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Combining DFT and CALPHAD for the development of on-lattice interaction models:
The case of Fe-Ni system
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We present a model of pair interactions on rigid lattice to study the thermodynamic properties of iron-nickel
alloys. The pair interactions are fitted at 0 K on ab initio calculations of formation enthalpies of ordered and
disordered (special quasirandom) structures. They are also systematically fitted on the Gibbs free energy of the
γ Fe-Ni solid solution as described in a CALPHAD (CALculation of PHAse Diagrams) study by Cacciamani
et al. This allows the effects of finite temperature, especially those of magnetic transitions, to be accurately
described. We show that the ab initio and CALPHAD data for the γ solid solution and for the FeNi3-L12 ordered
phase can be well reproduced, in a large domain of composition and temperature, using first and second neighbor
pair interactions which depend on temperature and local alloy composition. The procedure makes it possible to
distinguish and separately compare magnetic, chemical, and configuration enthalpies and entropies. We discuss
the remaining differences between the pair interaction model and CALPHAD, which are mainly due to the
treatment of the short-range order and configurational entropy of the solid solution. The FCC phase diagram
of the Fe-Ni system is determined by Monte Carlo simulations in the semigrand canonical ensemble and is
compared with experimental studies and other models. We especially discuss the stability of the FeNi-L10 phase
at low temperature.
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I. INTRODUCTION

Atomistic Monte Carlo simulations of phase transforma-
tion kinetics in metallic alloys (precipitation, ordering, etc.
[1–13]) require interaction models that allow a precise de-
scription of the thermodynamic and kinetic properties of the
materials, while remaining simple enough to model systems
of a few million atoms over long periods of time (their
evolution being controlled by thermally activated diffusion
mechanisms). Models using effective interactions on rigid
lattices—although limited to coherent problems—are among
the most widely used and have become more reliable since
they are systematically fitted to ab initio calculations of ma-
terials properties at 0 K (such as the formation energies of
ordered phases or special quasirandom structures, point defect
formation and migration energies, etc.) [5,7,13].

Evaluating nonzero temperature effects from ab initio
methods is more difficult: calculations of vibration entropy,
for example, are in principle possible but are computation-
ally expensive and are usually limited to simple systems
(e.g., pure metals, perfectly ordered phases, or dilute alloys).
Modeling the effect of magnetic transitions and magnetic
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disorder—especially important in iron based alloys—is also
very challenging. Alternatively, the temperature dependence
of pair interactions can be adjusted on experimental data,
for example on phase diagrams, but these adjustments are
often made on a case-by-case basis. We propose here a new
approach to systematically fit a pair interaction model both
on ab initio calculations at 0 K and, for high temperatures,
on a CALPHAD-type model. CALPHAD models provide an
accurate description of the Gibbs free energies of the differ-
ent phases of an alloy, based on empirical thermodynamic
models fitted (mainly) on large numbers of experimental mea-
surements. They also provide a specific description of some
important contributions (e.g., magnetic contributions in iron-
based alloys). The objective of this paper is to show how to
establish a term-to-term correspondence between the empiri-
cal models used in CALPHAD and the effective interactions
of a lattice model, to show the improvements that this brings
to the description of a particular alloy, but also to discuss the
limits of such a correspondence.

We apply this approach to Fe-Ni alloys with a face-
centered cubic structure (FCC). Recent ab initio [16,17] and
CALPHAD [18,19] studies are available for this system.
The thermodynamic properties of Fe-Ni alloys have been
much studied, because of their industrial interest and because
they still raise unresolved questions. The phase diagram of
the Fe-Ni system (Fig. 1) is well known at temperatures above
400 ◦C [20]: The FCC solid solution γ is stable over the
whole composition range and over a wide temperature range.
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FIG. 1. The phase diagram of the Fe-Ni system (from
Refs. [14,15]).

The body centered cubic (BCC) solid solution α is stable
below 912 ◦C and only with nickel contents below approx-
imately 10%. A two-phase domain α − γ is observed in
iron-rich alloys, and an ordered FeNi3 phase (with the L12

structure) is formed below 516 ◦C.
At lower temperatures, the phase diagram is—as usual—

more difficult to establish, because of slow diffusion
processes. However, irradiation experiments [21–23], obser-
vations of meteorites [15,24], and ab initio studies [16,17]
suggest that other ordered FCC phases may be stable or
metastable (notably the FeNi phase of L10 structure and the
Fe3Ni phase of L12 structure). Many CALPHAD studies have
sought to complement the Fe-Ni phase diagram by extrapolat-
ing at low temperatures the empirical thermodynamic models
fitted to experiments at high temperatures. This is especially
difficult in the case of Fe-Ni, and as a result, the proposed
phase diagrams show significant differences [15,18,20,25]. A
particular difficulty of this system is that the experimental
data are obtained essentially in paramagnetic phases, whereas
the ordered phases are ferromagnetic. Magnetic contributions
are indeed taken into account in CALPHAD approaches, but
again by empirical models using experimental data and still
under discussion [25].

