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Departures from local interfacial equilibrium during metal oxidation
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We use irreversible thermodynamics to formulate a model for the formation of a cation-deficient, p-type
oxide on the surface of a pure metal in which local equilibrium is not necessarily maintained at the oxide
interfaces and no a priori assumption regarding a rate limiting step is made. The dissipation rate derived here
accounts for most of the conceivable processes that can occur during the oxidation of a metal, including bulk
diffusion of cations and surface diffusion along the metal-oxide and gas-oxide interfaces. By including capillary
effects in the formulation, shape changes in the oxide, which are usually neglected in most theories, can be
described. We examine the steady-state solution of the model in one dimension for planar interfaces, and show
that the growth law naturally captures the transition from linear to parabolic kinetics as the film thickens. A
characteristic lengthscale for the transition is derived and can be obtained from oxide growth curves as a fitting
parameter. Wagner’s classical oxidation model is obtained as a limiting case of our more general model. We
obtain expressions for the interfacial defect concentrations as a function of the departure from local equilibrium
at the interfaces. From these expressions, we show that the exponent for the oxygen pressure dependence of the
cation vacancy concentration can deviate from the usual values obtained from equilibrium considerations, and
thus measuring nonstandard exponents can indicate a nonequilibrium effect. Our analysis serves to clarify the
meaning and validity of the local equilibrium assumption in the context of metal oxidation.
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I. INTRODUCTION

When most pure metals are in contact with O2 at high
temperatures, a heterogeneous reaction occurs resulting in the
formation of a thin oxide scale on the surface of the metal.
The reaction continues and the scale thickens due to transport
of either metal or oxygen (sometimes both) across the scale to
the reactant at the opposing oxide interface [1]. Growth of the
oxide is modelled by formulating appropriately constrained
equations for reactant transport in the oxide, with boundary
conditions related to the state of the reactions occurring at the
metal-oxide and gas-oxide interfaces [2].

It is frequently assumed that equilibrium is established
locally at the metal-oxide and gas-oxide interfaces during
oxidation [3]. Wagner assumes this to be true in his frequently
cited model of metal oxidation [4], and many extensions of
that model have maintained this assumption [5–8]. When local
interfacial equilibrium is established, the chemical potentials
of the reacting species are continuous across the interface and
maintain a fixed value that is independent of time [9]. As a
result, reactant diffusion across the film is the rate-limiting
step [1]. Since the steady-state reactant flux is inversely pro-
portional to the film thickness, L, the film grows according to
the parabolic rate law

L2 = kpt,

where kp is known as the parabolic rate constant, and is
typically a function of the driving force for oxidation [1,2].
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Parabolic kinetics are observed for large oxide thicknesses
where reactant diffusion must be the rate-limiting step.

When the oxide film is thin, the reactant fluxes can be very
large and a deviation from local equilibrium, manifesting as a
jump discontinuity in the chemical potential at the interface,
is expected [9,10]. In this case, the oxidation rate is said to be
“interface controlled” and the oxide thickness increases lin-
early in time. The rate law transitions from linear to parabolic
as the oxide thickens [11,12].

For the case of interface control, the boundary conditions
are frequently chemical rate laws for the reactions that are
presumed to be occurring at the oxide interfaces [13]. Wagner
considered the possibility that the linear rate law is due to
a deviation from local equilibrium at the gas-oxide interface
when the gas-oxide interface reaction becomes rate limiting
[14]. Others considered that the reaction control of oxida-
tion occurs while the metal-oxide interface maintains a state
of local equilibrium [15]. This requires fast diffusion across
the metal-oxide interface such that the vacancy concentration
maintains its equilibrium value. Since diffusion in oxides is
generally slow and there are various structural complications
associated with accommodating a flux across a solid-solid in-
terface, it is difficult to envisage local equilibrium being truly
maintained at the metal-oxide interface at all times, particu-
larly during the initial stages of oxide growth [3]. The purpose
of this paper is to relax the assumption of local interfacial
equilibrium and formulate a general oxidation model in which
no a priori assumption regarding a rate limiting step is made.
We accomplish this by utilizing irreversible thermodynamics
to rigorously analyze mass transport in the metal-oxide-
gas system. Specifically, we consider the formation of a
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FIG. 1. Defect structures of the metal and oxide. The metal con-
tains metal atoms and vacancies, while the oxide contains cations,
oxygen ions, cation vacancies, and holes. The oxygen sublattice is
assumed to be perfect such that oxygen diffusion is negligible.

cation-deficient, p-type semiconducting oxide MO on the sur-
face of a pure metal M in a pure O2 atmosphere. The result
of the analysis is the set of governing equations and boundary
conditions needed for modeling the oxidation transformation
in which local equilibrium is not necessarily established at
either of the oxide interfaces. Although we focus on oxidation
in one dimension with planar interfaces, capillary effects are
included in the boundary conditions of the model which en-
ables a self-consistent description of shape changes in oxide
due to both bulk and surface diffusion. Capillary effects have
generally been neglected to date as most models focus on
oxidation in one dimension. The model presented here was
derived using the formalism for creep deformation developed
by Mishin et al. [16]. The present development serves to
clarify the meaning and validity of the local equilibrium as-
sumption, and establishes the framework needed to explain
recent experiments on “nonequilibrium solute capture,” in
which metastable oxide solid solutions formed during the
oxidation of single phase alloys [17]. This process requires
a departure from equilibrium at the metal-oxide interface.

II. THERMODYNAMICS

The crystalline nature of the metal and oxide means that we
must consider the presence of the both lattice and electronic
defects to formulate a complete thermodynamic description
of these phases. The defect structures of the metal and oxide
are depicted in Fig. 1. The metal is composed of metal atoms
(M) and vacancies (VM). The oxide has the rocksalt crystal
structure and is composed of cations (M×

M), cation vacancies
(V ′′

M), holes (h•) and oxygen ions (O×
O ). We will assume that

holes do not occupy any particular site in the oxide. We use
Kröger-Vink notation to denote the structural elements of the
oxide which are distinct from thermodynamic components. At
all points, we will assume that the metal and oxide phases are
completely free of stress.

