
)

EF (eV) EF (eV) EF (eV) (J m−2)

H_2bxc_XT_Ex_PP_Ex 0.09 −12.84 −743.32 0.37
H_Mc_XT_Ex_PP_Ex 161.7 0.64 1.86 5.26 0.66
H_Ex_XT_2b_PP_Ex 164.5 0.92 1.96 −230.58 0.78
H_Ex_XT_2b_MbSN_PP_Ex 155.0 1.09 2.15 5.47 0.85
H_Ex_XT_Mc_PP_Ex 149.6 1.29 2.74 6.87 0.94
H_Mc_XT_2b_MbSN_PP_Ex 160.9 0.66 1.70 −0.06 0.67
H_Mc_XT_Mc_PP_Ex 154.2 0.82 2.25 6.34 0.75
LCAO 155.9 1.08 2.33 6.58 0.84

obtained except that the absolute error for the zeroth order
correction is larger; in this case the important factor is that the
error in zeroth order energy has a smaller volume dependence
(rather than absolute value) than the second order energy.

These results suggest that the zeroth order uniform den-
sity approximation will likely be best, in terms of accuracy
and speed, for models attempting to approximate DFT with
GGA functionals. For models built as approximations to LDA
functionals, the second order correction will provide signif-
icantly greater accuracy. For models which already include
computing three-center terms, the extra cost of the second
order E0 correction will generally be a small fraction of the
total calculation cost. Its use may even be feasible for models
which are otherwise two-center, since its maximum scaling is
only K3, where K is the number of atoms, compared to N2K
for three-center matrix elements, where N is the number of
basis functions.

B. Approximating E1

Approximations for E1 can be split into two parts; hop-
ping integral corrections and crystal field integral corrections.
For hopping integrals, the McWEDA method can be seen to
greatly improve results compared to the pairwise treatment:
compare H_Mc_XT_Ex_PP_Ex to H_2bxc_XT_Ex_PP_Ex
(Tables II and III). In particular, for Mg it leads to stable

energy vs volume curves. Nonetheless, when this is the only
approximation applied we could not find a minimum in the
energy-volume curve for Zr. The reason for this unphysical
result can be demonstrated by studying the density of states
for a compressed Zr structure (Fig. 2). High-energy states in
the LCAO calculations are spuriously lowered in energy when
using McWEDA hopping integrals; once a certain level of
compression is reached these states enter the valence band and
spuriously stabilize the structures. Compared to two-center
exchange correlation, the effect is significantly smaller when
using the McWEDA correction (see ESI [23] for a comparison
of the density of states) but still leads to spurious stabilization
of small volume structures.

As with hopping integrals, our corrections for crystal-
field terms lead to significantly improved results for
Mg and Zr compared to the pairwise case (compare
H_Ex_XT_2b_PP_Ex, H_Ex_XT_2b_MbSN_PP_Ex, and
H_Ex_XT_Mc_PP_Ex with LCAO, these methods only differ
in how crystal-field terms are treated). Of the two corrections,
the SN method leads to significantly more accurate calculated
properties. In terms of electronic structure, both corrections
lead to qualitatively good agreement with LCAO results near
the Fermi level (Fig. 2). Both corrections also lead to spurious
destabilization of high-energy conduction band states, with
the effect being greater for the McWEDA correction. This
contrasts with the effect of using the McWEDA correction for

TABLE III. Effects of various E1 approximations on selected structural and defect properties for Zr. The interstitial energies are for the
octahedral site. LCAO involves calculating E1 without approximation; the accuracy of other methods can be judged by their agreement with
the LCAO method.

Unrelaxed Relaxed Unrelaxed hcp(0001)
Hcp V0 Vacancy Interstitial Interstitial Surface E

Method
(
a3

0 peratom
)

EF (eV) EF (eV) EF (eV) (J m−2)

H_2bxc_XT_Ex_PP_Ex 96.00 −47.51 −288.41 24.77
H_Mc_XT_Ex_PP_Ex 2.04 1.01 2.02 1.37
H_Ex_XT_2b_PP_Ex 37.47 −4.73 −123.20 7.74
H_Ex_XT_2b_MbSN_PP_Ex 152.5 2.54 1.62 3.18 1.60
H_Ex_XT_Mc_PP_Ex 152.6 3.34 2.69 4.47 2.10
H_Mc_XT_2b_MbSN_PP_Ex 146.3 1.99 0.92 1.51 1.36
H_Mc_XT_Mc_PP_Ex 151.1 2.75 2.13 3.32 1.85
LCAO 156.9 2.56 1.97 3.53 1.60
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FIG. 2. Effects of E1 corrections on the density of states for a
compressed (115 a3