Atomistic models combining the information from exper-
iments and first principle methods may provide additional
insight on these issues. A few rigid lattice interaction models,
fitted to ab initio calculations, have been developed for Fe-
Ni alloys: Mohri et al. [26] proposed a cluster expansion to
study the stability of the ordered compound FeNi-L10 in the
framework of a CVM approximation: They found an ordering
temperature of 483 K (taking into account the vibration en-
tropy, which lowers it by about 40 K). But they did not study
the FeNi3 phase, nor the effect of the ferro-to-paramagnetic
transition. Effective interactions models including an explicit
description of the magnetic moments have been proposed for
Fe-Ni alloys, using Ising [27–30] or Heisenberg [30,31] mod-
els for the magnetic interactions and parameters fitted to the

experimental transition temperatures. Similar magnetic mod-
els have been also used in phase-field simulations of ordering
and precipitation of the FeNi3 phase [32]. More recently
Lavrentiev, Wrobel et al. [33,34] developed a magnetic cluster
expansion (MCE), based on a Heisenberg-Landau Hamilto-
nian, fitted to ab initio calculations. Its properties have been
studied by Monte Carlo methods, but the combined equilibra-
tion of the chemical and magnetic configurations is very costly
in computational time, and the complete phase diagram of the
MCE model of Fe-Ni remains to be established.

In the present paper, we propose a pair interaction model
(PIM) based on a rigid lattice approximation, aimed at model-
ing the Fe-Ni system. The model does not describe explicitly
the magnetic moments, nor the lattice relaxations, which
makes it faster to process in Monte Carlo simulations. It only
involves pair interactions between atoms that depends both on
the local composition and temperature. Finite temperature ef-
fects of magnetic transitions or of lattice vibrations (harmonic
and nonharmonic) on the energetic proprieties are taken into
account through these dependencies.

The outline of this paper is as follows: Section II is devoted
to the thermodynamic models of FCC phases in the Fe-Ni
system. We briefly recall the Gibbs free energy models used
in the CALPHAD approaches, focusing on the recent study of
Cacciamani et al. [18] (Sec. II A) then the available ab initio
results on the properties of Fe-Ni alloys (in particular those
of K. Li and C.-C. Fu [17]) (Sec. II B). We then show how to
reproduce these results with the PIM in Sec. II C. In Sec. III,
we use Monte Carlo simulations in the semicanonical grand
ensemble to measure the Gibbs free energies of the FCC alloys
and to build the FCC phase diagram.

II. THERMODYNAMIC MODELS

Our PIM is built using both a CALPHAD study and
ab initio calculations. We therefore recall the main informa-
tion provided by these two approaches before to explain how it
can be reproduced with effective interactions on a rigid lattice.

A. CALPHAD models

Several CALPHAD-type studies have been proposed for
the Fe-Ni system: The most recent are those of Cacciamani
et al. [18] and Ohnuma et al. [19] (for older ones, see the
reviews in Refs. [15,20]). Within the CALPHAD framework,
a Gibbs free energy model can be defined for each of the
phases to be considered (e.g., in the Fe-Ni system, the α and
γ solid solutions and the different ordered phases). This gives
great flexibility to fit the parameters to the experimental data.
We will fit our PIM parameters to the study by Cacciamani
et al. [18] (which will be hereafter simply referred to as
the “CALPHAD model” or even as “CALPHAD”), but the
following presentation and procedure could easily be adapted
to other CALPHAD studies.

1. The γ solid solution

The Gibbs free energy per atom of the solid solution γ

(FCC) Fe1−xNix is:

Gγ = Gγ

ref + Gγ
ex + Gγ

mag + Gγ

id. (1)
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This is the total Gibbs free energy, including the entropy of
configuration. (Note that in CALPHAD one rather uses molar
energies, in J mol−1. We convert them in energies per atom,
in eV).

Gγ

ref is the nonmagnetic contribution of pure metals:

Gγ

ref = (1 − x)Gγ

Fe − xGγ

Ni, (2)

where Gγ

Fe and Gγ

Ni are the Gibbs free energy of pure Fe and
pure Ni. Gγ

ex is the excess Gibbs free energy, written as a sum
of Redlich-Kister polynomials:

Gγ
ex = x(1 − x)

∑
i

Lγ
i (T )(1 − 2x)i (3)

(from i = 0 to 2 in Ref. [18]).
Gγ

mag is the magnetic contribution:

Gγ
mag = −kBT f (τ ) ln(β(x) + 1) (4)

τ = T/Tc(x), where Tc(x) is the Curie temperature, β(x) the
average magnetic moment of the γ solid solution, and f (τ )
is a polynomial function of the reduced temperature. Tc(x)
and β(x) are also given by Redlich-Kister polynomials of the
composition x, fitted to experimental measurements. Different
expressions and values have been proposed [25]; those used
by Cacciamani et al. are given in Ref. [18].

Gγ

id corresponds to an ideal entropy of configuration:

Gγ

id = −T Sγ

id = kBT [x ln x + (1 − x) ln(1 − x)], (5)

i.e., to the configuration entropy of a perfectly disordered solid
solution with no short-range order. Note that the excess term
[Eq. (3)] may include a nonideal configurational part, but it
is not identified as such. Finally, the Gibbs free energy of
mixing is:

Gγ

mix = Gγ − (1 − x)G′γ
Fe − xG′γ

Ni, (6)

where G′γ
Fe = Gγ

Fe + Gγ
mag(x = 0) and G′γ

Ni = Gγ

Ni + Gγ
mag(x =

1) are the total Gibbs free energies of the pure metals, includ-
ing the magnetic part.

2. Ordered phases

In the study by Cacciamani et al. [18], the ordered phases
FeNi3 (L12), Fe3Ni (L12), and FeNi (L10) are modeled within
the framework of the Compound energy formalism (CEF)
with four sublattices. An additional term is added to the Gibbs
free energy of the γ phase, which depends on the distribution
of species on the different sublattices and on interaction ener-
gies (limited to the first nearest neighbors) fitted to ab initio
calculations of the formation enthalpy of the perfectly ordered
phase. In the present work, we will use more detailed ab initio
studies, involving both ordered and disordered configurations
and summarized in the following section.

