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Chemical bonding in metallic glasses from machine learning and crystal orbital Hamilton population

Ary R. Ferreira *

Department of Physics, Universidade Federal de São Carlos (UFSCar), 13565–905, São Carlos, SP, Brazil

(Received 30 April 2020; revised 21 July 2020; accepted 20 October 2020; published 9 November 2020)

The chemistry (composition and bonding information) of metallic glasses (MGs) is at least as important as
structural topology for understanding their properties and production/processing peculiarities. This paper reports
a machine learning (ML)-based approach that brings an unprecedented “big picture” view of chemical bond
strengths in MGs of a prototypical alloy system. The connection between electronic structure and chemical
bonding is given by crystal orbital Hamilton population (COHP) analysis; within the framework of density
functional theory (DFT). The stated comprehensive overview is made possible through a combination of:
efficient quantitative estimate of bond strengths supplied by COHP analysis, representative statistics regarding
structure in terms of atomic configurations achieved with classical molecular dynamics simulations, and the
smooth overlap of atomic positions (SOAP) descriptor. The study is supplemented by an application of that
ML model under the scope of mechanical loading in which the resulting overview of chemical bond strengths
revealed a chemical/structural heterogeneity that is in line with the tendency to bond exchange verified for atomic
local environments. The encouraging results pave the way towards alternative approaches applicable in plenty of
other contexts in which atom categorization (from the perspective of chemical bonds) plays a key role.
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I. INTRODUCTION

Since early reports of glassy alloys, over almost 60 years
ago [1], their importance within the broad scope of technolog-
ical developments of metallic materials has grown noticeably,
albeit such pertinence has apparently reached a threshold in
the last decade [2]. Metallic glasses (MGs) are amorphous
alloys that exhibit a glass transition and are notorious for
their extreme hardness and strength; thus they became obvious
candidates for structural applications, while other relevant
usage proposals have already been put forward in domains
like biomedicine, nanotechnology, and energy [3,4]. Yet, at
the present time, research and development (R&D) activities
related to this class of advanced materials are still facing
challenging issues such as critical casting thickness or brit-
tleness of some nominal compositions found to be good glass
formers. Nevertheless, recent advances in basic and applied
research have provided innovative strategies for designing
new MGs, with the focus on enhanced mechanical, chemical,
and magnetic properties. For example, 3D printing (or addi-
tive manufacturing) is emerging as a promising alternative
for the fabrication of Fe-based MGs parts to be employed
as magnetic shielding or transformer (electrical device) core
laminations [5,6]. Another prospect, relevant for energy ap-
plications, is the synthesis of MGs with large specific surface
areas, found to be efficient for ultrafast hydrogen uptake [4].

Over the last decades, technological developments in char-
acterization techniques were crucial to promote insights into
the structure of multicomponent MGs within the full range
of length scales. Down to the atomistic scale, the lack of
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long-range crystalline order (often accompanied by nontriv-
ial chemistry) makes it a hard task to uncover mechanisms
underlying transformations occurring in two essential con-
texts: (i) one is the production process, which requires
mastery of the key factors (or formation mechanisms) that
determine glass-forming ability (GFA); (ii) the other sce-
nario is application and concerning their most prominent
usability as structural materials [7], recent efforts have been
focused on unveiling defects likely to determine mechani-
cal behavior, in close analogy to well-known plastic flow
mechanisms existing in crystalline systems. Particularly in
this latter context, recent basic research has been conducted
into atomic-scale characterization of structural heterogene-
ity [8] and dynamic ‘defects’ from the perspective of flow
units [9]. This is an aspect that reflects space-time hetero-
geneity in MGs and a technique that has been increasingly
used to study the associated relaxation dynamics is dynam-
ical mechanical analysis (DMA, aka dynamical mechanical
spectroscopy), due to its high sensitivity in detecting atomic
rearrangements [10–14].

Still regarding structural characterization, large-scale
molecular dynamics (MD) simulations have proven effective
in providing trustworthy structural models of MGs, able to
reproduce elementary properties like density, glass transi-
tion temperature [15], and representative statistics regarding
atomic configurations [16]. Nevertheless, the quest for effi-
cient strategies for handling realistic structural models (that
often contain thousands of atoms) in such simulations is a
problematic and topical issue [17], even for the prediction of
essential “static” features like short- and medium-range orders
(SRO and MRO). In fact, this is a constraint that imposes a
critical limitation on the use of ab initio quantum mechanical
MD simulations for that end, and the solution is nothing new:
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a multiscale approach, in which the role of electrons on inter-
atomic interactions is abstracted and described in terms of the
so-called interaction models (or interatomic potentials) em-
ployed in the well-known classical MD (CMD) simulations.

The central drawback of this approach, however, is that so
many additional properties relying strongly on an accurate de-
scription of the material’s electronic structure become simply
not accessible in CMD simulations. In other words, having a
thorough atomistic (structural topology) insight into a certain
material may not be enough to reveal all the technologically
relevant phenomena. A good example from recent literature is
the key role played by local homopolar bonds on the structural
stabilization of specific sites and how it impacts the resistance
drift of amorphous phase-change materials [18].

This paper reports an unprecedented “big picture” view
of chemical bond strengths in MGs of the Zr-Cu-Al (ZCA)
alloy system. The link between electronic structure and first-
principles chemical bonding information is given by density
functional theory (DFT) [19,20] and crystal orbital Hamil-
ton population (COHP) analysis [21], whereas representative
statistics is attained by applying a machine learning (ML)
approach to realistic structural models generated by CMD
simulations. Under the specific scope of mechanical loading,
the resulting overview of chemical bond strengths revealed a
chemical/structural heterogeneity that is quite in line with the
tendency to bond exchange verified for atomic local environ-
ments in the chosen alloy model system.