0 per atom) Zr hcp structure. The Fermi level is
located at 0 eV.

hopping integrals, whereby high energy states are spuriously
stabilized. As a result, mixing the McWEDA hopping correc-
tion with either crystal-field correction leads to a stable model
despite the fact that the McWEDA hopping correction alone
led to an unstable model. The useful error cancellation upon
mixing these approximations can be seen from the density of
states plot in Fig. 3; the states at the bottom of the valence
band in H_Mc_XT_Ex_PP_Ex are shifted into the conduction
band when either crystal-field approximation is added.

In isolation, the McWEDA hopping correction and the SN
crystal field corrections are the most accurate approximations
for the hopping and crystal field terms, respectively. However,
in creating a tight-binding model we need to use the correc-
tions which lead to the best results when combined. Focusing
on E1, this is achieved by combining McWEDA hopping
and crystal field corrections (compare H_Mc_XT_Mc_PP_Ex
and H_Mc_XT_2b_MbSN_PP_Ex). This is a result of error
cancellations between crystal field and hopping terms within
the McWEDA approximation. This useful error cancellation
can be observed in the effect of each correction (hopping and

FIG. 3. Effects of combining different E1 corrections on the den-
sity of states for a compressed (115 a3

0 per atom) Zr hcp structure.
The Fermi level is located at 0 eV.

crystal field) on the Mg equilibrium volume V0. Using the
McWEDA hopping correction alone leads to a Mg V0 value
which is ≈6 a3

0 per atom larger than the LCAO result, while
the McWEDA crystal field correction in isolation leads to V0

being ≈6 a3
0 per atom smaller than the LCAO result; thus

combining these approximations leads to a result very close
to the LCAO value. We will therefore approximate the E1

energy using the McWEDA correction for both crystal field
and hopping terms. We note that to improve upon this would
require a better description of both crystal field and hopping
terms simultaneously; improving the description of either in
isolation will only lead to useful error cancellations being lost.

While we use the McWEDA approximation for both crys-
tal field and hopping integrals in this work, the greater
accuracy of the SN approximation for crystal field terms
suggests it may be superior for models which use different
approximations for the hopping integrals. It is likely to be
particularly useful for systems where two-center hopping in-
tegrals are sufficient, but many-center interactions still play an
important role. One possible example is organic materials un-
der pressure; reasonable results have been obtained for these
systems using environmentally screened or fitted hopping in-
tegrals [3,7,29,30]. The addition of explicit, fitted many-center
crystal field corrections has previously been found to improve
results for these systems suggesting these interactions are
important [7,30]. Results in the current paper suggest the SN
correction may offer a simpler method (requiring no fitting) to
account for these interactions in similar systems.

C. Approximating E2

We have previously found that the E2 term (i.e., self-
consistency) is highly important in describing properties such
as self-interstitial energies in Zr but not Mg [1]. In the current
work, we have also found that unstable stacking fault energies
are highly sensitive to self-consistency effects for Zr but not
Mg. We will therefore focus on Zr in this section, as E2 = 0
appears to be a sufficiently accurate approximation for Mg.

Large self-consistency effects suggest that the reference
electronic density (built from linear combinations of atomic
densities) can be far from the true relaxed electron density for
a system. Thus, we tested effects of using different atomic
densities when building the reference density; the method-
ology and results are described in full in the ESI [23], but
we will briefly summarize the main points here. We built
our varying atomic densities from atomic calculations with
different enforced orbital occupancies; d2s2 (which we use for
all results in the main paper), d3s1, and d4s0 configurations
were used. We note in passing that the choice of atomic
configuration also has an effect on the basis set: See the ESI
for more information. For the I2 stacking fault along the [10-
10] displacement pathway we found that errors in stacking
fault energies (but not absolute energies) from neglecting self-
consistency increased significantly in the order d4s0 < d3s1 <

d2s2, suggesting that using the d4s0 configuration would be
the best way to reduce stacking-fault errors in our models.
In contrast, errors from self-consistency in energy-volume
curves increased in the opposite order, d2s2 < d3s1 < d4s0.
Thus, perfect crystals appear to be best described as a lin-
ear combination of Zr d2s2 atomic densities. In terms of Zr
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TABLE IV. Effects of various E2 approximations on selected properties for Zr. All energies except the hcp0001 surface energy and unstable
I2 stacking fault are for the relaxed structures. scf-LCAO includes all self-consistency effects; the accuracy of other methods can be judged by
their agreement with this method. The missing value for the unstable I2 stacking fault with the LCAO method indicates that the value could
not be calculated, due to absence of a maximum in a reasonable position on the relevant displacement curve.

