
PHYSICAL REVIEW MATERIALS 4, 104420 (2020)

Computational design of f -electron Kitaev magnets: Honeycomb and hyperhoneycomb compounds
A2PrO3 (A = alkali metals)
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The Kitaev spin model offers an exact quantum spin liquid in the ground state, which has stimulated
exploration of its material realization over the last decade. Thus far, most of the candidates are found in
4d- and 5d-electron compounds, in which the low-spin d5 electron configuration subject to strong spin-orbit
coupling comprises a Kramers doublet with the effective angular momentum jeff = 1/2 and gives rise to the
bond-dependent anisotropic interactions in the Kitaev model. Extending the recent work on another candidates
in 4 f -electron compounds [S.-H. Jang et al., Phys. Rev. B 99, 241106(R) (2019)], here we systematically
study the Pr-based materials A2PrO3 (A = alkali metals) on both quasi-two-dimensional honeycomb and three-
dimensional hyperhoneycomb structures. By using the ab initio-based scheme used in the previous study, we
show that the low-energy magnetic properties of A2PrO3 are well described by an effective spin model with the
isotropic Heisenberg, anisotropic Kitaev, and symmetric off-diagonal interactions, dubbed the J-K-�′ model,
with systematic modulations of the exchange coupling constants for the A-site substitution; while increasing
the A-site ionic radii, J is not largely modulated but the antiferromagnetic K is reduced and �′ is slightly
increased. We analyze the systematic changes by decomposing each interaction into the contributions from
different perturbation processes in terms of both virtual hoppings and intermediate states. In addition, by
computing the ground states of the J-K-�′ model by using the exact diagonalization, we map out the systematic
evolution of the model parameters in the phase diagram. Our results will stimulate material exploration of the
antiferromagnetic Kitaev interaction in f -electron compounds, including the previously-synthesized honeycomb
and hyperhoneycomb compounds, Na2PrO3.

DOI: 10.1103/PhysRevMaterials.4.104420

I. INTRODUCTION

Electron correlation and spin-orbit coupling (SOC) are two
crucial factors in the design of quantum materials. Beyond the
conventional band theory for metals and insulators, the strong
electron correlation may yield Mott insulators and anomalous
metallic states [1,2], which may endow high-temperature su-
perconductivity. Meanwhile, the SOC entangles the orbital
motion of electrons with the spin degree of freedom, lead-
ing to topological insulators [3,4] and topological semimetals
[5–7]. In recent years, it has been recognized that the synergy
of the strong electron correlation and the SOC provides a
fertile ground for yet another quantum state of matter, such
as topological Mott insulators, Weyl semimetals, and axion
insulators [8].

The quantum spin liquid (QSL) is one of such intrigu-
ing phases potentially induced by the electron correlation
and SOC. It is a massively entangled quantum phase in
which interacting localized magnetic moments are prevented
from forming a magnetic long-range order by strong quan-
tum fluctuations [9–12]. The fluctuating moments under
the quantum entanglement can show a topological order
[13,14] and quantum number fractionalization into nonlocal
quasiparticle excitations [15,16]. In particular, non-Abelian
quasiparticles, which obey neither Bose-Einstein nor Fermi-
Dirac statistics, have attracted great interest from application

to decoherence-free topological quantum computing [17].
While the prototypical candidates for the QSLs have been
explored in geometrically frustrated antiferromagnets lying
on triangular-based lattice structures [18,19], the spin-orbital
entanglement by the SOC in the Mott insulators can of-
fer another playground through the frustration between
bond-dependent exchange interactions, dubbed compass-type
interactions, even on unfrustrated lattice structures [20].

The Kitaev model is one of the paradigmatic models with
such exchange frustration. The model has bond-dependent
Ising-type interactions on a honeycomb structure, whose
Hamiltonian is given by [21]

H =
∑

μ

∑
〈i,i′〉μ

KμSμ
i Sμ

i′ , (1)

where the summations are taken for the nearest-neighbor sites
i and i′ on the μ bonds (μ = x, y, z distinguishes the three
types of bonds on the honeycomb structure); Kμ describes
the coupling constant for the Ising-type interactions on the
μ bonds, and Sμ

i represents the μ component of spin-1/2
operator at site i. As it is impossible to optimize the exchange
energy on all the bonds simultaneously, the Kitaev model has
severe frustration. Nevertheless, the ground state was exactly
obtained as an exact QSL, whose excitations are described
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by fractional quasiparticles, itinerant Majorana fermions and
localized Z2 fluxes [21].