A. Metal phase

We will assume that the metal is semi-infinite such that
transport processes do not lead to changes in the total number
of metal lattice sites. The differential Helmholtz free energy
of the metal takes the form

df M
v = −sdT + μMdρM + μVM dρVM , (1)

where f M
v is the Helmholtz free energy per unit volume, s is

the entropy per unit volume, and ρM and ρVM are the concen-
trations ([mol/m3]) of these species. Since metal and atoms

occupy the same lattice

dρVM = −dρM , (2)

which transforms Eq. (1) to

df M
v = −sdT + μ̃MdρM . (3)

Here, μ̃M = μM − μVM is the diffusion potential of metal
atoms with respect to vacancies. Under the isothermal, stress
free conditions we consider f M

v = μ̃MρM .

B. Oxide phase

The thermodynamic description of the oxide phase is
slightly more complex than that of the metal owing to the pres-
ence of electronic defect in addition to a lattice defect, distinct
cation and oxygen sublattices, and the presence of an electro-
static constraint. To complete the thermodynamic description
of the oxide, it is helpful to consider the idea of building units
of the oxides as described in Chapter 2 of Schmalzried [2]
and also Lankhorst et al. [18]. The idea of building units is
to consider the reactions that give the equilibria between the
oxide crystal and gaseous metal and oxygen that represent the
pure thermodynamic components whose chemical potentials
are unambiguously defined. Consideration of these reactions
leads to the groups of structural units in the oxide that are
thermodynamically relevant.

The reaction that describes the equilibrium between a
gaseous metal (denoted g) and the oxide is

M(g) + V ′′
M + 2h• ↔ M×

M . (4)

We can rearrange this equation to find that

M(g) ↔ M×
M − V ′′

M − 2h•. (5)

Equilibrium of this reaction is given by the following relation:

μM(g) = μM×
M

− μV ′′
M

− 2μh• = μ̃M×
M
, (6)

where μ̃M×
M

= μM×
M

− μV ′′
M

− 2μh• . μ̃M×
M

is the only relevant
potential for metal in the oxide, and is also a diffusion po-
tential similar to μ̃M . The only difference is that holes are
included in μ̃M×

M
to balance charge in the oxide. In Eq. (6),

the chemical potentials μV ′′
M

and μh• could have been written
as electrochemical potentials μ̄V ′′

M
and μ̄h• since these are

charged species and there is an electrostatic contribution to
those chemical potentials. However, upon decomposing the
electrochemical potential using the usual convention of μ̄i =
μi + ziFφ, where zi is the charge number, F is Faraday’s
constant, and φ is the electrostatic potential in the oxide, we
find that the electrostatic contributions from the vacancies and
holes cancel, and the diffusion potential μ̃M×

M
in the oxide is

just a function of the chemical potentials of the individual
structure elements.

The reaction that describes the equilibrium between
gaseous atomic oxygen and the oxide is

O(g) ↔ O×
O + V ′′

M + 2h•. (7)

This reaction describes the exchange of the oxygen between
the gas and the surface of the oxide, which results in the
creation of lattice sites in the oxide. An analogous exchange
for oxygen in the bulk is not possible since we assume that
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there are no oxygen vacancies in the oxide. Equilibrium of
this reaction is given by the following relation:

μO(g) = μO×
O

+ μV ′′
M

+ 2μh• = μ̃O×
O
. (8)

Here μ̃O×
O

is the only relevant potential for oxygen in the
oxide, and strictly speaking is only defined at the oxide’s
surface. The interpretation of μ̃O×

O
is different than that of μ̃M×

M

in that μ̃O×
O

is not a diffusion potential. Instead, it a potential
that accounts the creation of lattice sites at the oxide surface
by forming a pair of a oxygen on an oxygen site together
with a vacant cation site and two holes needed to main-
tain the rocksalt structure and valence neutrality. In Eq. (8),
we could have used electrochemical potentials, but as with
Eq. (6), the electrostatic contributions from the vacancies and
holes cancel, leaving only the regular chemical potentials as
part of μ̃O×

O
.

We could have proceeded in an analogous fashion as the
metal to derive the relevant metal and oxygen potentials in
the oxide, but believe that the building unit description is
more transparent and makes the distinction between bulk and
surface processes more apparent. The structural constraint on
the cation sublattice

dρV ′′
M

= −dρM×
M

(9)

and the constraint of charge neutrality

dρh• = 2dρV ′′
M

(10)

are indeed satisfied by the reactions and thus by μ̃M×
M

and μ̃O×
O
.

Our use of the potentials μ̃M×
M

and μ̃O×
O

conforms with the idea
that the chemical potentials of the individual structural ele-
ments themselves have no physical meaning and only groups
of structural element potentials have physical meaning [2,18].

Since μ̃O×
O

is only defined at the oxide surface, a full de-
scription of the Helmholtz free energy of the oxide is only
possible at the surface. Here, the following equation holds:

df O
v = −sdT + μ̃M×

M
dρM×

M
+ μ̃O×

O
dρO×

O
. (11)

This equation implies that under isothermal conditions, the
Helmholtz free energy at the surface is

f O
v = μ̃M×

M
ρM×

M
+ μ̃O×

O
ρO×

O
. (12)

There is one last thermodynamic relation that is obeyed at the
surface which is, using Eqs. (6) and (8):

μ̃M×
M

+ μ̃O×
O

= μM×
M

+ μO×
O

= μ◦
MO. (13)

Here μ◦
MO is the chemical potential of an MO formula unit

composed of a cation and oxygen ion, and importantly is
the pure oxide that contains no defects. We will assume that
Eq. (13) holds always, which ultimately means that we are
assuming small vacancy concentrations in the oxide at all
times.

C. Gas phase

We consider that the gas phase is a uniform atmosphere of
O2. The differential Helmholtz free energy of the gas-phase is

df G
v = −sdT + μO2 dρO2 , (14)

FIG. 2. Schematic of the system with the metal, oxide, and gas
phases brought into contact with each other. The boundaries and
normal orientations are clearly marked.

where f G
v is the Helmholtz free energy per unit volume in the

gas. Under isothermal conditions, this implies that

f G
v = μO2ρO2 . (15)

To simplify the oxygen mass balance at the gas-oxide inter-
face, we will consider the gas phase as composed of oxygen
atoms in which the following relations hold:

ρO = 2ρO2 , μO = 1
2μO2 (16)

so that

f G
v = μOρO. (17)

Equations (15) and (17) give the same Helmholtz free energy
density.