Property LCAO LCAO_scf0 LCAO_scf1 LCAO_scf2 scf-LCAO

Basal octahedral EF (eV) 1.13 1.50 1.90 2.07 2.61
Basal tetrahedral EF (eV) 2.86 2.35 2.72 3.14 4.11
Crowdion EF (eV) 2.08 1.28 2.11 1.88 3.00
Octahedral EF (eV) 1.97 2.44 2.53 3.22 2.71
Split EF (eV) 1.28 2.70 3.05 2.78 2.45
Average self-interstitial EF error (%) 39 33 24 23 0
Hcp0001 surface energy (J m−2) 1.60 8.50 −1.64 9.70 2.23
Stable I1 stacking fault (mJ m−2) 85 1036 −1496 305 101
Stable T2 stacking fault (mJ m−2) 220 845 424 −30 249
Unstable I2 stacking fault (mJ m−2) 905 362 394 180

model development, these results show that an approxima-
tion for self-consistency (rather than a change in reference
atomic density) is required for an accurate description of
both energy-volume curves and stacking faults using the same
model.

Table IV shows the effect of various E2 approxima-
tions (including LCAO, with E2 = 0) on Zr properties
sensitive to self-consistency. The simplest, explicit approxi-
mation (LCAO_scf0) involves treating atomic charge density
moments as spherical and is very similar to the standard SCC-
DFTB approach to self-consistency introduced in Ref. [31].
The scf0 correction leads to a slight increase in the overall
accuracy for self-interstitial energies, though it leads to EF

shifting in the wrong direction for two out of five cases. For
all other properties the scf0 approximation leads to a shift in
the correct direction but, generally, with a magnitude that is
too large. The inclusion of dipole (scf1) and quadrupole (scf2)
terms to describe changes in charge densities leads to further
large shifts, compared to scf0, in defect formation energies.
This demonstrates that the use of charge monopoles is too re-
strictive to reasonably describe the environmental-dependent
changes in atomic charge density for Zr. However, while the
scf1 and scf2 corrections improve the accuracy (relative to
scf0) of many properties they also lead to unphysically neg-
ative stacking fault formation energies.

The tested approximations to E2 were found to be in-
sufficient to accurately describe Zr properties sensitive to
self-consistency effects. Nonetheless, the use of the scf0 ap-
proximation, by overcorrecting for scf effects, led to all defect
formation energies being positive, in contrast to the LCAO
method and the use of higher order multipole terms. Therefore
we will use the scf0 approximation for our final Zr model.
While this will not lead to high quantitative accuracy for
properties sensitive to self-consistency, it is at least expected
to lead to a stable model.

D. The final TB models

We build our final Mg and Zr models using the same
corrections for E0 and E1 terms; E0 is calculated using a
pair potential with an empirically fitted correction plus the
zeroth-order uniform density approximation while E1 terms

are calculated using the McWEDA method for both hopping
and crystal field terms. We completely neglect E2 contribu-
tions (i.e., self-consistency) for the Mg model, while we use
the scf0 correction for the Zr model. Thus, these models
can be labeled as “H_Mc_XT_Mc_PP_fit_uden0” for Mg
and “H_Mc_XT_Mc_PP_fit_uden0_scf0” for Zr. Note that,
while we add the scf0 correction for Zr, the pair potential
was fit such that the “H_Mc_XT_Mc_PP_fit_uden0” model
reproduced the relevant results (described in more detail in
Sec. II F).

We report slightly different properties for Zr and Mg, based
on the desired use cases. For Zr we report results for a wider
range of self-interstitial structures, while for Mg we report
multiple surface energies (compared to one for Zr). Further-
more, for Mg we report results for the model before and after
fitting a pair potential in the main paper, while this is deferred
to the ESI [23] for Zr so that differences in the model with and
without the scf0 approximation can be discussed more clearly.