II. THEORY AND COMPUTATIONAL DETAILS

A. The machine learning-based approach

The ZCA system was selected as a prototypical alloy
for application of the proposed ML-based protocol because
of its practicality. First of all, its corresponding MGs are
conventional model systems extensively studied due to their
high GFA [22–24], and there are plenty of experimental and
theoretical works available in the literature covering differ-
ent topics on them. Moreover, the computational modeling
process is made easy for this alloy given the availability of
an interatomic potential [16] that has been widely used for
years, providing valuable theoretical support to experimental
studies until recently [25,26] (see Sec. S1 in the Supplemental
Material [27]). For the goals of the present study, it certainly
provides the required plausible description of “static” bulk
SRO and MRO in these MGs with affordable 10 000-atoms
cells [16]—naturally, assuming a homogeneous distribution of
constituent elements in a glassy structure free of nanocrystals
[4,28].

The precise motivation for a ML-based approach here
is to enable the prediction of bond strengths between atom
pairs with the DFT accuracy in 10 000-atoms cells of the
ZCA MGs derived from CMD simulations. Such cells are
expected to supply representative statistics regarding SRO
(chemical/structural local environments) in these systems.
However, it is manifest that the corresponding electronic
structure quantum mechanical simulations are unfeasible and
unnecessary. This is where the proposed ML model comes
onto the scene, by learning bond strengths from a database of
interactions (DBIs).

Here, it is important to point a proper definition of chemical
bond strength within the scope of this work. In fact, it can
be seen as one more quantum mechanical concept associated
to bond order, i.e., the stability of a chemical bond indicated
by the electron density preferably distributed within a region
between the related pair of atoms rather than closer to the
individual corresponding sites. Its origins lie in the linear
combination of atomic orbitals (LCAO) molecular overlap
population Mulliken formalism [29], followed by its extension
to solids (periodic extended systems) dubbed crystal orbital
overlap population (COOP) analysis [30], which was built on
top of a particular crystal orbital (CO) scheme combined with
an extended Hückel method. In a simple CO-tight-binding
language, for two sites A and B with corresponding COs φν

and φμ, the elements of the overlap population matrix in a
closed shell system are

PAB = 2
A∑
ν

B∑
μ

c∗
νcμSνμ,

with c∗
νcμ and Sνμ the elements of the density matrix and

the overlap matrix, respectively. So, as in any CO approach,
the COOP method is based on the density of states (DOS)
curve (i.e., on the number of electronic states over the energy
scale [31]) and, as an energy-resolved bonding descriptor,
it provides information about the chemical bonding from a
weighted DOS curve obtained by the product of Sνμ and DOS
matrix elements in the applicable energy ranges.

The resulting COOP curve constitutes an electron number
partitioning scheme and therefore carries features that allow
the use of its integral up to the Fermi level (ICOOP) in
close analogy to bond order as an index of bond strength;
since the computed quantities �{c∗

νcμSνμ} point to bonding
(positive), nonbonding (zero), and antibonding (negative) con-
tributions [21]. The COHP method (proposed in that same
Ref. [21]) used in the present work is nothing but an al-
ternative approach, in which the DOS curve is weighted by
the Hamiltonian matrix elements (Hνμ = 〈φν |Ĥ |φμ〉) instead
of the corresponding Sνμ employed in COOP. So, whereas
the latter is an electron-partitioning scheme, the former is
an energy-partitioning scheme that minimizes the drawback
caused by the basis-set dependence of the overlap integral
and is very well suitable for first-principles DFT electronic
structure simulations, but both are energy-resolved bonding
descriptors.

Moving to the strategy for the generation of the database of
structures to train the ML model (the aforementioned DBIs),
it was grounded on the assumption that the referred statistical
representativeness existing in a 10 000-atoms cell of a given
nominal composition (NC) of the ZCA alloy can be attained
with a corresponding ensemble of smaller 100-atoms cells. As
described in details in Sec. II B, all these cells were obtained
by CMD simulated cooling from the melt, and the stated
statistical equivalence was indeed achieved (see Supplemental
Material [27]). Moreover, in order to draw a parallel with
experiments reported in the literature [28], the set of four
NCs (Zr0.5Cu0.5)100−xAlx (with x = 2, 6, 8, and 10) has been
selected.

Hence, a set of per-type DBIs has been created for all
possible interaction types (ITs): Al-Al, Cu-Al, Cu-Cu, Zr-Al,
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TABLE I. Overview in numbers of the per-type DBIs created for
the MGs using the 100-atoms cells generated following the quench-
ing protocol described in the text and whose amounts are indicated
in the last row. All cells are available in the Supplemental Material
[27] as extended XYZ files.

Zr49Cu49Al2 Zr47Cu47Al6 Zr45Cu45Al10

Al-Al 27 64 552
Cu-Al 5080 1775 17 073
Cu-Cu 57 230 6311 32 859
Zr-Al 7011 2497 22 938
Zr-Cu 169 487 19 153 99 015
Zr-Zr 76 919 8558 43 547
100-atoms cells 488 58 326

Zr-Cu, and Zr-Zr. Table I brings out an overview in numbers of
these databases and details on their construction are provided
in Sec. II B, including strategies to diversify the collection of
chemical environments and to ensure transferability among
different NCs. Here, it has to be pointed that the small num-
ber of Al-Al interactions shown in Table I is intrinsic to the
material. It follows upon alloying of Al and has already been
described in the literature as a solute-solute avoidance ef-
fect [32,33]. As discussed in the Supplemental Material [27],
concerning the above-mentioned transferability, this effect
was not a complicating factor when further applying the ML
model, and a single Al-Al DBI was set up with all interactions
of this type listed in Table I.

Recalling that each individual interaction in the set of DBIs
has an associated bond strength value derived from COHP
analysis, precisely, this value is assumed to be the additive
inverse of the integral of the COHP curve up to the Fermi
level (−ICOHP). The minus sign is conventionally included
to make it compatible with the ICOOP counterpart, since the

system undergoes a lowering of its energy when there are
bonding contributions [21]. Hence, in the COHP curve, the
product of Hνμ and the corresponding DOS matrix elements
point to bonding (negative), nonbonding (zero), and antibond-
ing (positive) values.