B. Ab initio calculations

1. Density functional theory method

In this work, the 0 K formation enthalpies of Fe-Ni ordered
and disordered phases are fitted to those computed in the
ab initio study of Ref. [17]. The essential computational points
are presented in the following.

TABLE I. Formation enthalpies of FCC ordered phases in Fe-Ni
(DFT calculations from Ref. [17]).

Ordered phase Hfor (eV/atom)

Fe7Ni-cI32 0.039273
Fe3Ni-L12 −0.01636
Fe3Ni-Z1 −0.04414
Fe2Ni-C11 f −0.06991
FeNi-L11 −0.04040
FeNi-L10 −0.10797
Fe2Ni-C11 f −0.08064
FeNi2-L12 −0.10879
FeNi7-cI32 −0.04541

The ab initio calculations were performed using density
functional theory (DFT) with the projector augmented wave
method [35,36] as implemented in the VASP (Vienna ab ini-
tio simulation package) [37–39]. The generalized gradient
approximation for the exchange-correlation functional in the
Perdew-Burke-Ernzerhof parametrization [40] was employed.
All the calculations are spin polarized. 3d and 4s electrons
were considered as valence electrons. The plane-wave basis
cutoff was set to 400 eV. The Methfessel-Paxton broadening
scheme with a smearing width of 0.1 eV was used [41]. The k-
point grids were generated according to the cell size to achieve
a k-sampling equivalent to a cubic unit cell with a 16 × 16 ×
16 shifted grid following the Monkhorst-Pack scheme [42].
The zero-point energies, which can be significant for light
elements, have been calculated in the ordered phases. Their
contribution to the mixing enthalpies is very small (typically
0.001 to 0.003 eV) and has been neglected in the following.
FCC solid solutions were represented by special quasirandom
structures (SQS) [43] minimizing Warren-Cowley short-range
order parameters [44,45], with 128-atom and 108-atom su-
percells for antiferromagnetic-double-layer and ferromagnetic
phases, respectively.

2. Ordered phases

The formation enthalpies of nine ordered structures on the
FCC lattice, calculated by Kangming et al. [17] using the
DFT method presented in the previous section, are given in
Table I and Fig. 2. The ordered structures are ferromagnetic,
except for Fe7Ni-cI32 which is ferrimagnetic. The formation
enthalpies are defined with the antiferromagnetic FCC iron
and the ferromagnetic FCC nickel as reference states. The
trends are the same as in a previous study by Mishin et al.
[16]: Only the FeNi-L10 and FeNi3-L12 phases are located on
the convex hull (Fig. 2) and must therefore be stable at low
temperature on the FCC lattice. However the FeNi7-cI32 and
Fe2Ni-C11 f phases are close to the stability limit.

3. Special quasirandom structures

The formation enthalpies Hfor of special quasirandom
structures (SQS) of different compositions have also been
calculated in the same study with different magnetic states.
These structures are representative of random solid solutions.
They were generated by standard methods, with a minimiza-
tion of Warren-Cowley short-range order parameters. They
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FIG. 2. Formations enthalpies of ordered FCC structures at 0 K
(DFT calculations from Ref. [17]).

are described in Ref. [17], with a detailed analysis of their vol-
ume and magnetic moments. We just recall here the energetic
results used for the PIM parametrization.

The most stable SQS are found to be double-layered anti-
ferromagnetic for x < 0.184 and ferromagnetic for x > 0.184
(red circles in Fig. 3). One observes an asymmetrical evo-
lution of Hfor with the composition, as already predicted in
the study by Cacciamani et al., with mainly negative values
(i.e., a tendency to order) and a minimum in the vicinity of
the composition of the FeNi3 phase. However, the SQS values
are significantly larger than the CALPHAD ones (Fig. 3) and
are even slightly positive for x < 0.20 (as already obtained by
Sansa et al. [46], using a tight-binding approach).

C. Pair interaction model

We propose to reproduce the properties of Fe-Ni alloys
with a model of concentration- and temperature-dependent
pair interactions on a perfect FCC lattice. This pair interaction
model (PIM) is based on a similar one developed for Monte
Carlo simulations of BCC Fe-Cr alloys [9,47], which had
however not been fitted systematically on a CALPHAD model
and did not explicitly distinguish a magnetic contribution.

The essential assumption of the PIM is that the Gibbs
free energy (per atom) of a given configuration, i.e., a given
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FIG. 3. Formations enthalpies at 0 K of quasirandom FCC struc-
tures (DFT calculations [17]) and FCC solid solutions (CALPHAD
[18], with separate magnetic and excess contributions).

distribution of nFe Fe atoms and nNi Ni atoms (N = nFe + nNi)
on the FCC lattice, can be written as a sum of interactions
g(n)

i j (x, T ) between pairs of i and j atoms on nth neighboring
sites:

Gconf = 1

N

∑
i j

g(n)
i j (x, T ). (7)

The pair interactions depend on the temperature T and the
Ni concentration x (we will omit these dependencies in the
following to simplify the notations). The dependence on con-
centration is required to reproduce an asymmetric evolution
of formation enthalpies, as observed in Figs. 2 and 3. The
dependence on temperature describes the entropic contribu-
tions (electronic, vibrational, and magnetic) other than the
configuration entropy, so the g(n)

i j are indeed “pair Gibbs free

energies” and can be written as g(n)
i j = h(n)

i j − T s(n)
i j [48].