III. FREE ENERGY DISSIPATION IN THE
THREE-PHASE SYSTEM

We now consider the entire system composed of the metal,
oxide, and gas and examine the free energy dissipation in
each phase as well as well as the dissipation at the metal-
oxide and gas-oxide interfaces. The setup for the analysis is
depicted in Fig. 2. We embed the entire system in an inert
medium to enforce zero-flux boundary conditions away from
the interfaces. The metal, oxide, and gas phase occupy the
regions RM , RO, and RG which are bounded by the sur-
faces ∂RM , ∂RO, and ∂RG. The boundary of the metal can
be decomposed as ∂RM = ∂RM

i + SM/O, where ∂RM
i is the

portion of ∂RM in contact with the inert medium and SM/O is
the portion of the boundary coinciding with the metal-oxide
interface. The boundaries ∂RO and ∂RG can be decomposed
similarly, where SG/O is the surface coinciding with the gas-
oxide interface. We use outward pointing normal vectors nM ,
nO, and nG for each phase. Along SM/O, nO = −nM , and
along SG/O, nO = −nG. Velocities of the phase boundaries
are denoted as vM , vO, and vG for the metal, oxide, and gas
phases, respectively.

The reference frame we use for the fluxes is that estab-
lished by the defect-free, immobile lattice of oxygen ions in
the oxide. Because these ions do not move, the metal-oxide
interface, which is marked by the terminal surface of oxygen
ions, is stationary [17] but can still have a flux across it.
As a result vM · nM = vO · nO = 0 along SM/O. The same is
not true along SG/O since that interface moves as a result
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of the addition of oxygen atoms to the oxide surface from
the gas-phase. Accordingly, vO = vG along SG/O so that the
oxide and gas phases are in contact at all times. In principle,
the portions of the metal and gas phases, ∂RM

i and ∂RG
i that

are in contact with the inert can move if these phases are
finite in extent. Such motion would correspond to shrinking
of the metal phase as it oxidizes, in addition to shrinking of
the gas phase as it is consumed. For sufficiently large metal
and gas phases, the velocities of these boundaries would be
very small and negligibly contribute to the dissipation rate we
are concerned with here. As such, we take the velocities of the
the boundaries ∂RM

i = ∂RG
i = 0. In deriving the dissipation

rate in each phase, we will use the local mass conservation
equation

∂ρi

∂t
= −∇ · JL

i , (18)

where JL
i is the lattice (or bulk) flux of species i.

A. Dissipation in the metal

The total free energy of the metal is

�M =
∫
RM

f M
v dv. (19)

The rate of the free energy change in the metal is

�̇M = −
∫
RM

μ̃M∇ · JL
Mdv +

∫
∂RM

f M
v vM · nMdA. (20)

In Eq. (20), the first term corresponds to dissipation of energy
by diffusion of metal, and the second terms corresponds to
dissipation by the creation or annihilation of metal lattice sites
at the the boundary with velocity vM . Since ∂RM is in contact
with either the inert medium or the stationary metal-oxide
interface vM · nM = 0 along ∂RM , the metal phase does not
change size, and the second term is 0. Applying the product
rule for divergences, we can transform Eq. (20) into the fol-
lowing form:

�̇M =
∫
RM

∇μ̃M · JL
Mdv −

∫
RM

∇ · (
μ̃MJL

M

)
dv. (21)

We then apply the divergence theorem to the second term to
arrive at the following equation for the free energy dissipation
rate of the metal phase:

�̇M =
∫
RM

∇μ̃M · JL
Mdv −

∫
∂RM

μ̃MJL
M · nMdA. (22)

B. Dissipation in the oxide

The oxide is a growing phase and we assign to vO the
velocity of the boundary ∂RO. Similarly to the metal, vO = 0
along SM/O and ∂RO

i and is only nonzero along SG/O which
the interface where growth of rocksalt oxides occurs [3]. The
total free energy of the oxide is

�O =
∫
RO

f O
v dv. (23)

The rate of free energy dissipation in the oxide is

�̇O = −
∫
RO

(
μ̃M×

M
∇ · JL

M×
M

+ μ̃O×
O
∇ · JL

O×
O

)
dv

+
∫
SG/O

f O
v vO · nOdA. (24)

In Eq. (24), JL
O×

O
= 0 because bulk fluxes of oxygen are prohib-

ited by the lack of oxygen vacancies. The second integral in
Eq. (24) represents the free energy dissipated by growth of the
oxide and addition of lattice sites at the oxide surface. We can
now apply the product rule for divergences and the divergence
theorem to Eq. (24) to obtain the following equation for the
free energy dissipation in the oxide:

�̇O =
∫

∂RO

∇μ̃M×
M

· JL
M×

M
dv −

∫
∂RO

μ̃M×
M

JL
M×

M
· nOdA

+
∫
SG/O

f O
v vO · nOdA. (25)

C. Dissipation in the gas

We treat the gas as an oxygen atmosphere with uniform
pressure. As the oxide grows, the gas phase shrinks with
velocity vG. Note that vG is nonzero only along the gas-oxide
interface SG/O. The total free energy of the gas is

�G =
∫
RM

f G
v dv. (26)

The rate of change of the gas free energy is

�̇G = −
∫
RG

μO∇ · JL
Odv +

∫
SG/O

f G
v vG · nGdA. (27)

Since the gas has uniform pressure, JL
O = 0 and

�̇G =
∫
SG/O

f G
v vG · nGdA. (28)

D. Dissipation at the interfaces

The total energy of the system depicted in Fig. 2 is given
by the equation

� = �M + �O + �G + �M/O + �G/O. (29)

Here, �M/O and �G/O give the free energy of the metal-oxide
and gas-oxide interface, i.e.,

�M/O =
∫
SM/O

γ M/OdA, �G/O =
∫
SG/O

γ G/OdA, (30)

where γ M/O and γ G/O are the interfacial energies of the metal-
oxide and gas-oxide interfaces. We have previously derived
the equations for the rates of free energy dissipation in the
metal, oxide, and gas and now turn to the rate of free energy
dissipation at the interfaces. We will assume that the interfa-
cial energies are isotropic and thus

γ M/O = γ M/O(T ), γ G/O = γ G/O(T ). (31)

This means that faceting or anisotropic energy of the oxide
surface is not described but could be added in the future.
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The dissipation rates at the interfaces have the form

�̇M/O =
∫
SM/O

γ̇ M/OdA +
∫
SM/O

γ M/OdȦ, (32)

�̇G/O =
∫
SG/O

γ̇ G/OdA +
∫
SG/O

γ G/OdȦ. (33)

By Eq. (31), γ̇ M/O = γ̇ G/O = 0, and the first integrals in
Eqs. (32) and (33) are 0. The rates of changes of the interfacial
areas are given by

dȦ = κv · ndA, (34)

where κ gives the curvature of the interface and is defined as
κ = ∇ · n. Note that this definition of κ gives the correct sign
of the curvature for the outward pointing normal vectors nO of
the oxide. Since nM and nG point in opposite directions to nO

along SM/O and SG/O, the curvatures of these two interfaces
have opposite signs when defined with respect to the metal
and gas phases.