Next, it is appropriate to introduce a key “ingredient” of
the proposed ML model, whose versatility also allowed the
assessment of the convergence of SRO statistics in the 100-
atoms cells in advance. It refers to the mathematical descriptor
of each chemical environment around an individual atom,
necessary to measure the “distance” (or dissimilarity) between
atomic environments. The descriptor adopted in the present
work is the smooth overlap of atomic positions (SOAP) [34].
The SOAP fingerprints describe the chemical/structural local
environments ensuring, in a natural way, invariance to the
basic symmetries operations: rotation, reflection, translation,
and permutation of atoms of the same species. In short, it
describes the atomic neighborhood by expanding it in a basis
composed of spherical harmonics and a set of orthogonal ra-
dial basis functions. The derived rotationally invariant power
spectrum yield elements that are collected into a unit-length
vector q [35]. So, in practice, the normalized similarity be-
tween such SOAP vectors computed for two atoms, i and j, is
given by their dot product, qi.q j .

Turning to the specification of the ML model, it is im-
portant to remark that its implementation is not intended to
predict atomic (or per-atom) scalar quantities. The −ICOHP
is a scalar property that is associated to atom pairs and, since
the proposed ML model is founded upon a Gaussian process
regression (GPR) framework, the function that measures the
similarity between two chemical bonds [the kernel function
k(Bm, Bn)] has to take into account two basic features: bond
distances and the individual SOAP vectors of the atoms in-
volved. Thus, the covariance (or kernel) function was defined
as a squared exponential weighted by the normalized similar-
ities given by the referred SOAP vectors, as following

k(Bm, Bn) = exp

(
−

(
dm

i j − dn
i j

)2

2θ2

)((
qm

i .qn
i + qm

j .qn
j + qm

i .qn
j + qm

j .qn
i

)
4

)
. (1)

With dm
i j the distance between atoms i and j in the chemical

bond Bm, and qm
i and qm

j their corresponding SOAP vectors.
The adjustable scaling parameter θ defines the ML model’s
behavior and sets the characteristic length scale of the GPR.

Finally, using the kernel function in equation (1), the ML
model is able to predict the −ICOHP value associated to an
arbitrary bond B according to

ICOHPML(B) =
N∑

m=1

αmk(B, Bm)ζ , (2)

with the hyperparameter ζ = 1 establishing a linear kernel
and N the size of the training DBI at issue containing the set
of reference chemical bonds {Bm}N

m=1 (or training set) with
their corresponding ab initio −ICOHP values. By inverting
the N × N kernel matrix K, whose elements Kmn = k(Bm, Bn)
are defined with the training set, the per-interaction weights

αm in equation (2) are computed as following

αm =
N∑

n=1

{Kζ + [(σ 2γ )1]}−1
mnICOHPDFT(Bn), (3)

with σ 2 the standard deviation of the −ICOHP values in the
training set {Bn}N

n=1, γ a regularization adjustable parameter,
1 the N × N unit matrix, and ICOHPDFT(Bn) the −ICOHP
value of the reference chemical bond Bn computed from first-
principles DFT.

B. Computational details

All the CMD simulations were carried out using the
velocity-Verlet integrator as implemented in the LAMMPS
package [36] (release 16 Feb 2016). The embedded
atom model (EAM) interatomic potential developed and
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properly tested by Cheng et al. [16,37] (see Sec. S1 in the
Supplemental Material [27]) was used with a cutoff radius
of 6.5 Å to describe the interatomic forces in all MGs. A
common quenching protocol was used for the generation of
all 10 000-atoms and 100-atoms cells introduced in Sec. II A.
Firstly, an initial configuration was set by randomly position-
ing the atoms in a cubic supercell, whose initial volume was
estimated for each NC by initially assuming a dense sphere
packing weighted with the Zr, Cu, and Al atomic radii, with a
length in excess of 10% added to each cell vector. In order to
avoid superposition of atoms, a conjugate gradient minimiza-
tion on the random initial structure was executed with a stop
criterion defined by a force threshold of 10−8 eV/Å. Next, the
system was thermalized at 2000 K in the isothermal-isobaric
(NPT) ensemble for 2 ns [in the time evolution of the CMD
simulation (	t)]. With a time step of 2 fs (adopted in all runs),
the Nosé-Hoover thermostat was used with a dump coefficient
of 0.2 ps, whereas the barostat was set to zero pressure with a
dump coefficient of 2 ps. Subsequently, the system was cooled
to 300 K with a minimal and feasible rate of 8.5 × 109 K/s,
and finally, the glassy structure was allowed to relax at 300 K
for 	t = 2 ns.

As pointed out in Sec. II A, some of the 100-atoms cells
listed in Table I were submitted on demand to DFT first-
principles calculations to set up the DBIs for the ML model.
For the purpose of diversifying the collection of chemical
environments, each one of those selected cubic supercells
derived from CMD simulations was submitted to 3D geomet-
rical transformations which have generated 14 new structures,
namely, shearing along the x, y, and z axes (six new struc-
tures), compression and tension along the x, y, and z axes (six
new structures), and isotropic compression and tension (two
new structures).

All the referred DFT electronic structure simulations
were performed using the QUANTUM ESPRESSO [38,39] (QE)
open-source software suite version 6.2.0, with plane-wave
(PW) basis sets and projector augmented waves (PAW) [40]
datasets from the PSLibrary project version 1.0.0 [41]. The
Perdew-Burke-Ernzerhof (PBE) [42] generalized gradient ap-
proximation was used to describe the exchange-correlation
functional in all computations, remarking that the above-
mentioned EAM interatomic potential [16,37] used in the
CMD simulations was also parametrized from results of DFT-
PBE calculations. For all 100-atoms cells, the PW basis set
was truncated with a kinetic energy cutoff of 70 Ry and the
Monkhorst-Pack procedure [43] was used to determine the k-
points disposition in the first Brillouin zone from a 2 × 2 × 2
sampling (corresponding to a density of k points of about 0.04
in all structures). A Fermi-Dirac probability distribution was
used as a smearing function to set the occupations of energy
levels, with a common broadening parameter kbT = 8 mRy.