To facilitate the comparison with CALPHAD models, each
interaction g(n)

i j is written as a sum of a nonmagnetic (nm) and
a magnetic term (mag). Gconf is therefore the sum of

Gnm
conf = 1

N

∑
i j

gnm(n)
i j (8)

which accounts for the chemical and vibrational contributions,
and of

Gmag
conf = 1

N

∑
i j

gmag(n)
i j . (9)

The total Gibbs free energy of the alloy is

G = Gconf − T Sconf, (10)

where Sconf is the entropy of configuration, which will be eval-
uated from Monte Carlo simulations. The Gibbs free energy
of mixing Gmix is

Gmix = G − (1 − x)G′
Fe − xG′

Ni. (11)

G′
Fe is the Gibbs free energy of pure iron, on the same FCC

lattice:

G′
Fe = Gnm

Fe + Gmag
Fe (12)

=
∑

n

zn

2

(
gnm(n)

FeFe + gmag(n)
FeFe

)
(13)

=
∑

n

zn

2
g(n)

FeFe, (14)

where zn is the coordination number for the nearest neighbors
n. The same expressions apply to pure nickel.

1. High temperatures: Fitting of the pair interactions to
CALPHAD

In the PIM, the Gibbs free energy of mixing of a perfectly
disordered solid solution is

Gmix(x, T ) = x(1 − x)
∑

n

vn(x, T ) − T Sid, (15)

where the ordering parameters vn are defined as

vn(x, T ) = g(n)
FeNi − 1

2

(
g(n)

FeFe + g(n)
NiNi

)
. (16)
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FIG. 4. Formations enthalpies of quasirandom FCC structures
at 0 K: ab initio calculations (DFT) and pair interaction model
(PIM, with the excess and magnetic contributions). The formations
enthalpy of the γ solid solution of CALPHAD is also shown for
comparison.

To reproduce the properties of the CALPHAD model, we
identify the nonmagnetic part of the ordering parameters [in
Eq. (15)] to the excess Gibbs free energy of CALPHAD
[Eq. (3)]:

∑
n

vnm
n (x, T ) = Gγ

ex

x(1 − x)
(17)

and their magnetic part to the magnetic Gibbs free energy of
CALPHAD [Eq. (4)]:

∑
n

vmag
n (x, T ) = Gγ

mag

x(1 − x)
. (18)

The fitting of the PIM parameters on CALPHAD can be
summarized to the equations (16)–(18). It is worth noticing
that it is based on an approximation: Equation (15) is exact
only for a disordered solid solution, i.e., at sufficiently high
temperatures. In the real solid solution, a short-range order
may exist, and the configuration entropy does not reduce to an
ideal term.

2. Low temperatures: Fitting of the pair interactions to
ab initio calculations

To reproduce the properties of a solid solution at 0 K, the
same method can be used by fitting vn(x, T ) on the formation
enthalpies of SQS calculated by DFT. The magnetic part re-
mains fitted to the magnetic model of CALPHAD [Eq. (18)]
and the nonmagnetic part is fitted so that the sum of the mag-
netic and nonmagnetic contributions of the PIM reproduces
the DFT formation enthalpies. A good agreement is obtained
with a Redlich-Kister polynomial of order 5 (instead of 2
for Gγ

ex in Ref. [18]), as shown in Fig. 4 (with, respectively,
the magnetic part, the nonmagnetic part, and the total mixing
enthalpies of the PIM). The fitting coefficients LDFT

j of the
polynomial are given in Table II, corresponding to the orange
curve in Fig. 4. As mentioned above, this gives mixing en-
thalpies above those predicted by CALPHAD at 0 K.

This fit of pair interactions [using Eq. (15)] to the CAL-
PHAD model or to the formation enthalpies of SQS, only
involves the sum of vn and can be done with any range n of

TABLE II. The coefficients LDFT
j of the Redlich-Kister polyno-

mial for the excess enthalpy of mixing of the γ solid solution of the
PIM (in eV).

LDFT
0 LDFT

1 LDFT
2 LDFT

3 LDFT
4 LDFT

5

−0.03696 0.09631 −0.04722 0.21141 −0.04752 −0.18389

interactions. However, it is well known that in FCC ordered
structures, the phase diagram and in particular the order-
disorder temperatures, depend strongly on the ratio = v2/v1

[49]. The fit is also independent of the choice of the com-
position x (local or global) in Eqs. (17) and (18). Therefore, it
does not provide a very accurate description of the interatomic
interactions in Fe-Ni alloys.

To get a better description of the thermodynamic prop-
erties, the range of interactions and the ratio between the
interactions at different distances is fitted to the DFT cal-
culations of the formation enthalpies of the ordered phases
(Table I). With only first nearest neighbors (nn) interactions
[Fig. 5(a)], the PIM model underestimates the formation
enthalpies of the ordered phases, especially those of the
FeNi-L10 and FeNi3-L12 phases.
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FIG. 5. Formations enthalpies of FCC ordered phases at 0 K:
ab initio calculations (DFT, full circles) and pair interaction model
(PIM, open circles) with (a) only first nn interactions, (b) first and
second nn interactions, α = v2/v1 = −0.7.
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TABLE III. Formation enthalpies of FCC ordered phases in
a pair interaction model with first and second nearest neighbor
interactions.