Using this, we find that

�̇M/O = 0, (35)

�̇G/O =
∫
SG/O

γ G/OκOvO · nOdA. (36)

For Eq. (35), we used the fact that vO · nO = 0 along SM/O.

E. Total free energy dissipation

The total rate of free energy dissipation for the system is

�̇ =
∫
RM

∇μ̃M · JL
Mdv +

∫
RO

∇μ̃M×
M

· JL
M×

M
dv

−
∫

∂RM

μ̃MJL
M · nMdA −

∫
∂RO

μ̃M×
M

JL
M×

M
· nOdA

+
∫
SG/O

f O
v vO · nOdA +

∫
∂SG/O

f G
v vG · nGdA

+
∫
SG/O

γ G/OκOvO · nOdA. (37)

We now turn to the evaluation of the surface integrals along
∂RM , ∂RO, and ∂RG. For the integral along ∂RM we have∫

∂RM

μ̃MJL
M · nMdA =

∫
SM/O

μ̃MJL
M · nMdA. (38)

Here, we used that fact that the normal flux of metal along
∂RM

i must vanish since the inert medium is incapable of
taking in metal atoms. Similar arguments are used to simplify
the remaining surface integrals to just terms involving the
interfaces. Doing this, we find that the total rate of free energy
dissipation is

�̇ =
∫
RM

∇μ̃M · JL
Mdv +

∫
RO

∇μ̃M×
M

· JL
M×

M
dv

−
∫
SM/O

μ̃MJL
M · nMdA −

∫
SM/O

μ̃M×
M

JL
M×

M
· nOdA

−
∫
SG/O

μ̃M×
M

JL
M×

M
· nO +

∫
SG/O

f O
v vO · nOdA

+
∫
SG/O

f G
v vG · nGdA +

∫
SG/O

γ G/OκOvO · nOdA. (39)

F. Mass conservation

Equation (39), as written, does not account for the ex-
changes of mass between the metal and oxide and the gas
and the oxide which result in growth. We now transform
the integrals at the metal-oxide and gas-oxide interfaces in
a manner that obeys mass conservation by introducing the
following terms:

jM
M = −JL

M · nM , (40)

jO
M = −JL

M×
M

· nO, (41)(
jM
M + jO

M

) = −∇s · Js
M . (42)

Here, jM
M and jO

M represent the number of metal atoms per
unit area per unit time that enter the metal and oxide phases,
respectively, from the metal-oxide interface. Equation (42)
represents the conservation condition that the total number
atoms that enter each phase is equal to the surface divergence
of the surface diffusion flux Js

M . In the absence of diffusion
along the interface, we find that jM

M = − jO
M as expected. Equa-

tions (40) and (41) allow us to combine the two integrals at the
metal oxide interface as

−
∫
SM/O

(
μ̃MJL

M · nM + μ̃M×
M

JL
M×

M
· nO

)
dA

=
∫
SM/O

(
μ̃M jM

M + μ̃M jO
M

)
dA. (43)

The conservation of atoms at the gas-oxide interface is
captured by the equations

JL
M×

M
· nO = ρM×

M
vO · nO, (44)

jO
O = ρO×

O
vO · nO, (45)

jG
O = ρOvG · nG, (46)(

jO
O + jG

O

) = −∇s · Js
O. (47)

Here jO
O and jG

O are defined analogously to jM
M and jO

M , and Js
O

is the surface diffusion flux of oxygen.
Utilizing Eq. (44), the first two integrals at the gas-oxide

interface in Eq. (39) are combined to give the term∫
SG/O

(
f O
v − μ̃M×

M
ρM×

M

)
vO · nOdA =

∫
SG/O

μ̃O×
O
ρO×

O
vO · nOdA.

(48)

Using Eq. (45), we eliminate the velocity of the interface in
Eq. (48) to obtain∫

SG/O

μ̃O×
O
ρO×

O
vO · nOdA =

∫
SG/O

μ̃O×
O

jO
O dA. (49)

We then apply Eq. (46) to the third integral at the gas-oxide
interface in Eq. (39) to show∫

SG/O

f G
v vG · nGdA =

∫
SG/O

f G
v

ρO
jG
OdA =

∫
SG/O

μO jG
OdA.

(50)
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Finally, for the last integral of Eq. (39), we can use Eq. (45) to
eliminate the interface velocity and find∫

SG/O

γ G/OκOvO · nOdA

=
∫
SG/O

�Oγ G/OκO jO
O dA. (51)

Here, �O = 1/ρO×
O

is the volume per oxygen ion in the oxide,
which is roughly equivalent to the volume of an MO formula
unit due to the large size discrepancy between the oxygen ions
and cations in the oxides, with the cations usually being much
smaller [2]. Putting everything together, the dissipation rate
becomes

�̇ =
∫
RM

∇μ̃M · JL
Mdv +

∫
RO

∇μ̃M×
M

· JL
M×

M
dv

+
∫
SM/O

(
μ̃M jM

M + μ̃M×
M

jO
M

)
dA

+
∫
SG/O

(
μ̂O×

O
jO
O + μO jG

O

)
dA. (52)

In Eq. (52), μ̂O×
O

= μ̃O×
O

+ �Oγ G/OκO, and is the effective
chemical potential of oxygen with the interfacial energy con-
tribution included.

IV. EQUILIBRIUM CONDITIONS
AND TRANSPORT EQUATIONS

Equation (52) captures the energy dissipation in the entire
system, but is not yet in a form in which the interfacial driving
forces are easily identified. To do this it is useful to introduce
the following notation and identities:

[A]M/O = AM − AO, [A]G/O = AG − AO, (53)

〈A〉M/O = AM + AO

2
, 〈A〉G/O = AG + AO

2
, (54)

[AB] = 〈A〉[B] + [B]〈A〉, (55)

〈AB〉 = 〈A〉〈B〉 + 1

4
[A][B]. (56)

Using these identities, we can follow the procedure in the
Appendix of Mishin et al. [16] to cast Eq. (39) into the form

�̇ =
∫
RM

∇μ̃M · JL
Mdv +

∫
RO

∇μ̃M×
M

· JL
M×

M
dv

+
∫
SM/O

∇s〈μ̃M〉M/O · Js
MdA −

∫
SM/O

[μ̃M]M/O jn
MdA

+
∫
SG/O

∇s〈μ̃O〉G/O · Js
OdA −

∫
SG/O

[μ̂O]G/O jn
OdA. (57)

Here jn
M gives the net flux of metal atoms normal to the metal-

oxide interface into the oxide, while jn
O gives the net flux of

atoms normal to the gas-oxide interface into the oxide. Each
of the integrals in Eq. (57) gives a force-flux conjugate pair
that results in dissipation of energy in the bulk phases and at
the interfaces.