The ICOHP method has been introduced in Sec. II A
and was earlier described in Ref. [21] as a scheme suitable
for first-principles DFT calculations. However, further
development was required to make it compatible with
currently predominant and numerically efficient PAW-based
computations with PW basis sets, what was achieved with
the projected COHP (pCOHP) approach [44,45] which is
implemented in the LOBSTER code [46,47] version 3.0.0
employed in the present work. Apropos, this implementation

FIG. 1. Root-mean-square errors (RMSE) calculated from dif-
ferent Gaussian process regressions made for each interaction type
in the nominal composition Zr45Cu45Al10 assuming distinct training
set sizes. The ML model parameters were set as ζ = 1, θ = 0.5, and
γ = 0.010, and a fixed testing set size of 1000 interactions was taken.

has already proven to be effective when using PAW data
generated by QE [48], which are required for projections
from delocalized wave functions onto local auxiliary basis.
For the referred projections, a default local basis set provided
by Bunge et al. [49] was adopted with the following set of
local orbitals for each atomic specie: Al (3s 3px 3py 3pz),
Cu (3s 4s 3px 3py 3pz 3dxy 3dyz 3dz2 3dxz 3dx2−y2 ), and Zr
(4s 5s 4px 4py 4pz 4dxy 4dyz 4dz2 4dxz 4dx2−y2 ). Here, it is
important to report that the high quality and reliability of
these projections is reflected by the small values of the charge
spilling (no higher than 1.6%) in all ICOHP calculations with
100-atoms cells reported in this work—in passing, absolute
total spilling did not exceed 4.8%.

The SOAP descriptors were generated using the QUIP
package [50], with a cutoff of 3.75 Å for the definition of the
range of each chemical environment around atoms, including
all elements in its composition. This cutoff value was based
on partial pair distribution functions that are well known for
the MGs of the ZCA alloy [16]. The spherical harmonics basis
band limit and the number of radial basis functions were set to
6 and 8, respectively; all the remaining parameters kept with
their corresponding default values.

III. RESULTS AND DISCUSSION

A. Predictive power of the ML model

The predictive power of the ML model given by equation
(2) was evaluated individually for each interaction type (IT)
by studying its convergence with respect to the training set
size, for a fixed testing set size. Due to its completeness (see
Table I), the set of DBIs created for the NC Zr45Cu45Al10 was
selected for initial tests, for which the ML model parameters
were arbitrarily set as ζ = 1, θ = 0.5, and γ = 0.010 [see
also equations (1) and (3)]. The corresponding results are
presented in Fig. 1, from which it is possible to see that
the corresponding root-mean-square errors (RMSE) are de-
pendent on the IT but, in general, they are fairly converged
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FIG. 2. Scatter plots of results from some of the Gaussian pro-
cess regressions listed in Table S1: (a) Zr-Zr in Zr45Cu45Al10,
(b) Cu-Cu in Zr45Cu45Al10, (c) Al-Al in Zr47Cu47Al6, and (d) Al-Al
in Zr49Cu49Al2.

with small training set sizes (from about 500 interactions).
Furthermore, given the range of −ICOHP values computed
for the MGs under study listed in Table S1, the individual
RMSE values calculated for each IT show that the ML model
produces small prediction errors. Remarking that each point in
the plots of Fig. 1 corresponds to a GPR in which the training
and testing sets were randomly created from the DBIs listed
in Table I.

Table S1 provides further statistics from a set of GPRs
equivalent to those shown in Fig. 1, however adopting rather
large training and testing sets. As already mentioned, the lack
of Al-Al interactions is intrinsic to the ZCA alloy and made
it impossible to carry out the same thorough tests for that
specific IT. Nevertheless, it can be checked in Table S1 that
the corresponding RMSE values also point to small prediction
errors. With respect to the other two NCs Zr47Cu47Al6 and
Zr49Cu49Al2, it can be verified in Tables S2 and S3 that similar
RMSE values were found for their correlated DBIs. Hence,
since RMSE values are scale dependent, the overall predictive
power of the proposed ML model can be said satisfactory
within the context of this study. The scatter plots of some
particular ITs listed in Table S1 are shown in Fig. 2, and the
complete list is available in the Supplemental Material [27]
(Figs. S13 to S30).

B. Application of the ML model

1. Static structures at room conditions

Once the validation is complete, the ML-based approach
was used to predict bond strengths between atom pairs in
the four 10 000-atoms cells created for each NC of the
ZCA alloy. Based on the convergence tests and transfer-
ability of individual DBIs explained in the Supplemental
Material [27], a minimal and feasible training set ({Bn}N

n=1)
with 600 interactions for each IT has been set by merging
equally the corresponding DBIs listed in Table I. The referred
10 000-atoms cells are able to provide the required statistical
representativeness regarding chemical environments in these

FIG. 3. Distributions of −ICOHP values predicted by the ML
model for all interatomic interactions existing in 10 000-atoms cells
of the series of nominal compositions (NC) (Zr0.5Cu0.5)100−xAlx

(with x = 2, 6, 8, and 10). The fractions of each interaction type (IT)
in each NC are indicated as percentages.

MGs (see Sec. S1 in the Supplemental Material [27]) and they
were generated with CMD simulations following the protocol
described in Sec. II B.

Above all, this work is aimed at delivering an approach able
to promote insights into the interplay of chemical/structural
and dynamical inhomogeneities existing in MGs in differ-
ent contexts—to be explored in future studies. The most
promising applications comprise research focused on topi-
cal conceptions in which atom categorization based on the
strength of chemical bonds plays a key role, like the afore-
mentioned atomic models in terms of flow units [9] or tightly
bonded clusters [51], weakest configurations [52], bond ex-
change [53] processes, among others. Therefore, instead of
going straight to the issue of how −ICOHP values are 3D
distributed within the 10 000-atoms cells, this work will be
limited to the assessment of the propensity for bond exchange
of individual atomic local environments under the scope of
mechanical loading, and then, evaluate its connection to bond
strength and atomic mobility using ordinary descriptive statis-
tics. However, before doing so, it is worth looking at a simpler
per-bond analysis as depicted in Fig. 3.