1. Mg

Figure 4 shows the DoS for hcp Mg using our final model
compared to plane-wave results. We find an excellent agree-
ment between tight-binding and plane-wave results, with only
slight differences near the Fermi energy. The good agreement
up to 1 eV above the Fermi energy is especially encouraging,
as this suggests that adding charge to the system should lead to
the correct extra states being populated. The small remaining
errors in the DoS for our model are due to the approxima-
tions we make for calculating E1; this can be deduced from
the slightly improved agreement of plane-wave DoS with the
LCAO and scf-LCAO methods, which is shown in the ESI
[23].

Figure 5(a) shows energy vs volume curves for the final Mg
model compared to plane-wave results. An excellent agree-
ment between our model and plane-wave results is observed
for both the hcp (which was fit to) and fcc (which was not fit
to) structures. The agreement for bcc is significantly worse,
though still reasonable. We note that the bcc structure is rel-
atively unimportant for most applications since it will not be
the most stable except under conditions of high pressure [32].
The calculated unrelaxed elastic constants (reported in the ESI
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(a) (b)

FIG. 4. Density of states for the hcp experimental geometry for (a) Mg and (b) Zr calculated using our final tight-binding models and
plane-wave DFT. Note the Fermi level is at 0 eV.

[23]) show an average error of 16% compared to plane-wave
results; this contrasts favorably with both our previous two-
center model (29% error) and a previous model from Gotsis
et al. (38% error for relaxed elastic constants compared to
experiment) [33].

Self-interstitials may be expected to present the most
difficult test for our models, due to the large number of many-
center effects present which we approximate. Despite this, our
final Mg model leads to accurate self-interstitial energies for
both split and octahedral sites, even for an unrelaxed structure.
Our final model is slightly less successful for a vacancy, with
EF underestimated by ≈40%. However, a large portion of this
error comes from our fitting of the pair potential. Thus, in
applications where this error in vacancy EF is important it
may be possible to use the H_Mc_XT_Mc_PP_uden0 method
at the cost of less accurate structural parameters.

The calculated surface energies from our model are in
very good agreement with plane-wave results, despite these
quantities being overestimated by both LCAO and scf-LCAO
methods. Thus, this close quantitative agreement is due to
cancellation of errors from the limited basis set with errors
from the approximate treatment of integrals. However, all
methods in Table V show approximately the same ratios
between the three surface energies, suggesting that the essen-
tial differences between interactions in the varying surfaces
are captured even without fitting the empirical pair-potential
correction. In terms of surface energies, our model contrasts
favorably with both embedded atom models (EAMs), which
can have difficulties separating the (0001) and (10-10) surface
energies and a previous tight-binding model where absolute
values of surface energies were overestimated by 40–60%
[33–35].

(a) (b)

FIG. 5. Energy-volume curves for (a) Mg and (b) Zr using our final tight-binding models (dashed lines) and plane-wave calculations (solid
lines). These models correspond to labels H_Mc_XT_Mc_PP_fit_uden0 for Mg and H_Mc_XT_Mc_PP_fit_uden0_scf0 for Zr.
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TABLE V. Selected properties calculated with our final Mg model compared to reference values. The final model (pre-PP fit) corresponds
to the H_Mc_XT_Mc_PP_uden0 method; the final model (post-PP fit) corresponds to the H_Mc_XT_Mc_PP_fit_uden0 method. The unstable
stacking fault energy is calculated using unrelaxed structures. Self-interstitial, vacancy, stable stacking fault, and surface energies are calculated
with structures relaxed at the plane-wave level unless otherwise stated. (10-10)s and (10-10)l refer to the “short” and “long” terminated surfaces,
see ESI [23] for more details.

Final model Final model
Property (pre-PP fit) (post-PP fit) LCAO scf-LCAO Plane-wave

hcp V0 (a3
0peratom) 157.1 154.5 155.9 158.7 154.5

hcp B0 (GPa) 41.3 36.5 41.8 37.7 36.0
Vacancy EF (eV) 0.80 0.46 1.04 1.03 0.78
Unrelaxed octahedral interstitial EF (eV) 6.76 6.96 6.58 6.73 6.17
Octahedral interstitial EF (eV) 2.44 2.14 2.33 2.35 2.25
Split interstitial EF (eV) 2.50 2.36 2.37 2.36 2.33
I1 stable stacking fault (mJ m−2) 10.6 11.1 18.4 21.3 20.4
I2 stable stacking fault (mJ m−2) 12.2 15.2 27.8 34.3 33.0
T2 stable stacking fault (mJ m−2) 26.7 26.7 39.1 46.6 42.2
I2 unstable stacking fault (mJ m−2) 108 96 101 106 105
(0001) surface energy (J m−2) 0.75 0.60 0.84 0.84 0.55
(10-10)s surface energy (J m−2) 0.83 0.66 0.91 0.93 0.62
(10-10)l surface energy (J m−2) 1.15 0.95 1.27 1.31 0.88