Equation (57) is now in a form that allows us to clearly
identify the equilibrium conditions. In equilibrium, �̇ = 0 and

we can treat any flux as a variation in the system [16]. As a
result we conclude that in equilibrium

μ̃M = const. in RM , (58)

μ̃M×
M

= const. in RO, (59)

〈μ̃M〉 = const. along SM/O, (60)

[μ̃M]M/O = 0 along SM/O, (61)

〈μ̃O〉 = const. along SG/O, (62)

[μ̂O]G/O = 0 along SG/O. (63)

Equations (58) to (61) imply that, in equilibrium, the diffusion
potential of metal achieves a uniform value in the metal and
oxide, and that the values of the diffusion potential in the
metal and oxide are equal. Equations (62) and (63) imply that
the effective chemical potential of oxygen at the oxide surface
is equal to the gas chemical potential. Note that in this case,
[μ̂O] includes the capillary shift of the oxygen potential and
thus applies to a curved interface. The fact that the oxygen
potential for our oxide is only defined at the surface means
that the oxygen equilibrium condition is confined only to the
gas-oxide interface.

Equation (57) also allows to write the phenomenological
equations for transport in the bulk phases and across the in-
terfaces. Ignoring cross effects at the interfaces, the transport
equations are

JL
M = −KM∇μ̃M , (64)

JL
M×

M
= −KM×

M
∇μ̃M×

M
, (65)

Js
M = −LM∇〈μ̃M〉M/O, (66)

Js
O = −LO∇〈μ̂O〉G/O, (67)

jn
M = MM[μ̃M]M/O, (68)

js
O = MO[μ̂O]G/O. (69)

Here, K is the phenomenological coefficient for bulk dif-
fusion, L is the coefficient for surface diffusion, M is the
coefficient for the fluxes normal to the interfaces. Each K, L,
and M must be positive to guarantee that the dissipation rate
given by Eq. (57) leads to a decrease in the free energy. We
consider that the transport coefficients KM , KM×

M
, LM , and LO

are scalars, which implies isotropic diffusion. The transport
coefficients can be interpreted as atomic mobility terms. K
represents a mobility in the bulk, L represents the mobility
along the interface, and M gives the mobility of atoms across
the interface. To simplify the analysis and obtain analytical
solutions that convey the essential ideas of the theory, we will
assume that these quantities are independent of composition.
The values of L and M will strongly depend on the structure
of the interface, and thus will expected to depend on the
orientations of the interfaces between the phases.

At this point it helpful to provide an alternate interpretation
of the normal fluxes jn

M and jn
O. If we expand the driving forces
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for these fluxes ([μ̃M]M/O and [μ̂O]G/O) in terms of the virtual
chemical potentials of the individual structure elements, we
find that they are equivalent to the driving forces for the
interfacial reactions

M + V ′′
M + 2h• → M×

M + VM, 	GM/O = −[μ̃M]M/O, (70)

1
2 O2 → O×

O + V ′′
M + 2h•, 	GG/O = −[μ̂O]G/O (71)

that are occurring at the metal-oxide and gas-oxide interfaces,
respectively. Note the 	G values given in Eqs. (70) and (71)
correspond to the driving forces at the interfaces, and do not
necessarily sum to the total oxidation driving force. Thus,
the fluxes jn

M and jn
O, can be thought of as measures of the

rates of these reactions, and MM and MO have an additional
interpretation as reaction rate constants. This interpretation is
especially interesting considering that reactions are not for-
mally part of the model, but arise naturally from the transport
analysis.

We are now in a position to summarize the governing
equations and boundary conditions for the growth of oxide.
The governing equations are

∂ρM

∂t
= −∇ · JL

M in RM, (72)

∂ρM×
M

∂t
= −∇ · JL

M×
M

in RO. (73)

The boundary conditions for the oxide growth problem are
the mass conservation conditions at the interfaces discussed
earlier. The mass conservation considerations relate the bulk
[superscript (L)], surface (superscript O), and normal (su-
perscript O) fluxes at the interfaces at the metal-oxide and
gas-oxide interfaces as

JL
M · nM + JL

M×
M

· nO = −∇s · Js
M at SM/O, (74)

JL
M×

M
· nO = jn

M at SM/O, (75)

JL
M×

M
· nO = ρM×

M
vO · nO at SG/O, (76)(

ρO×
O

− ρO
)
vO · nO = −∇s · Js

O at SG/O, (77)

ρO×
O
vO · nO = jn

O at SG/O, (78)

where the fluxes JL
M , JL

M×
M

, Js
M , Js

O, jn
M , and jn

O are related to
the diffusion potentials according to Eqs. (64) to (69).

V. PLANAR INTERFACES

We illustrate the physics contained in this model by con-
sidering the case of planar oxide growth in one dimension.
While the equations hold for nonplanar interfaces and in-
terfacial diffusion, the analysis for nonplanar geometries is
significantly more complex and will not be treated here. We
examine the case of planar interfaces, which is the context
for which oxidation models have typically been developed
and analyzed, and will neglect surface diffusion. For planar
interface, κO = 0 and μ̂O×

O
= μ̃O×

O
. To simplify the analysis

and focus our attention on the growing oxide phase, we make a
few assumptions about mass transport in the metal and oxide.
First, we assume that diffusion in the metal is sufficiently fast

FIG. 3. Depiction of the coordinate system and diffusion poten-
tial distribution for the analysis of oxide growth in one dimension.

such that the diffusion potential in the metal at the metal-oxide
interface is fixed at its standard state value throughout growth
of the oxide, and thus the vacancy concentration in the metal at
the metal-oxide interface remains constant. This assumption is
reasonable since oxidation experiments on Ni find that vacan-
cies in the oxide do not pile up at the metal-oxide interface
and can diffuse long distances in the metal, and that the rate
limiting step for oxide growth is diffusion in the oxide, not the
metal [3,19].