Most importantly, it should be emphasized that the set of
results in Fig. 3 represents an unprecedented “big picture”
view of bond strengths between atoms in these MGs derived
from quantum mechanics. With respect to chemical bonding
information, that comprehensive overview is arguably more
complete and revealing than previous reports with similar
aims, including quantum chemistry calculations with local-
ized basis sets for rather small isolated atomic clusters [54,55]
or even ab initio MD simulations carried out with periodic
boundary conditions but for cells containing a few hundred
interatomic interactions [16].
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In fact, the profiles of the distributions in Fig. 3 do not
exhibit significant changes upon alloying of Al and, as ex-
pected, only their respective fractions vary distinctively in
each IT (indicated as percentages). Yet, they suggest that
atoms can be grouped according to their chemical bonding
situations, pointing to the possibility of drawing strategies to
segregate atoms in a 3D fashion based on a given reference
−ICOHP value. This is reasonable indeed, and one can see
that Cu-Cu interactions show up as the weakest ones, together
with a non-negligible fraction of Zr-Cu and Zr-Zr bonds, all
having −ICOHP values below a value around 0.7 eV. Con-
versely, substantial amounts of relatively strong Zr-Cu and
Zr-Zr bonds are also predicted by the ML model.

One further remark concerning the Al alloying effect is that
despite the negligible number of Al-Al bonds—related to the
already introduced solute-solute avoidance effect [32,33]—
a fair amount of strong Zr-Al and Cu-Al interactions with
−ICOHP � 1.0 eV rise. Based on the percentages of ITs
pointed out in Fig. 3, it can be inferred that these two latter
are replacing the weaker Zr-Zr and Zr-Cu bonds; given the
small variation of the weakest Cu-Cu bonds. This is likely to
be the main chemical effect of Al alloying, which is reflected
in the quite distinctive mechanical behavior upon mechanical
loading reported for the two extreme NCs reported in the
literature [28]: Whereas the MG Zr45Cu45Al10 was found to
be very brittle, the lowest Al-content counterpart Zr49Cu49Al2

presented a large plasticity that has been assigned to localized
nanocrystallization in the structure upon mechanical loading.
This is the idea that will be further explored in the next section
through a straightforward assessment of the propensity for
bond exchange of individual atomic local environments.

2. Structures subjected to uniaxial compression

So far, the distributions in Fig. 3 do not express any in-
formation concerning the collective role of the set of bonds
existing in each individual local environment (LE, i.e., the
neighborhood surrounding a central atom). Moreover, the re-
spective bond strengths were extracted out of snapshots of
static structures equilibrated at room environment conditions,
which is not enough to assess the propensity for bond ex-
change, which is a dynamical aspect of the MGs under study.
So, in order to account these factors under the specific scope
of uniaxial compression, a set of additional CMD simulations
have been planned.

Stressing that the ultimate goal of these extra simulations
is to show that there is a consistency between the chemical
bonding heterogeneity disclosed by the ML model (as shown
in Fig. 3), and the time evolution of the structural topology
of individual LEs upon mechanical loading—as described by
the Newton’s equations and underlying interaction model (the
EAM potential). It is important to bare in mind that these
are two distinct aspects of the chemistry and dynamics, re-
spectively, that are being revealed in this work through two
completely independent computational approaches, whose
complementarity has a great potential to bring insights into the
synergic role played by chemical/structural and dynamical
heterogeneities in MGs.

It was introduced in Sec. II A that the set of four NCs
(Zr0.5Cu0.5)100−xAlx (with x = 2, 6, 8, and 10) has been

selected aiming at drawing a parallel with experimental re-
sults reported in the literature [28], and the choice of that
experimental study was motivated by two key aspects. First
of all, the samples were subjected to uniaxial compression,
a mechanical load test with a constrained geometry that sim-
plifies its computational modeling, providing reliable results
for the evaluation of the time evolution of LEs, as sought
in this work. Additionally, the authors resorted to transmis-
sion electron microscopy and 3D atom probe tomography
to characterize the microstructure of the samples, what pro-
vided the proper experimental backing to describe them as
homogeneous amorphous alloys (i.e., free of nanocrystals)—
at least before compression. This is quite relevant regarding
computational modeling, since that is the precise microstruc-
ture represented by the 10 000-atoms cells used as structural
models in the present work.

So, the corresponding CMD simulations were carried out
for all NCs (with a rather tight time step of 1 fs) and they are
quite consistent; further technical details are provided in the
Supplemental Material [27] in a comprehensive way and com-
plementary to those introduced in Sec. II B. However here it is
worth commenting that MD simulations of uniaxial compres-
sion require proper approximation to describe temperature
and pressure dissipation. In this work, the equations of motion
proposed by Melchionna et al. [56] have been employed with
periodic boundary conditions in the NPT ensemble, in which
temperature is controlled with the Nosé-Hoover thermostat,
whereas pressure is regulated by decoupling the boundary in
the loading direction from the NPT equations governing the
other two orthogonal directions. This approach has already
proven effective elsewhere [57] and was fairly satisfactory for
the purposes of the present study.

Furthermore, for the sake of transparency, there is another
technical aspect of these CMD simulations that deserves a
critical remark here in the main text, and it is not commonly
discussed in the literature. The accurate atomistic simulation
of the stress-strain (SS) curves measured in the experiments
reported by Kumar et al. [28] requires structural models able
to describe concomitantly two key facets: the role of surface
effects on the brittle behavior of the MG Zr45Cu45Al10 and the
localized nanocrystallization (particles with some nanome-
ters) taking place within shear bands, as well as its relationship
with the extended plasticity reported for the MG Zr49Cu49Al2.