While the original proposal by Kitaev was rather math-
ematical, Jackeli and Khaliullin pointed out the possible
realization of the Kitaev model as a low-energy effective
model for a certain class of oxides [22]. In their theory,
the effective spin-1/2 moments are given by the spin-
orbital entangled Kramers doublet in the low-spin d5 electron
configuration under an octahedral crystal field (OCF) and
strong SOC. These moments interact with each other via
the Kitaev-type interactions predominantly when the conven-
tional Heisenberg interactions are canceled out by quantum
interference between different perturbation processes via the
ligands in edge-sharing MX6 octahedra (M and X represent a
transition metal cation and a ligand ion, respectively). Stim-
ulated by this idea, material-oriented researches toward the
Kitaev-type QSL have been done explosively over the last
decade for the low-spin 4d5 and 5d5 electron compounds
[23–28], such as quasi-two-dimensional (2D) honeycomb
magnets A2IrO3 (A = Li, Na) [29,30] and α-RuCl3 [31,32],
three-dimensional (3D) hyperhoneycomb magnet β-Li2IrO3

[33], and 3D stripy honeycomb magnet γ -Li2IrO3 [34].
Among a lot of efforts to identify the nature of the Kitaev
QSL in these candidates, a recent highlight is the observation
of the half-quantized thermal Hall conductivity in α-RuCl3

as evidence of a gapped topological state of the Majorana
fermions [35]. In addition, by extending the argument by
Jackeli and Khaliullin, the high-spin d7 electron systems have
also been studied as other candidates with similar Kramers
doublet [36–40].

Recently, rare-earth materials, in which the strong SOC
coexists with electron correlations, have attracted attention for
materialization of the Kitaev-type interaction. For instance,
Yb3+-based compounds with 4 f 13 electron configurations
were nominated [41,42], and indeed, Kitaev QSL behavior
was argued for YbCl3, whose crystal structure is the same
as α-RuCl3 [43]. Another promising candidate is found for
the electron-hole counterpart, 4 f 1 electron configurations. In
this category, Pr4+-based materials are noteworthy, as sev-
eral polymorphic structures of A2PrO3 (A = alkali metals)
hosting edge-sharing PrO6 octahedra have been synthesized:
for example, quasi-one-dimensional chain [44,45], layered
honeycomb [45], triangular [46,47], and hyperhoneycomb
structures [48]. Theoretically, the authors proposed that, based
on ab initio calculations, the magnetic properties of the quasi-
2D honeycomb form of A2PrO3 with A = Li and Na are
well described by the model with dominant antiferromagnetic
(AFM) Kitaev interactions [49]. This allows one to access
unexplored parameter regions of the Kitaev QSLs, as the
existing candidates with 4d and 5d electrons are believed to
possess the ferromagnetic (FM) Kitaev interactions. The AFM
Kitaev model has recently been captivated by its possibility
of a field-induced exotic state that cannot be achieved for the
FM Kitaev model [50–55]. Despite the intriguing possibility,
the previous study in Ref. [49] was limited to the honeycomb
materials with A = Li and Na. Given the various polymorphs,
further studies are desired for the Pr-based materials.

In this paper, we perform a systematic study of the Pr-
based compounds A2PrO3 beyond the previous study that
was restricted to the 2D honeycomb cases with A = Li and

Na [49]. The main aim of the present study is to provide a
design principle of Pr-based Kitaev candidates by clarifying
the systematic evolution of the lattice structure, the electronic
state, and the exchange couplings. For this purpose, we extend
the analysis to all the alkali metals A = Li, Na, K, Rb, and
Cs in the quasi-2D honeycomb materials and also to the 3D
hyperhoneycomb one that was experimentally synthesized in
β-Na2PrO3 [48].