A. General solution of the model

Using Eq. (65) in Eq. (73) yields a diffusion equation for
the concentration of metal ions in the oxide. Similar to most
oxidation models [3–6], we will assume that diffusion in the
oxide is fast relative the the velocity of the gas-oxide interface
such that we can make the quasistationary approximation
where ∂ρM×

M
/∂t ≈ 0 and obtain a linear diffusion potential

profile in the oxide of the form

μ̃M×
M

(x) = A + Bx. (79)

The coordinate system we use is depicted in Fig. 3. The metal-
oxide interface is located at the fixed position x = 0, while
the gas-oxide interface is located at x = L(t ). The boundary
conditions for the nonequilibrium M/O and G/O interfaces
are

JL
M×

M
= MM[μ̃M]M/O at x = 0, (80)

JL
M×

M
= ρM×

M
V at x = L(t ), (81)

V = dL

dt
= �O jn

O = �OMO[μ̃O]G/O at x = L(t ), (82)

where we used Eq. (69) to relate the interfacial flux to the
jump in the diffusion potential at the G/O interface. We com-
bine Eqs. (81) and (82) to find the new boundary condition

JL
M×

M
= ρM×

M
�OMO[μ̃O]G/O ≈ MO[μ̃O]G/O at x = L(t ).

(83)

Applying the two boundary conditions given by Eqs. (80) and
(83) to the general solution, we find that jumps in the diffusion
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potentials at the the metal-oxide and gas-oxide interfaces are
linked as

[μ̃M]M/O = MO

MM
[μ̃O]G/O, (84)

B = −MO

KM×
M

[μ̃O]G/O, (85)

and

A = μ̃◦
M − [μ̃M]M/O = μ̃◦

M − MO

MM
[μ̃O]G/O, (86)

where A is the value of the diffusion potential at the metal-
oxide interface. Thus, the cation diffusion potential profile in
the oxide is

μ̃M×
M

(x) = μ̃◦
M − MO

MM
[μ̃O]G/O − MO

KM×
M

[μ̃O]G/Ox. (87)

Using Eq. (13) we can relate the diffusion potential at the gas-
oxide interface to the jump in the oxygen potential as

μ̃M×
M

(L) = μ◦
MO − μ̃O×

O
= μ◦

MO − μO + [μ̃O]G/O. (88)

Thus using Eq. (87), we can solve for [μ̃O]G/O as

[μ̃O]G/O = −
(

MMKM×
M

MMMOL + KM×
M

(MM + MO)

)
	GMO.

(89)
By Eq. (84),

[μ̃M]M/O = −
(

MOKM×
M

MMMOL + KM×
M

(MM + MO)

)
	GMO.

(90)
Finally the growth rate of the film is

V = dL

dt
= −

(
�OMMMOKM×

M

MMMOL + KM×
M

(MM + MO)

)
	GMO.

(91)
In Eqs. (89) to (91), 	GMO = μ◦

MO − μO − μ̃◦
M = μ◦

MO −
1
2μO2 − μ̃◦

M is the total driving force for the net oxidation
reaction M + 1

2 O2 → MO + VM . In this equation, μ◦
MO, and

μO2 are taken at the gas-oxide interface (where the oxide
forms) and μ̃◦

M is taken at the metal-oxide interface. For oxide
growth, 	GMO < 0 and the growth rate of the oxide as well
as the potential jumps are positive, as expected.

Equations (89) to (91) represent the most important quanti-
ties for the nonequilibrium reaction-diffusion problem leading
to the formation of the oxide. The prefactors of Eqs. (89) and
(90) give the fraction of the total oxidation driving force that is
dissipated at the gas-oxide and metal-oxide interfaces, respec-
tively. The remaining portion of the driving force is dissipated
by diffusion through the bulk oxide. Dissipation by diffusion
is only possible for nonzero diffusion potential gradients in the
bulk oxide, which occurs whenever [μ̃O] + [μ̃M] < 	GMO, as
depicted in Fig. 3.

B. Growth kinetics

It is worth further examining the growth law given by
Eq. (91). If we divide the numerator and denominator by

MMMO, the growth law is transformed to the more infor-
mative form

dL

dt
= −

(
�OKM×

M

L + L∗

)
	GMO, (92)

where

L∗ = KM×
M

Meff
, (93)

Meff = MMMO

MM + MO
. (94)

L∗ is a kinetically defined lengthscale in the film that takes
into accounts the interplay between interfacial reaction ki-
netics and bulk diffusion in the oxide. Meff is the effective
flux coefficient for the two interfacial reactions occurring in
series. Meff essentially gives the rate constant of the oxidation
reaction when both of the interfacial reactions are occurring
at a finite rates. In analogy to ambipolar diffusion where
the species with the lower mobility determines the ambipolar
diffusivity [18], from Eq. (94) we can see that the interfacial
reaction with the lower rate constant determines the overall
rate of the oxidation reaction. For example, when the mobility
of atoms crossing the metal-oxide interface is less than that
at the oxide-vapor interface, or, if the oxide-vapor interface is
nearly in equilibrium, MM � MO, Meff ≈ MM .

When L � L∗

dL

dt
= −�OMeff	GMO (95)

and the oxide grows linearly in time. When L � L∗, the
parabolic rate law is obtained

dL

dt
= kP

2L
, (96)

where kP = −2�OKM×
M
	GMO. The linear growth rate given

by Eq. (95) represents the maximum growth rate that is possi-
ble in the system, and resolves the issue of the Wagner model’s
prediction of an unphysical, infinite growth rate when the film
thickness goes to zero.

It is possible to determine the kinetic coefficients KM×
M

and
Meff through experiments by carefully measuring the oxide
film thickness as a function of time. Integration of Eq. (92)
with the initial condition L(0) = 0 gives

L(t ) = −L∗ +
√

−2�OKM×
M
	GMOt + L∗2. (97)

Since �O is known for most oxides, and 	GMO can be readily
calculated as a function of PO2 using tabulated thermodynamic
data, the value of KM×

M
and L∗ can be obtained by fitting

Eq. (97) to oxide thickness vs time data. However, only Meff

can be determined, the individual coefficients MM and MO

are not accessible by this fitting procedure.