Ordered phases x1 x2 HPIM
for

Fe7Ni-cI32 1
34

5
34

3
2 v1 + 3

4 v2

Fe3Ni-L12
9
34 0 3v1

Fe3Ni-Z1 11
34

9
34 2v1 + 1

2 v2

Fe2Ni-C11 f
6
17

6
17

8
3 v1 + 2

3 v2

FeNi-L11
1
2

1
2 3v1 + 3v2

FeNi-L10
1
2 0 4v1

FeNi2-C11 f
11
17

11
17

8
3 v1 + 2

3 v2

FeNi3-L12
25
34 1 3v1

FeNi7-cI32 33
34

29
34

3
2 v1 + 3

4 v2

A better result [Fig. 5(b)] is obtained with first and second
nn pair interactions, taking a constant ratio α = v2/v1 = −0.7
(the agreement is very sensitive to the value of α, except in the
range α ∈ [−0.6,−0.7]). The formation enthalpies obtained
with first and second nn interactions are close to those of
the DFT calculations, in particular for the two stable phases
FeNi-L10 and FeNi3-L12 (Fig. 5). The least well reproduced
is that of the iron-rich cI32 phase, which is unstable.

Note that in this fitting procedure, the local composition
around a Fe-Ni pair has been defined as the average Ni atomic
fraction around the first and second nearest neighbors of the
pair, excluding the two atoms which compose it. An atom
neighboring the two atoms of the pair is counted twice (so
that with 12 first and 6 nearest neighbors, a pair is surrounded
by 0 to 34 Ni atoms). Using this definition, the formation
enthalpies of the different ordered phases are the functions
of v2 and v1 given in Table III, together with the values of
the local composition x1 and x2 around the first and second
nn Fe-Ni pairs. Other definitions of the local composition are
possible and we have tested some of them (taking into account
the two atoms of the pairs, or counting each surrounding Ni
atom only once). The definition chosen here gives a slightly
better fit, although the differences are small.

We did not obtain significantly better results by introducing
third and fourth nn interactions. In the following we will there-
fore restrict to the PIM with first and second nn interactions
and α = −0.7, corresponding to the results shown in Figs. 4
and 5(b).

3. Transition between parameters at high and low temperatures

The final PIM will therefore use first and second neighbor
pair interactions with a constant α = v2/v1 = −0.7 ratio:

(i) At 0 K the variations of v2 and v1 with the composition
are fitted to the formation enthalpies of SQS and ordered
structures calculated by Li and Fu [17] using DFT methods,
as summarized in Figs. 5 and 4.

(ii) At high temperatures the variations of v2 and v1 with
the composition are fitted to the Gibbs free energies of the γ

solid solution, from the CALPHAD study of Cacciamani et al.
[18].
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These two sets of parameters differ only in the non-
magnetic part of parameters v2 and v1, which is described
by Redlich-Kister polynomials having different order and
coefficients (respectively, LDFT

i and LCALPHAD
i ). The final pa-

rameters are obtained by using coefficients LPIM
i (T ) which

evolves gradually from one to the other according to:

LPIM
j (T ) = exp

(
− T

Tj

)
LDFT

j

+
[

1 − exp

(
− T

Tj

)]
LCALPHAD

j (T ) (19)

with Tj = 400 K for j = 0, 1, 2 and Tj = 80 K for j = 3, 4, 5.
The example of coefficient LPIM

2 is given in Fig. 6. The tem-
peratures Tj have been chosen so as to give the Gibbs free
energy of CALPHAD for T > 1000 K, at temperatures where
it is derived from numerous and reliable experimental data.
The influence of these transition temperatures on the phase
diagram will be discussed later.

Let us note finally that the Gibbs free energy of mixing
of the solid solution, the formation enthalpies of SQS or
ordered structures and the FCC phase diagram, depend only
on the parameters vn. We have chosen to take g(n)

FeFe and g(n)
NiNi

interactions independent of the concentration but dependent
on the temperature and adjusted to the free enthalpies of the
pure metals [Eq. (12)]. Only the g(n)

FeNi interactions are depen-
dent on local concentration. This choice does not affect the
results of the present study, but it allows a better description
of the properties of point and diffusion defects [9], which we
will address in future work. It also makes the Monte Carlo
simulations slightly less time consuming.

III. MONTE CARLO SIMULATIONS

We will now use Monte Carlo simulations to measure
Gibbs free energies of the PIM (including the configuration
entropy) at different compositions and temperatures and build
the FCC phase diagram.

A. Semigrand canonical isotherms

The equilibrium properties of the PIM are determined
by Monte Carlo simulations carried out in the semigrand
canonical ensemble. In general, we use a system of N = 4 ×

113801-6



COMBINING DFT AND CALPHAD FOR THE DEVELOPMENT … PHYSICAL REVIEW MATERIALS 4, 113801 (2020)

0.0

0.2

0.4

0.6

0.8

1.0

 500  1000  1500  2000  2500  3000

η /η(T=0) Expt.

R
es

ca
le

d 
or

de
r 

pa
ra

m
et

er

T (K)

η/η(T=0)
σ2/σ2(T=0)
σ1/σ1(T=0)

0.0

0.2

0.4

0.6

0.8

1.0

 500  1000  1500  2000  2500  3000

FIG. 7. Evolution of the long-range parameter η and of the short-
range order parameters σ1 and σ2 in FeNi3 as a function of T (Monte
Carlo simulations and experiments by Kozlov et al. [51]).