Our Mg model significantly underestimates the absolute
values of the basal plane stable stacking fault energies, with
values ≈50% smaller than plane-wave results. The majority
of this error comes from our approximate treatment of inte-
grals, as can be seen from comparing our final model with
the LCAO results which lead to significantly more accurate
values. Despite errors in absolute stacking fault energies, our
model successfully captures the differences between I2, I1, and
T2 stacking faults well; the ratio between I1, I2, and T2 stable
stacking fault energies is 1.0:1.4:2.4 for our model compared
to 1.0:1.6:2.1 for plane-wave results. Furthermore, Fig. 6
demonstrates that our model provides a qualitatively correct
description of the I2 displacement along the [10-10] direction,
which is expected to be a good approximation to the minimum
energy pathway, with the unstable stacking fault energy within
10% of the plane-wave value. In terms of absolute errors for
the I2 stacking fault our model is similar to multiple oth-
ers; previous tight-binding and EAM models which were not

directly fit to the I2 stable stacking fault generally show errors
between 30% and 50%, though lower errors can be obtained
with fitting [33,36–38]. Our models I2 unstable stacking fault
error (< 10%) is slightly better than is found when comparing
EAM directly to DFT results; for example, the model of Pei
et al. led to an unstable fault of 72 mJ m−2 compared to 91
mJ m−2 from DFT calculations under the same conditions
[36,38]. More importantly, our model can reasonably capture
differences in the I1, I2, and T2 stacking faults. In contrast,
EAM models are expected to lead to a ratio of 1:2:2 for the
I1:I2:T2 stable stacking fault energies, as is found for the case
of Zr models [39,40]. In summary, our Mg model provides
a good overall description of the stacking faults investigated
despite the significant errors in the absolute values of stable
stacking fault energies.

Overall, our final Mg model leads to results that are gen-
erally close to plane-wave accuracy for a wide range of prop-
erties. This is despite only fitting a pairwise potential to hcp

(a) (b)

FIG. 6. Stacking fault energies for varying magnitude displacements along the [10-10] direction for the I2 stacking fault from plane-wave
calculations compared to our final models for (a) Mg and (b) Zr. Displacement magnitude is in terms of the lattice parameter a; a value of ≈1.7
corresponds to a displacement back to the original structure. Note that only the initial structure (displacement=0) was relaxed.
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TABLE VI. Selected properties calculated with our final Zr model compared to reference values. The final model (no scf) corresponds to the
H_Mc_XT_Mc_PP_fit_uden0 method; the final model (scf0) corresponds to the H_Mc_XT_Mc_PP_fit_uden0_scf0 method. Self-interstitial,
vacancy, and stable stacking fault energies are calculated with structures relaxed at the plane-wave level unless otherwise stated. The unstable
stacking fault energy is calculated using unrelaxed structures. Missing values for the unstable stacking fault indicates that no maximum was
found in the expected range of displacements.

Final model Final model
Property (no scf) (scf0) LCAO scf-LCAO Plane-wave

hcp V0 (a3
0 per atom) 158.1 158.1 156.9 155.3 157.8

hcp B0 (GPa) 88.6 88.6 90.7 99.4 90.7
Vacancy EF (eV) 1.32 1.31 2.42 2.48 2.03
Unrelaxed octahedral interstitial EF (eV) 3.99 10.60 3.53 6.96 8.86
Octahedral interstitial EF (eV) 1.93 2.45 1.97 2.71 3.02
Split interstitial EF (eV) 1.53 3.14 1.28 2.45 3.24
Crowdion interstitial EF (eV) 2.05 1.24 2.08 3.00 3.49
Basal tetrahedral interstitial EF (eV) 2.81 2.38 2.86 4.11 4.57
Basal octahedral interstitial EF (eV) 1.36 1.76 1.13 2.61 3.09
I1 stable stacking fault (mJ m−2) 94.1 995.9 84.6 101.3 140.4
I2 stable stacking fault (mJ m−2) 134.5 569.0 132.9 150.6 211.6
T2 stable stacking fault (mJ m−2) 235.5 806.8 219.9 249.2 325.3
I2 unstable stacking fault (mJ m−2) 831 180 295
(0001) Unrelaxed surface energy (J m−2) 1.14 6.93 1.60 2.23 1.70