C. Local interfacial equilibrium vs complete reaction control

Boundary conditions corresponding to local equilibrium
can be obtained by setting one or both of MM and MO to
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FIG. 4. An illustration of the distribution of the cation diffusion potential in the oxide for various limiting cases.

infinity since in this limit

lim
MM→∞

[μ̃M]M/O = 0, lim
MO→∞

[μ̃O]G/O = 0, (98)

which represents continuity of the diffusion potentials at the
interfaces. If we choose MM = MO = ∞, the classical Wag-
ner model of parabolic oxidation is obtained, and the film
growth rate is given by Eq. (96). In this case, the driving
force of the oxidation reaction is only dissipated by diffusion
through the oxide. This is illustrated in Fig. 4(a), where it is
clear that when [μ̃M]M/O = [μ̃O]G/O = 0, the entire diffusion
potential change occurs in the oxide bulk, and diffusion within
the oxide is the only process that dissipates free energy. This
limit is also approached for thick films since from Eqs. (89)
and (90):

lim
L→∞

[μ̃M]M/O = lim
L→∞

[μ̃O]G/O = 0. (99)

This implies that diffusion will always become the rate limit-
ing step once the film is sufficiently thick since the diffusion
potential jumps go to zero and local equilibrium at the in-
terfaces is established. This will occur regardless of the
magnitude of 	GMO.

If local equilibrium is established only at one interface,
then the driving force of the reaction is dissipated at the
other interface and by diffusion through the oxide. When
MO � MM , the gas-oxide interface is in local equilibrium,
while the metal-oxide interface is out of equilibrium and a
non-zero jump in the diffusion potential exists, as depicted
in Fig. 4(b). In this case, the metal-oxide interface reaction
is rate-limiting since the jump in the diffusion potential gov-
erns the magnitude of the fluxes. In the opposing limit of
MM � MO, the metal-oxide interface is in local equilibrium
while the gas-oxide interface is out of equilibrium, as shown
in Fig. 4(c). In this case, the gas-oxide interface reaction is
rate-limiting.

The presence of complete reaction control is difficult
to determine experimentall, since it is possible to have a
thickness-independent growth law and still have diffusion

dissipating the reaction free energy. Consider the instant
where L = L∗, as shown in Fig. 4(d). In this case, the growth
of the oxide is still linear in time and given by the equation

dL

dt
= −�OMeff

2
	GMO. (100)

After some manipulation of the sum Eqs. (89) and (90), we
find that at this film thickness

[μ̃O] + [μ̃M] = −	GMO

2
. (101)

This shows even for a thickness-independent growth law, the
free energy dissipation is not necessarily confined to the in-
terfaces. When L = L∗, half of the total reaction free energy
change in dissipated at the oxide interfaces by the reactions,
and the remaining half is dissipated by diffusion.

D. Defect behavior at the interfaces

Equations (89) and (90) yield expressions for the evolu-
tion of the interfacial vacancy concentrations as a function
of the kinetic coefficients and oxide thickness. To illustrate,
we assume an ideal solution model for the virtual chemi-
cal potentials that compose the potentials in the oxide [i.e.,
μi = μ◦

i + RT ln(ci ), where ci = ρi/ρs is the site fraction of
species i in the oxide]. Considering the oxidation reaction
M + 1

2 O2 → MO + VM , the values of 	G◦
MO that can be read

directly from an Ellingham diagram and the definition of
	GMO is given by the equation

	GMO = 	G◦
MO + RT ln

(
P1/2

O2

)
. (102)

1. Gas-oxide interface

Inserting the virtual chemical potentials into Eq. (89), we
find that the vacancy concentration at the gas-oxide interface
is

cV ′′
M

= 1

41/3
exp

(
−	G◦

G/O − α	G◦
MO

3RT

)
P

α+1
6

O2
, (103)
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where

	G◦
G/O = μ◦

O×
O

+ μ◦
V ′′

M
+ 2μ◦

h• − 1
2μ◦

O2
, (104)

which is the free energy change at the G/O interface in the
standard state, and

α = KM×
M

MO(L + L∗)
. (105)

Equation (103) represents a generalization of the stan-
dard equilibrium mass action expression for the reaction
1
2 O2 → O×

O + V ′′
M + 2h• which predicts than cV ′′

M
varies as

P1/6
O2

at the gas-oxide interface. α is a new parameter that gives
the fraction of 	GMO that is dissipated by the reaction at the
gas-oxide interface. α = 0 corresponds to local equilibrium,
while α = 1 corresponds to a 0 thickness film in the metal-
oxide interface is in local equilibrium, an upper limit that is
likely never reached in practice.

Since α � 0 and 	G◦
MO < 0, we can see that when finite

reaction kinetics are taken into account, the vacancy con-
centration at the gas-oxide interface is lower than its value
at equilibrium, assuming that the pressure is fixed. As the
film grows, α decreases to zero and the usual mass action
expression and P1/6

O2
pressure dependence is recovered. Thus,

when there is interfacial nonequilibrium, the exponent of the
pressure dependence of the vacancy concentration will change
from its standard value.

2. Metal-oxide interface

Inserting the virtual chemical potentials into Eq. (90), we
obtain the following nonlinear equation for the vacancy con-
centration at the metal-oxide interface

c3
V ′′

M(
1 − cV ′′

M

) = 1 − cM

4cM
exp

(
	G◦

M/O − β	G◦
MO

RT

)
P

− β

2
O2

. (106)

Since we assumed throughout the derivation that cVM is small,
Eq. (106) becomes,

cV ′′
M

≈
(

1 − cM

4cM

)1/3

exp

(
	G◦

M/O − β	G◦
MO

3RT

)
P

− β

6
O2

, (107)

where

	G◦
M/O = μ◦

M×
M

+ μ◦
VM

− μ◦
M − μ◦

V ′′
M

− 2μ◦
h• (108)

is the change in free energy at the metal-oxide interface in the
standard state, and

β = KM×
M

MM (L + L∗)
. (109)

Similar to α, β is a parameter that defines the fraction of
the net reaction 	G that is dissipated at the metal-oxide
interface and 0 � β � 1. Again, β = 0 corresponds to local-
equilibrium of the metal-oxide interface. β = 1 corresponds
to a 0 thickness film and local equilibrium of a the gas-oxide
interface, a limit that is likely not reached in practice.