163 atoms, with periodic boundary conditions. Exchanges are
tried between a randomly chosen atom of the system and an
atom taken in a reservoir, with a given difference of chemical
potential �μ = μNi − μFe. By changing �μ, one modifies
the equilibrium concentration (Figs. 8 and 9). A total of 500
increments for a interval of 1 eV in �μ are used to go from
pure iron to pure nickel and then 500 increments to go the
other way. For each value of �μ, 5 × 106 attempts of atomic
exchange (or Monte Carlo steps, MCS) are performed before
measuring the equilibrium composition and order parameters.
For building the phase diagram of Fig. 16, a larger system of
N = 4 × 243 atoms and much smaller increments of �μ are
used, in order to get a better precision (up to 100 increments
for a interval of 0.04 in �μ).

To identify the different ordered phases, the FCC lattice
is divided into four simple cubic sublattices, shifted by a
distance a/2 in the x, y, z directions [50]. We measure the
Ni concentration on each sublattice and the long range order
parameter defined as:

η = 1

4

4∑
i=1

∣∣∣∣xi

x
− 1

∣∣∣∣, (20)
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FIG. 8. Monte Carlo simulations: evolution of the Ni concentra-
tion x and long-range order parameter η of the PIM for Fe-Ni alloys
at 1000 K, as a function of the difference in chemical potentials
�μ = μNi − μFe.
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FIG. 9. Monte Carlo simulations: evolution of the Ni concen-
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�μ = μNi − μFe.

where xi is the Ni concentration on the sublattice i. With this
definition, η = 1 in the perfect FeNi-L10 structure and η =
0.5 in the perfect FeNi3-L12 structure.

The short range order is characterized by the Warren-
Cowley parameters for the first and second nearest neighbors:

σi = 1 − f (i)
Ni

x
, (21)

where f (i)
Ni is the average fraction of Ni atoms among the ith nn

of the Fe atoms. For a perfect L12 ordered phase, σ1 = −0.33
and σ2 = +1.

The evolution of the long-range η [Eq. (20)] and of the
short-range order parameters σ1 and σ2 [Eq. (21)], in an alloy
of composition FeNi3 as a function of the temperature, is
shown in Fig. 7. The L12 ordered phase is found to be stable
up to 765 K (instead of 790 K for CALPHAD [18]). The
evolution of η is in good agreement with the experiments
of Kozlov et al. [51] (which gives a slightly higher ordering
temperature: 807 K). The discontinuity at the order/disorder
temperature indicates a first-order transition. A significant
short range order remains well above the disordering temper-
ature, especially between the first nearest neighbors.

Two examples of isotherms x = f (�μ), at T = 1000 K
and T = 600 K, are shown in Figs. 8 and 9. At 1000 K,
x(�μ) evolves continuously, with η � 0: The disordered solid
solution is stable in the whole composition range. At 600 K,
η � 0.76 to 0.53 between �μ = −0.188 and −0.068 eV,
which corresponds to an over stoichiometric L10 phase, and
η � 0.49 between �μ = −0.05 and +0.3 eV, which corre-
sponds to an almost stoichiometric L12 phase. Discontinuities
and hysteresis on the x(�μ) curve indicate first order transi-
tions and the limits of two-phase domains.

B. Gibbs free energy of mixing

Using the definition of chemical potentials: μi =
(∂G/∂ni )T,P,n j and integrating the �μ(x) curve, we obtain
the Gibbs free energy of mixing Gmix. The results obtained
at different temperatures can be directly compared with the
Gmix of the CALPHAD study [18]. In each case, one can
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FIG. 10. Gibbs free energy of mixing of the Fe-Ni solid solutions
at 1500 K: PIM (dotted lines) vs CALPHAD (full lines), with the sep-
arate magnetic, excess, and configurational entropic contributions.

also compare separately the enthalpy Hmix and entropy Smix

of mixing, as well as the magnetic, excess, and configuration
contributions.

Figure 10 for example, gives the Gibbs free energy of
mixing of the Fe-Ni solid solution at T = 1500 K. The PIM
is in very good agreement with the CALPHAD study. At this
high temperature (well above Tc), the magnetic contribution
is negligible. However it is worth noticing that the excess
contribution is slightly lower in the PIM, with a minimum of
−0.038 eV at x = 0.69 instead of −0.033 eV in CALPHAD.
The difference is due to the fact that in the PIM, some short
range order remains in the γ solid solution, even at this high
temperature (Fig. 7).

The effect is clearer if one separates the enthalpic and en-
tropic contributions of Gmix = Hmix − T Smix. The enthalpy of
mixing (Fig. 11) is dominated by the excess term. Due to the
remaining short range order (σ1 = −0.066 and σ2 = 0.048),
the PIM gives a minimum of Hmix = −0.054 eV at x = 0.67
instead of −0.047 eV in CALPHAD. This discrepancy on
Hmix only disappears at very high temperature. At 3000 K (i.e.,
above the liquidus), the maximum difference between the PIM
and CALPHAD is still �Hmix = 0.0022 eV (for σ1 = 0.06
and σ2 = 0.013). It becomes negligible only above 5000 K.
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FIG. 11. Enthalpy of mixing of the Fe-Ni solid solutions at 1500
K: PIM (dotted lines) vs CALPHAD (full lines), with separate mag-
netic and excess contributions.

-2

 0

 2

 4

 6

 0  0.2  0.4  0.6  0.8  1

PIM
Calphad

conf

mag

exS m
ix

×1
05  (

eV
/(

at
om

⋅K
))

x
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K: PIM (dotted lines) vs CALPHAD (full lines), with separate mag-
netic, excess, and configurational contributions.