structural properties and an LCAO dimer dissociation energy
curve. We therefore expect this model to have good transfer-
ability, due to the minimal amount of fitting combined with
the model accurately describing a wide range of properties.

2. Zr

Figure 4 shows the electronic structure for Zr in our final
model compared to plane-wave results. A good agreement is
seen between the DoS from plane-wave calculations and our
model up to, and slightly above, the Fermi level. The small
remaining errors are due to the use of a finite basis set, as
is demonstrated by the similar agreement between scf-LCAO
and plane-wave results (shown in the ESI [23]).

Figure 5(b) shows that our final model accurately cap-
tures energy-volume curves for Zr: This is expected as these
properties were included in the fitting process. While the bcc
structure is slightly stabilized relative to hcp by our model,
the agreement with plane-wave results is better than for the
LCAO method. In particular, the change from hcp to bcc as
the ground state happens at a similar volume per atom for
plane wave and tight-binding results (≈135 a3

0 and ≈130
a3

0 for tight binding and plane wave, respectively, see ESI
[23]). The unrelaxed elastic constants show an average error of
17% compared to plane-wave results; this is a similar, though
slightly smaller, error compared to our previous two-center
model (25% error) and a previous Zr model from Schnell
et al. (23% error in relaxed elastic constants compared to
experiment) [41]. Overall, our Zr tight-binding model appears
to accurately capture near-equilibrium structural properties
well.

Our Zr model is not able to accurately reproduce plane-
wave self-interstitial energies; for example, the EF for the
crowdion interstitial is approximately a third of the plane-
wave value (Table VI). Part of these errors can be attributed
to finite basis set effects, as is shown by scf-LCAO EF being

consistently smaller than the plane-wave values. This un-
derestimation of EF can be rationalized by the dissociation
energy curve of Zr-Zr, which has a minimum at ≈3 a0 for
scf-LCAO compared to ≈4.5 a0 for plane-wave calculations
(see ESI [23]). Errors in these short-ranged interactions likely
result from the inadequate pseudopotential, but it is unclear
whether this is due to the pseudopotential being optimized for
LDA or semicore states being significantly perturbed. Regard-
less, the majority of the error in calculating self-interstitial
energies with our model comes from our approximate de-
scription of self-consistency. This can be seen by comparing
results for LCAO with those for our model without the
scf0 approximation, whereby differences are small. Thus, our
model accurately captures the non-self-consistent terms in the
Harris-Foulkes functional, but the low accuracy of our self-
consistency correction means the model cannot accurately
describe self-interstitial structures.

Figure 6 shows the I2 stacking fault energies for displace-
ments along the [10-10] direction for our final model. This
leads to the correct shaped curve, but stacking fault ener-
gies are approximately three times higher than plane-wave
results. Similarly, the T2 and I1 stable stacking faults are also
overestimated by our model. As for self-interstitial EF , the
majority of these errors come from inaccuracies in the scf0
approximation; this can be seen from the good agreement
between LCAO results and our model without the scf0 cor-
rection. Basis set errors also cause a reduction in the absolute
values of stable stacking fault energies, as can be seen from
differences in scf-LCAO and plane-wave results. However, the
scf-LCAO method (which contains only basis-set errors) still
provides the correct ordering of stable stacking fault energies
(I1 < I2 < T2) and contains a maximum in a reasonable posi-
tion for the I2 [10-10] displacement curve.

In summary, our Zr model provides a good description
of electronic and structural properties for near-equilibrium
geometries but cannot accurately describe self-interstitial EF
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or stacking faults. We have shown that these remaining errors
come from the inaccuracy of the scf0 correction for self-
consistency. Thus, use of a more accurate self-consistency
approximation is required in order to yield a model capable
of describing stacking faults and self-interstitial EF with high
accuracy (Table VI).