The solution could be to increase the structural models
up to some dozens (or even few hundreds) of millions of
atoms or, in a much more consistent approach, resort to a
multiscale-based strategy. For instance, one could derive an
upscaled peridynamic model to describe the brittle behavior
of the former MG or parametrize a constitutive model to
describe the SS curve of the latter MG accounting for local-
ized nanocrystallization. However, this is definitely out of the
scope of the present work and unnecessary for its aims. That
issue is well discussed in Sec. S2 in the Supplemental Material
[27]. In short, the SS curves depicted in Fig. 4 fairly reproduce
the linear elastic behavior of the MGs; however, the portions
that correspond to yield strength (strain ≈5%) and further
plastic deformation (strain >5%) bear two common artifactual
features that will certainly not affect further discussion within
the context of the aims of the present study. Nevertheless,
from here onward, most of the analyses will be restricted to
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FIG. 4. Stress-strain curves simulated at 300 K with a compression rate of 1 × 107 s−1 for the MGs studied in this work. The solid lines
denote the elastic behavior (see also Fig. S32). The time evolution of a specific Cu-centered (marked with an asterisk) nonpersistent local
environment (NPLE, see text) extracted out of the structural model of the MG Zr45Cu45Al10 is depicted, whose snapshots are labeled with the
corresponding strain value. The −ICOHP values (in eV) of the first neighbors computed for the 0% strained structure are listed. These same
values are repeated (not recalculated) for the persistently bonded atoms in the 6% and 12% strained NPLEs. Zr, Cu, and Al atoms are shown
in gray, brown, and pink colors, respectively.

strain �6%, although the extended segments of the SS curves
will be carefully taken into account for examining particular
aspects of the LEs, which are unrelated to the macromechan-
ics of the corresponding MGs.

Returning to the topic of the time evolution of LEs in the
MGs upon mechanical loading, in addition to the SS curves,
Fig. 4 also brings an example of a particular Cu nonpersis-
tent local environment (NPLE) extracted out of the structural
model of the MG Zr45Cu45Al10, whose central atom is marked
with an asterisk. First of all, in the terminology of this work, a
NPLE is a LE whose neighborhood has changed permanently
over the mechanical loading—i.e., through some kind of mi-
gration or rearrangement mechanisms, it has underwent bond
exchanges and some of its neighbor atoms have been replaced.
Such changes were monitored in all CMD simulations for
the two extreme NCs Zr45Cu45Al10 and Zr49Cu49Al2, and the
referred example Cu-centered NPLE has lost five of its eleven
neighbors at 6% strain. Pointing that such NPLE broken bonds
will be referred to as NPLE-BBs in this work, whereas, in
contrast, those remaining persistent bonds will be dubbed
NPLE-PBs.

Additionally, it is self-evident that, for illustrative pur-
poses, new neighbors are not shown in Fig. 4, and the
neighbor’s −ICOHP values predicted by the ML model for the
nonstrained structure (those from Fig. 3) are shown, primarily,
to serve as a label for identifying the corresponding atoms in
further strain values—i.e., they have not been recalculated in
the new strained structures. Moreover, in order to circumvent
thermal fluctuation effects when monitoring neighbors, an
additional 0.50 Å has been added to the cutoff value of 3.75 Å
introduced in Sec. II B, and this is the only arbitrary parameter
used in this procedure.

The Cu-centered NPLE in Fig. 4 provides just an extreme
example of a set of bond exchange processes in which the
central atom has lost 64% of its original neighbors at (“spu-
rious”) 12% strain. From that figure, it can be seen that the
LE of this atom has indeed underwent severe changes over

compression, and, as expected, this is a Cu atom whose bonds
are overall weak and hence representative of the correspond-
ing distributions depicted in Fig. 3. The complete list of bond
strengths together with the respective bond distances of this
particular NPLE is available in Table S4, where it is noticeable
that, incidentally, all the broken bonds have an associated
−ICOHP value that is less than 1.0 eV. Naturally there are
exceptions, since the dynamics of such bond exchange pro-
cesses is influenced by multiple factors like the number of
nearest neighbors, relative distribution of the respective bond
strengths around the coordination sphere, vibration fluctua-
tions, and related entropic effects, among others.

So, in order to provide a complementarity support to
that line of reasoning, a second contrast example has been
extracted out of the same 10 000-atoms cell of the MG
Zr45Cu45Al10. It refers to a Zr-centered NPLE that has ex-
changed only 26% of its bonds at 12% strain. The associated
bonding data is also listed in Table S4 and the snapshots
of its time evolution over compression are depicted in Fig.
S37. That second example of NPLE reinforces the idea that
all those factors influencing the dynamics of bond exchange
processes mentioned in the last paragraph must be taken into
account if one aims at specifying a type of local descriptor,
able to allow sound segregation of atoms in MGs. In fact, atom
categorization is a very promising application of the ML-
based approach proposed in this work, capable of opening up
new prospects and of playing a valuable role in further studies
focused on current conceptions regarding chemical/structural
and dynamical inhomogeneities existing in these materials
other than bond exchange [53] processes. Nevertheless, the
development of such referred descriptors definitely goes be-
yond the goal of the present work.

Moving to descriptive statistics of the whole 10 000-atoms
cells of the two extreme NCs Zr45Cu45Al10 and Zr49Cu49Al2,
before all, the reader is referred to Figs. S38 and S39 to
see that extreme cases like the Cu-centered NPLE shown in
Fig. 4 are rare in the CMD simulations. At 6% strain, most
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FIG. 5. Time evolution over compression of the number of non-
persistent local environments (NPLEs, see text) centered at Zr (•),
Cu (�), and Al (�) atoms, counted for the two extreme NCs
Zr45Cu45Al10 and Zr49Cu49Al2.

of the NPLEs have no more than 10% of broken bonds—i.e.,
NPLEs-BBs �10% for most of the cases and that is a quan-
tity that indicates the extent of bond exchange in individual
NPLEs. Also from Figs. S38 and S39, it is possible to verify
that even at (“spurious”) 12% strain, NPLEs-BBs �50% are
unusual.