The entropy of mixing of the the PIM (Fig. 12) is domi-
nated by the entropy of configuration, which is very close to
the ideal Sid of CALPHAD. In the PIM as in CALPHAD, the
excess and magnetic contributions to the entropy of mixing
are less important and negative (except below x � 0.1). At
x = 0.67, the discrepancy due to the short range order is only
Sconf − Sid = 0.15 × 10−5 eV/(atom K), which corresponds
to a difference of T (Sconf − Sid ) = −0.00225 eV/atom. The
difference on Smix partly compensates for the one on Hmix,
which explains the good agreement on Gmix between the
PIM and CALPHAD, even below 1500 K, when the short
range order increases. The Gmix of the PIM and CALPHAD
is therefore in very good agreement in the whole range of
composition and temperature where the γ solid solution is
stable (Fig. 13).

The difference between the Gibbs free energy of mixing
of the PIM and CALPHAD [Fig. 14(a)] slightly increases at
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FIG. 13. Gibbs free energy of mixing of the Fe-Ni solid solution
of the PIM and CALPHAD [18], at different temperatures. For the
sake of clarity, each curve is shifted downwards by a constant �

given on the figure.
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700 K.

lower temperatures, when the ordered phase L12 stabilizes,
i.e., when the long-range order parameter η is close to 0.5,
between x � 0.6 and x � 0.82 [Fig. 14(b)]. This is not sur-
prising since the PIM parameters at low temperatures are not
fitted on CALPHAD but on DFT calculations which give a
different energetic landscape, especially for the disordered
phase (Sec. II C). In spite of this difference, the Gmix(x) curve
of the PIM is still in good agreement with CALPHAD at
T = 700 K.

At 650 K, the agreement between the Gibbs free energy of
mixing of the PIM and CALPHAD is still quite good for the
compositions where the γ solid solution and the L12 phase are
stable [Fig. 15(a)]. However the evolution of the long-range
parameter η as a function of the nickel concentration x now
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FIG. 15. (a) Gibbs free energy of mixing of Calphad and the PIM
and (b) long range order parameter of the PIM, for Fe-Ni alloys at
650 K.

FIG. 16. (a) The Fe-Ni FCC phase diagram: comparison between
the PIM and experiments (1950 Jos = [52], 1963 Heu = [53],
1980 Van = [54,55]. (b) Zoom in of the region of the L12 ordering
temperature.

displays two bumps [Fig. 15(b)]. The second one (between
x � 0.63 and x � 0.85) still corresponds to the L12 phase.
The phase is almost perfectly ordered for the stoichiometric
composition FeNi3 (η � 0.5 for x = 0.75). However, the PIM
predicts that the FeNi-L10 phase is stable between x � 0.52
and 0.63, while it only appears at lower temperature (below
316 K) according to the CALPHAD model [18]. Note that
it is not perfectly ordered (η � 0.6 instead of 1 for the per-
fect order), because it is slightly nonstoichiometric (x > 0.5)
and because 650 K is close to its order disorder-temperature
(680 K).

C. FCC phase diagram

The FCC phase diagram of the Fe-Ni system predicted by
the PIM is shown in Fig. 16 and compared with experimental
data [52–55]. It can be also compared to the FCC diagram of
Cacciamani et al. (Fig. 8 in Ref. [18]).

The ordering temperatures of the FeNi3-L12 phase are
slightly different: The PIM gives 765 K, a little lower than
790 K for the CALPHAD study of Cacciamani et al. [18]
(which is adjusted to the experimental value). As in CAL-
PHAD, the limits of the two-phase domain FeNi3 + γ for x >

0.75 are slightly shifted towards lower values (�x � −0.04
at 571 K) by comparison with the experiments by Heumann
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FIG. 17. The Fe-Ni FCC phase diagram of the PIM without
magnetic contribution.

et al. [53]. As in CALPHAD, the width of the two-phase
domain γ + FeNi3 at x < 0.75 is smaller than the one of
the two-phase domain at x > 0.75 (earlier CALPHAD studies
predicted a larger two-phase field, as in Fig. 1). Here it should
be noted that, except in the vicinity of the ordering temper-
ature at x = 0.75, the experimental data for these two-phase
fields are going back to 1963 [53] and are only available for
one temperature.

The discrepancy is more important for the FeNi-L10 phase:
The PIM predicts an ordering temperature of 680 K instead
of 316 K for CALPHAD. The CVM study of Mohri et al.
[26] predicts an intermediate ordering temperature (483 K).
A direct estimation by DFT calculations (taking into account
the vibrational entropy, but not the configurational entropy
of the FeNi-L10 phase) gives 640 K. There is no precise
experimental measurement available for the evolution of the
degree of order as a function of the temperature (as for the
FeNi3 phase, in Fig. 7), but the experimental observations
under electron irradiation by Reuter et al. [23] suggest an
ordering temperature of approx. 593 K.

As in CALPHAD, the FCC phase diagram of the PIM
also displays a two-phase field with an equilibrium between
a ferromagnetic (γ f ) and a paramagnetic (γp) solid solution,
at x = 0.4 and below T = 660 K. This phase separation has
been first predicted by Chuang et al. [56], but it has not been
confirmed experimentally. The PIM is able to reproduce this
two-phase field because it includes the magnetic contribution
of the CALPHAD model. It is however more limited in tem-
peratures than in Ref. [18], because of the higher stability of
the FeNi-L10 phase in the PIM, which limits its extension
below 680 K.