For nonzero β, the exponential term leads to an increase
in the vacancy concentration, while the pressure dependence
leads to a decrease in the vacancy concentration with respect
to the equilibrium value when β = 0. As a film thickens and

β evolves toward 0, the vacancy concentration relaxes to its
equilibrium value that is independent of PO2 . Since the net
driving force, 	GMO for oxidation is on the order −105 J/mol,
and PO2 is typically less than 1 bar, we believe that the expo-
nential term will dominate and a vacancy supersaturation is
present at the metal-oxide interface for sufficiently thin films
when β is nonzero.

Plots of the defect concentrations at the interfaces as a
function of the kinetic parameters α and β and PO2 are shown
in Fig. 5. When kinetic effects are taken into account, we can
see that for thin films, the deviations from local equilibrium
at the interfaces lead to a vacancy excess at the metal-oxide
interface and a vacancy deficit at the gas-oxide interface com-
pared to local equilibrium when α, β = 0. When interfacial
kinetics are taken into account, there is a PO2 dependence to
the vacancy concentration at the metal-oxide interface, despite
the fact that that interface is isolated from the gas-phase and
oxygen gas is not a participant in the metal-oxide interface
reaction given by Eq. (71). As the film grows and α and β

decrease to 0, the equilibrium results are recovered and, in
particular, the pressure dependence of the vacancy concentra-
tion at the metal-oxide interface disappears as expected.

We note that a possible implication of the nonequilibrium
vacancy supersaturation at the metal-oxide interface is the for-
mation of voids in the oxide at that interface. Voiding in thin
oxide films has been noted by Xu et al., which they explained
as a result of stress gradient driving vacancy coalescence in
the oxide [20]. We propose an alternate explanation which is
that since the oxides in their analysis are thin (10 nm) or less,
that the voids are the result of the vacancy supersaturation
present under nonequilibrium conditions. If the vacancies are
present in high-enough concentrations, they can coalesce to
form these voids.

Considering the implications of Eqs. (103) and (107), we
can see that for a sufficiently thin film (L ≈ L∗), the effect
of increasing PO2 is to increase the vacancy concentration
at the gas-oxide interface while simulataneously decreasing
the vacancy concentration at the metal-oxide interface. The
combined effect is an increased vacancy flux across the film
and thus an increase in the growth rate of the film. This is
consistent with observation of faster film growth kinetics as
PO2 increases [3].

As another illustration of how a deviation from local equi-
librium impacts the behavior of the vacancy concentrations at
the metal-oxide and gas-oxide interfaces, we plot ln(cV ′′

M
) vs

ln(PO2 ) in Fig. 6, for various values of α and β. As shown
in Fig. 6(a), when local equilibrium is established at the gas-
oxide interface (α = 0) the slope of the plot is 1/6 which
indicates a P1/6

O2
dependence, which is usual exponent found in

the literature on rocksalt oxides. As α is increased from 0 and
the departure from equilibrium is larger, the slope increases
and is always equal to (α + 1)/6. Thus if the film is thin such
that these nonequilibrium effects are important, the measured
exponent of the pressure dependence of the vacancy concen-
tration at the gas-oxide interface can range from 1/6 − 1/3.

In Fig. 6(b), we show the same plot at the metal-oxide
interface. Here, in local equilibrium (β = 0, the defect con-
centration is independent of the oxygen pressure (slope is
0), which follows from the fact that oxygen gas is not
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FIG. 5. Plots of the defect concentrations at the (a) gas-oxide and (b) metal-oxide interfaces as a function of the kinetic parameters α and β

and PO2 for T = 773.15 K. 	G◦
MO = −175 kJ/mol, 	G◦

G/O = −	G◦
MO/2, and 	G◦

M/O = 3	G◦
MO/2. The same O2 pressures are used in both

(a) and (b).

a participant in the metal-oxide interface reaction. As the
deviation from local equilibrium is increased, the slope be-
comes nonzero and the exponent of the PO2 dependence of
the vacancy concentration is nonzero and is equal to −β/6.

Therefore, if the film is sufficiently thin, the exponent can vary
from −1/6 − 0.

VI. SUMMARY AND FUTURE WORK

We applied irreversible thermodynamics to derive a general
model for the high-temperature oxidation of a metal in which
local interfacial equilibrium is not necessarily maintained.
The resulting dissipation rate accounts for bulk and interfacial
processes, including capillary contributions to the interface
shape evolution. We examine the implications of the model
for oxide growth in one dimension, and find that the general
solution captures the transition from linear to parabolic kinet-
ics and the relaxation to local interfacial equilibrium as the
film grows. We show that the Wagner model can be obtained

as a limiting case of our general model when the mobilities of
atoms across the interfaces of the metal-oxide and oxide-gas
interfaces are infinite, or when the film thickness approaches
infinity. We identify a characteristic thickness for the transi-
tion from linear to parabolic kinetics that is given by the ratio
of the bulk mobility of cations in the oxide film KM×

M
to an

effective interfacial mobility of atoms Meff which accounts
for reactions occurring simultaneously at the metal-oxide and
gas-oxide interfaces. We show that by fitting our growth law to
measurements of the oxide film thickness as a function of time
can determine the values of the coefficients KM×

M
and Meff.

For small film thicknesses and interfacial mobilities, we find
that the vacancy concentrations at the interfaces deviate from
the equilibrium values and importantly, find that a vacancy
supersaturation is present at the metal-oxide interface. We also
show that when the oxide is thin such that these nonequi-
librium effects are important, the exponents for the pressure
pressure dependence of the oxygen vacancy concentrations at
the gas-oxide and metal-oxide interfaces with deviate from the
equilibrium values of 0 and 1/6.

FIG. 6. Plots of ln(cV ′′
M

) versus ln(PO2 ) for various values of the kinetic parameters α and β. Panel (a) shows the vacancy concentration at
the gas-oxide interface and (b) shows the vacancy concentration at the metal-oxide interface. The plots shows how the exponent for the PO2

dependence deviates from the predicted exponents from reaction equilibrium arguments as α and β increase from 0, which corresponds to
local equilibrium.
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The approach to oxidation modeling developed here serves
as an important first step to describing the phenomenon of
solute capture during high temperature oxidation of single-
phase alloys which has recently been reported [17]. In these
experiments, Ni-Cr alloys were oxidized at high temperature
resulting a single solid-solution rocksalt oxide containing Cr
in concentrations that far exceed the equilibrium solubility of
Cr in NiO. A departure from local equilibrium at the metal-
oxide interface is necessary for such oxides to form, and the
framework for including nonequilibrium interfaces described
here provides a basis for modeling this process. Subsequent

work will involve extending the model derived here to multi-
component alloys and oxides to describe solute capture.
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