With respect to the amounts of NPLEs, Fig. 5 brings the
corresponding per-specie time evolution over compression.
It goes without saying that those bare numbers reflect the
stoichiometries of each NC, but it is clear that Zr atoms show
higher propensity of bond breaking as already reported in the
literature [53]. Moreover, it is possible to see in Table S5 that
at 6% strain, the amounts of Zr- and Cu-centered NPLEs are
relatively greater in the lowest Al-content NC Zr49Cu49Al2 (in
percentage terms regarding individual stoichiometries). For
instance, whereas 41% of the Zr atoms are NPLEs in that latter
NC, this number drops to 37% in the highest Al-content MG
Zr45Cu45Al10, and in the case of Cu atoms, that reduction is
from 19% to 17%, respectively.

From the counting results in Fig. 5, it can be said, in princi-
ple, that the propensities for bond exchange of solvent Zr and
Cu atoms—in the CMD simulations carried out in the present
work—decrease upon alloying of Al, and this deduction has to
be linked to the drastic change in the experimental mechanical
behavior of the same MGs reported by Kumar et al. [28]. In-
deed, one can see in Fig. 4 that the onset of plastic deformation
takes place earlier in the MG Zr49Cu49Al2, which is the plastic
NC in Ref. [28]. Moreover, it is also noticeable in Fig. 4 that
the deviation of the linear elastic behavior occurs first and is
more pronounced in that lowest Al-content NC than in the MG
Zr45Cu45Al10 (the one found to be brittle in Ref. [28]). This is
of course in line with the common perception that local bonds
in that latter NC are less susceptible to be broken, since they
become more strong, and maybe more covalent in addition to
ionic contribution (i.e., more unidirectional and less isotropic
than the metallic counterparts).

In fact, none of this is new. However, the actual missing
information regarding bond strengths is the semiquantitative
quantum mechanical analysis provided by the COHP method

[21], which is being enabled by the ML model proposed in this
work. Naturally, before the universe of thousands of predicted
−ICOHP values depicted in Fig. 3, the analysis of individual
cases like the Cu- and Zr-centered NPLEs discussed above
will not offer the sought assessment of the propensity for bond
exchange under the scope of mechanical loading. So in order
to accomplish this, in a word, Fig. 6 brings a combination of
the bonding information from Fig. 3 with the outcomes of the
CMD simulations depicted in Figs. 4 and 5.

The histograms in Fig. 6 represent the distributions of
mean −ICOHP values computed for the zero strain structures
(those from Fig. 3) for the two extreme NCs Zr45Cu45Al10

and Zr49Cu49Al2. However, in order to keep track on bond
exchange processes upon mechanical loading (as done for the
Cu-centered NPLE in Fig. 4), all the histograms correspond to
LEs existing in the 6% strained structures. So, those per-bond
−ICOHP values from Fig. 3 have been cast into a per-atom (or
per-LE) representation, dividing the neighbors of each central
atom in three distinct groups, from which the referred mean
bond strengths have been computed.

The former group comprises the neighbors of atoms whose
LEs have been preserved throughout the entire uniaxial com-
pression in the CMD simulations (up to 12%); those are
labeled PLEs (an abbreviation for persistent LEs) and they
make up the histograms in Figs. 6(a) and 6(d). The other two
groups comprehend the already introduced NPLEs; however,
they are evaluated using two distinct sets of histograms for the
same entries, namely: the persistent bonds (NPLEs-PBs) and
the broken bonds (NPLEs-BBs)—it refers to the histograms
in Figs. 6(b), 6(c) 6(e), and 6(f). For example, the same Cu-
centered NPLE depicted in Fig. 4 at 6% strain is an entry
of the corresponding histograms in Figs. 6(b) and 6(c), with
the corresponding arithmetic mean −ICOHP values averaged
over its six PBs and its five BBs, respectively.

Back to the matter of the drastic change in the mechanical
behavior of the MGs Zr49Cu49Al2 (plastic) and Zr45Cu45Al10

(brittle) reported by Kumar et al. [28], this experimental out-
come can be revisited in the light of the histograms from
Fig. 6. First of all, they show that in all LEs (persistent or
not) the means computed for persistent bond strengths (PLEs
and NPLEs-PBs) are very dependent on the chemical specie of
the central atom, regardless of the composition of its first co-
ordination shell (i.e., the chemical species of neighbor atoms).
Moreover, the profiles of the corresponding distributions also
do not depend on the NC of the studied MGs. As can be
seen, for all Zr-centered PLEs and NPLEs-PBs, the mean
−ICOHP values are distributed around about 1.1 eV, whereas
the corresponding distributions for Cu- and Al-centered LEs
are centered around about 0.8 eV and 1.5 eV, respectively.
Moreover, it is noticeable that the range of mean −ICOHP
values covered by those histograms for Zr- and Cu-centered
LEs (between 0.5 and 1.3 eV) cover the same range of most
of the moderately stronger Zr-Zr and Zr-Cu bonds as shown in
Fig. 3, which allows pointing 0.8 eV as a rough minimal value
for what can be stated as a persistent bond in these materials.

Still regarding persistent bonds, the differences concern-
ing the Al content of the two ZCA alloys lie mostly in the
frequencies of observations, markedly those associated to Zr-
centered NPLEs-PBs—the gray histograms in Figs. 6(b) and
6(e). Pointing that these histograms are not normalized, as
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FIG. 6. Distributions of mean −ICOHP values of persistent bonds (PBs) and broken bonds (BBs) in persistent local environments (PLEs)
and in nonpersistent local environments (NPLEs, see text) existing in the 10 000-atoms cells of the two extreme NCs Zr45Cu45Al10 and
Zr49Cu49Al2. The number of bins in each histogram was calculated from Sturges’s formula and arbitrarily multiplied by 18, whereas the
corresponding colors are defined according to the species of central atoms. The total numbers of PLEs and NPLEs are shown, with the
percentages of NPLEs also provided between brackets.

well as the counting results in Fig. 5. Despite this, the referred
difference is still evident, which suggests that the drop from
41% to 37% of Zr-centered NPLEs caused by alloying of
Al is a key factor related to the embrittlement of the MG
Zr45Cu45Al10, with respect to the lowest Al-content counter-
part. However, especially concerning the plasticity of the MG
Zr49Cu49Al2, the role of Cu-centered NPLEs shall not be ruled
out, since the associated PBs are weaker, with mean −ICOHP
values distributed around about 0.8 eV.