The phase diagram of the PIM without the magnetic con-
tribution is shown in Fig. 17. As in the study by Cacciamani
et al., the nonmagnetic phase diagram reduces the critical
temperature of L12 by approx. 118 K and shows no γ f − γp

two-phase field.
Finally, let us recall that the parameters of the PIM and the

results of Sec. III have been obtained with parameters fitted
to DFT calculations at 0 K, the CALPHAD data of Ref. [18]
at high temperatures, and a transition between the high and
low temperature regimes controlled by the exponential inter-
polation of Eq. (17). With the chosen Tj temperatures, the
Redlich-Kister coefficients of the PIM are almost identical to
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FIG. 18. The Fe-Ni FCC phase diagram of the PIM using a
different transition between high and low temperature parameters.

those of CALPHAD above approximately 1000 K. To assess
the effect of this choice on the phase diagram, we have per-
formed some simulations with a different set of parameters:
Tj = 50 K for j = 0, 1, 2 and Tj = 10 K for j = 3, 4, 5 (using
the same notation as in Sec. II C 3). With these parameters, the
Redlich-Kister coefficients of the PIM becomes almost iden-
tical to those of CALPHAD at a lower temperature (approx.
315 K). The resulting phase diagram is shown in Fig. 18. It is
not very different from the previous one [Fig. 16(a)], except
from a moderate increase of the ordering temperatures of the
L10 and L12 phases. The reason is that with the new parame-
ters, the ordering tendency is a little more pronounced below
1000 K (Fig. 4). As a consequence, the γp − γ f two-phase
domain almost completely disappears.

IV. DISCUSSIONS AND CONCLUSIONS

We have presented in this study a method for developing
a pair interaction model for Fe-Ni alloys, fitted at 0 K on the
enthalpies of formation of ordered and disordered structures
(computed by first-principle methods) and at high tempera-
tures on the Gibbs free energy of the γ solid solution (as given
by a CALPHAD study and its underlying experimental data).

Thanks to the temperature and concentration dependence
of the pair interactions, the PIM is able to reproduce precisely
these two types of energetic properties and to distinguish
between excess, magnetic, and configurational entropic con-
tributions. The identification between CALPHAD and the
PIM is not perfect, because the configurational entropy and
short-range order in the solid solution is described more ap-
proximately in CALPHAD methods than in the Monte Carlo
simulations used to determine the equilibrium properties of
the PIM. The CALPHAD method is more flexible than an
atomistic model: The properties of each phase can be adjusted
very precisely and independently on the experiments. The
PIM imposes some constraints but, combined with Monte
Carlo simulations, it ensures a consistent description of the
short- and long-range order and of the entropy of configura-
tion.

Despite these differences, the Gibbs free enthalpies of
mixing of the γ solid solution, as given by CALPHAD, are
very well reproduced by the PIM, throughout the composition
and temperature range of stability of the phase. The Gibbs
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free enthalpy of the FeNi3-L12 phase is also well reproduced,
although the parameters of the PIM and CALPHAD for that
phase are not fitted on the same DFT calculations. At high
temperatures, the FCC phase diagram involves only these two
phases, and both methods give similar results (especially for
the order-disorder transition in the vicinity of FeNi3, and for
the γp − γ f phase separation).

On the other hand, both models predict that the FeNi-L10

phase is stable at low temperature but with different order-
ing temperatures. Taking the electron irradiation experiments
[23] as a reference, it seems that CALPHAD underestimates
the ordering temperature, while the PIM overestimates it. It
should be noted here that alloys under irradiation may be
not fully at equilibrium, so that no real experimental ther-
modynamic data are available for this phase, and that both
the CALPHAD model and the PIM are only fitted to DFT
calculations of enthalpies of formation at 0 K. The PIM and
CALPHAD should therefore be both improved to properly
describe this phase. One possibility is to use DFT methods
to compute finite temperature contributions. These methods
are computationally expansive but can separate each energetic
contribution and provide results at intermediate temperature
(say, between 0 and 400 ◦C), where experimental results are
rarer and perhaps less accurate. An example is given in the
study of K. Li and C.-C. Fu [17], which shows that the vibra-
tional entropy decreases the ordering temperatures of the L10

and L12 phases by, respectively, 280 and 200 K.
In spite of this limitation, the PIM model gives a satis-

factory description of the γ solid solution and of the L12

phase. Of course, such a model is necessarily dependent on
the CALPHAD data it uses. For the magnetic contribution for
example, we rely on the recent study by Cacciamani et al.,
which is itself based on a large experimental database (with

measurements of specific heats, Curie temperatures, magnetic
moments, etc. of γ solid solutions with various composi-
tions, described in Refs. [18,57]). For the same reason, our
model takes into account, but cannot distinguish between,
energetic contributions that are not identified separately in
CALPHAD (for example, harmonic and nonharmonic vibra-
tional contributions—which are both gathered in the excess
Gibbs free energy, together with the nonideal part of the con-
figurational entropy). However it could easily be updated to
take into account future improvement on that points. It could
also be easily extended to Fe-Ni-Cr ternary alloys or to other
binary or ternary systems. Finally the PIM is simple enough
to be used as a basis for atomistic kinetic Monte Carlo meth-
ods to simulate the kinetics of homogeneous ordering or of
heterogeneous precipitation of the L12 phase or to model the
interdiffusion properties in the γ solid solution at high tem-
perature. It is indeed not more numerically expensive than the
PIM for BCC Fe-Cr alloys described in Ref. [47], which has
been used for the simulations of precipitation kinetics [8,9] or
irradiation effects [11,12]. As in these studies, the modeling
of kinetics will require the extension of the PIM to describe
the formation and migration properties of point defects.
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