IV. CONCLUSIONS

We have presented a methodology for building tight-
binding models capable of describing systems containing
large numbers of many-center interactions. Our models con-
tain three main approximations to plane-wave DFT calcula-
tions: (i) a smaller basis set, (ii) approximate self-consistency,
and (iii) approximate many-center exchange correlation. We
have quantified the errors introduced by each of these approx-
imations, with the main focus being on isolating errors from
a range of many-center exchange-correlation approximations.
This quantification of individual errors allowed us to combine
approximations in the most pragmatic manner to understand
the origins of remaining errors and should help others to
judge which approximations may be useful in their own model
development.

We were able to find the most accurate approximations
for E0 (uniform density to zeroth order), crystal-field (the SN
correction) and hopping terms (the McWEDA correction) by
looking at each approximation individually. Understanding
errors from individual approximations allowed us to com-
bine them in a pragmatic manner such that error cancellation
between approximations could be exploited. This is demon-
strated by our use of the McWEDA correction for crystal-field
integrals, despite the SN method being more accurate, due
to the favorable error cancellation found between McWEDA
crystal-field and hopping terms. While this combination of
approximations is likely to be useful for systems with large
many-center effects, other combinations may be more useful
in more open systems. Of the approximations we tested in this
work, only the McWEDA hopping and second-order uniform
density approximations required up to three-center terms to be
included. Thus, any other approximation could be included in
two-center ab initio models without adding significant com-
putational expense. Our quantification of the accuracy of each
individual approximation indicates that the SN correction for
crystal field terms and the uniform density approximation for
E0 could be inexpensive additions to improve accuracy and
transferability of models where the use of optimized two-
center hopping integrals is sufficient, for example models for
studying organic materials or biomolecules [3,42,43].

Standard self-consistency approximations, with changes
in the charge density represented as a multipole expansion,
were found to be insufficient to accurately describe the large
self-consistency effects for Zr. We found the results varied
significantly between scf0, scf1, and scf2 methods, which
suggests a large degree of error likely comes from these
expansions being too inflexible to accurately describe the
environmental-dependent changes in charge densities. It is
also possible that some of the remaining errors come from
neglect of exchange-correlation contributions to E2. Regard-
less, we have found that more refined approximations to E2

are necessary to account for self-consistency for describing

defects in metallic Zr; there are various ways in which this
might be accomplished. For example, the use of multiple
Gaussian functions to represent the radial dependence of each
multipole moment may lead to a sufficiently flexible basis for
describing changes in charge density; this is similar to the use
of multiple Hubbard parameters proposed in Ref. [44], where
it was suggested that this may be particularly important for
systems with d electrons. One obvious way to implement this
would be to have a charge distribution that has the right shape
for the s orbitals and a second one with the correct shape for
the d orbitals; this would allow the model to describe electron
transfer between these orbitals. A second possibility would
be to include corrections for anisotropic exchange-correlation
contribution to E2, as is used in Ref. [45]. A different approach
would be to add fitted integrals or an empirical potential
to try to reproduce plane-wave results for properties sen-
sitive to self-consistency, similar to the approach taken for
many empirical tight-binding models which involve fitting to
self-consistent DFT calculations (and therefore implicitly in-
clude self-consistency effects) [5,8,9,46]. Applying this to our
model would have the advantage of being more transparent
than previously used implicit methods, but it is unclear how
well an implicit treatment could handle large self-consistency
effects.

We have presented a Zr model which provides a good
description of electronic structure and structural properties
for near-equilibrium structures. However, we were not able
to create a model which provides an accurate description
of defect energies due to the large self-consistency effects
in Zr. Nonetheless, our final model (without the scf0 cor-
rection) leads to good agreement with LCAO results which
demonstrates that we are able to capture the many-center con-
tributions to E0 and E1 accurately. More refined corrections
for self-consistency will need to be added to the model in
order to approximate the plane-wave results well; the model
in this paper (without the scf0 correction) provides a strong
starting point for this.

Our final Mg model accurately reproduces results close
to plane-wave values for a range of electronic, structural,
and defect properties; this includes self-interstitial energies,
surface energies, and equilibrium lattice volumes. This was
accomplished with only a minimal amount of fitting, with
even the unfitted version of the final model providing reason-
ably accurate results. This high accuracy for a wide range of
properties demonstrates the transferability of this model and
gives us confidence that it captures the essential aspects of
Mg-Mg interactions in the metallic phase.
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