Within this context, it is possible to show that the computed
mean −ICOHP values are also correlated with the nature of
the bond exchange processes and propose that such processes
in Zr-centered NPLEs are more likely to be associated to local
rearrangements with low mobility—just as depicted in Fig.
S37 for the example Zr-centered NPLE. On the other hand,
bond exchange processes going on in Cu-centered NPLEs
could be said more likely to be related to a higher mobil-
ity. Without claiming to make quantitative predictions on the
rheology of these MGs, the mean-squared displacements per-
pendicular to the loading direction (MSDY Z ) averaged over
atoms of the same specie were also computed. These bare
results are shown in Figs. S40 and S41, and they can be used
to gain a qualitative view of atomic mobility upon uniaxial
compression up to 5% strain. In short, it can be seen that
the overall atomic mobility in the MG Zr49Cu49Al2 is higher.
However, in both NCs, Zr and Al atoms present equivalent
mobility, whereas Cu atoms present greater and discernible
mobility, especially in that lowest Al-content MG.

Finally, with respect to the NPLEs-BBs, one can see in
Figs. 6(c) and 6(f) that they are not very dependent on the
chemical specie of the central atom, concerning the ranges of
the associated mean −ICOHP values, which go from 0.0 up to
0.7 eV for Cu-centered NPLEs, and are a little more extended

up to about 1.0 eV for the Zr-centered NPLEs. An additional
remark that is valid for all histograms in Fig. 6 is that the
coordination numbers of Zr atoms are in general higher (about
18) than in Cu and Al (about 12). So, it is expected that the
frequencies of broken bonds in Zr-centered LEs will be higher
as well. Nevertheless, it is clear that the above-mentioned
ranges of −ICOHP values verified for NPLEs-BBs match
those pointed in Fig. 3 as the weakest bonds in the structures
of the studied ZCA alloys (all the Cu-Cu interactions and a
small fraction of the Zr-Zr and Zr-Cu bonds).

A final note, also related to the histograms shown in Fig. 6,
concerns the use of the arithmetic mean −ICOHP values
averaged over individual groups of neighbours in each LE.
The mean has just been taken as an index able to yield a range
of −ICOHP values more compatible with those computed for
individual bonds shown in Fig. 3. The corresponding sums (as
shown in Figs. S42 to S47) is an alternative option that could
be used to discuss the outcomes of the CMD simulations in
terms of chemical bonding, for instance. Moreover, in order to
provide an insight into the dispersion of the −ICOHP values
in each LE used to compute the associated arithmetic means,
the corresponding standard deviations are also available in
Figs. S48 to S53.

IV. SUMMARY AND CONCLUSIONS

This work has introduced a machine learning (ML)-based
approach that brings to research in the field of metallic glasses
(MGs) a feasible solution for the daunting task of extract-
ing quantum chemical information from realistic structural
models of such highly complex systems—normally contain-
ing thousands of atoms. The quantum mechanical bonding
descriptors are computed with the crystal orbital Hamilton
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population (COHP) method, with the accuracy of first-
principles density functional theory calculations and used as a
measure of bond strengths. The ML model is founded upon a
Gaussian process regression framework and the smooth over-
lap of atomic positions (SOAP) descriptor for atomic local
environments (LEs).

The ML-based approach has proven effective when applied
to MGs of a prototypical alloy system, providing, firstly, an
unprecedented “big picture” view of bond strengths between
atoms in their structures. Next, it has been employed under the
specific scope of mechanical loading, aiming at looking for in-
sights into the drastic change in the experimental mechanical
behavior upon alloying of Al reported in the literature [28].
Using ordinary descriptive statistics, the resulting overview
of chemical bond strengths revealed a chemical/structural
heterogeneity that is quite in line with the propensity for
bond exchange processes verified for different types of LEs
in the structures of the studied MGs. Additionally, it also
enabled the assignment of such processes to migration and
rearrangement mechanisms, based on identified differentiated
atomic mobilities.

It is important to point out that bond strength is a key
and enabling element for the development of methods for
short-range order identification and atom categorization in
MGs. In fact, introducing chemical bonding theory into that
specific scope is not trivial, but it can have the power to bring
a complementary chemical sense to those already established
tools like Voronoi polyhedrons and common neighbor analy-
sis (CNA) [58], which are based purely on structural topology.
Moreover, in addition to bond strengths (−ICOHP values),
there are other quantum-mechanical indicators of bonding in
materials that can be learned [59] in the same way. Also,
the versatility of the SOAP descriptor allows complemen-
tarity converse approaches to recover detailed information
regarding electronic structure, which can be interfaced with
the proposed ML model without much effort. For example,
the detailed features (bonding, nonbonding, and antibonding)
of the full COHP curve of a given LE in a realistic struc-
tural model used in a classical molecular dynamics simulation

can be attained by looking for the best matching LE in the
database of interactions.

Regarding the application of the ML model presented in
this work, although rather restrained—but quite consistent—
the exposed intermix of chemical/structural and dynamical
inhomogeneities existing in the studied MGs certainly paves
the way towards innovative approaches from the perspec-
tive of chemical bonds. There are promising applications
in plenty of other contexts in which atom categorization
based on the strength of chemical bonds plays a key
role. Among those, it is possible to highlight: the inter-
pretation of dynamical mechanical analysis experimental
results [8], for unveiling atomic-scale mechanisms related
to phenomena like viscoelastic behavior and internal fric-
tion, and also studies of shear bands [60] for gaining
insights into, for instance, the role of the nonpersistent lo-
cal environments in the MG Zr49Cu49Al2 on nucleation of
nanocrystals formed upon deformation, as reported in the
literature [28].
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