For the quasi-2D honeycomb cases, by ab initio calcula-
tions with structural optimization, we show that the 4 f 1 states
under the strong SOC and the OCF are well approximated by
the �7 Kramers doublet with the effective angular momen-
tum jeff = 1/2 for all the A-site substitutions. We find that
larger A-site ionic radii bring about larger deviations from the
ideal �7 Kramers doublet through the lattice deformations.
Deriving low-energy effective spin models by following the
procedures in the previous study [49], we carefully examine
the systematic evolution of the exchange coupling constants
for the A-site substitution by decomposing the contributions
from different perturbation processes in terms of the direct
4 f -4 f and indirect 4 f -2p-4 f hoppings as well as the inter-
mediate states. We show that the system has three dominant
exchange interactions: isotropic Heisenberg J , anisotropic Ki-
taev K , and symmetric off-diagonal �′. Note that �′ was not
pronounced in the previous results for A = Li and Na [49].
We find that the increase in the A-site ionic radii beyond
A = Li and Na suppresses the AFM K and slightly increases
�′, while it does not modulate the AFM J substantially. As a
consequence, the AFM K , which is dominant for A = Li and
Na, becomes smaller than the AFM J for A = K and Rb, and
even changes the sign to be weakly FM for A = Cs.

To further discuss the systematic evolution of the exchange
coupling constants with respect to the expected magnetic
ground state, we also calculate the ground-state phase diagram
for the J-K-�′ model, which was not thoroughly elucidated
in the previous studies, by using the exact diagonalization of
24-site clusters. We find that while all the cases with different
A are in the Néel ordered phase, lighter alkali metals drive the
system more proximate to the AFM Kitaev QSL.

We also extend our analysis to the 3D hyperhoneycomb
compound β-Na2PrO3. In this case, we bypass the structural
optimization in the ab initio calculations by using the exper-
imental lattice parameters. We show that the values of the
exchange coupling constants for this compound are similar
to those for the quasi-2D counterpart, suggesting that the
compound provides a good platform for the 3D J-K model
with the dominant AFM Kitaev coupling.

The organization of the rest of this paper is as follows.
In Sec. II, we describe the details of our method: ab initio
calculations of the electronic structures, construction of the
multiorbital Hubbard model from the maximally-localized
Wannier function (MLWF) analysis, formation of the jeff =
1/2 pseudospin in the �7 doublet, and derivation of the ef-
fective pseudospin Hamiltonian by the perturbation expansion
in the strong coupling limit. In Sec. III A, we show the re-
sults for the quasi-2D honeycomb compounds A2PrO3. We
discuss the systematic changes in the electronic band structure
obtained by the ab initio calculations including optimized
lattice structures, the tight-binding parameters obtained by the
MLWF analysis, and the exchange coupling constants in the
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effective pseudospin Hamiltonian derived by the perturbation
expansion for A-site substitution (Secs. III A 1–III A 4). We
also map out the systematic evolution on the magnetic ground-
state phase diagram for the J-K-�′ model in Sec. III A 5. In
Sec. III B, we present similar analyses for the experimentally-
synthesized 3D hyperhoneycomb compound β-Na2PrO3 [48].
In Sec. IV, we discuss the origin of the exchange coupling
constants in detail by decomposing the contributions to each
coupling constant into different perturbation processes. Sec-
tion V is devoted to the summary. In Appendices A and B, we
show the details of the multiplets given for the 4 f 1 and the
4 f 2 electron configurations, respectively. We also show the
details of the systematic changes of the transfer integrals in
Appendix C.

II. METHOD

In this section, we introduce the theoretical methods used
in this paper. In Sec. II A, we present the details of the ab
initio calculations and the MLWF analysis. In Sec. II B, we in-
troduce the Hamiltonian for the multiorbital Hubbard model,
whose parameters for the electron hopping are obtained by
the MLWF analysis. In Sec. II C, we show that the atomic
electronic state for the 4 f 1 electron configuration under the
strong SOC and the OCF yields the �7 Kramers doublet
with the effective angular momentum jeff = 1/2. In Sec. II D,
we introduce the perturbation scheme in the strong coupling
limit to derive the low-energy effective Hamiltonian for the
jeff = 1/2 pseudospins.

A. ab initio calculation of electronic structures

In the ab initio calculations, we study the electronic
structures of the quasi-2D layered honeycomb compounds
A2PrO3 with A = K, Rb, and Cs and the 3D hyperhoneycomb
compound β-Na2PrO3. For the former honeycomb cases,
the results for A = Li and Na are available in Ref. [49].
For the latter hyperhoneycomb case, we focus on the Na case,
as the structural data is available only for the Na compound
and the structural optimization is computationally expensive
for other A-site ions because of the large number of atoms in
the unit cell. All the ab initio calculations are performed by
using QUANTUM ESPRESSO [56].

In the calculations for the honeycomb compounds, we
adopt the pseudopotentials of nonrelativistic norm-conserving
Hartwigesen-Goedecker-Hutter type [57] for the A-site
cations (A = K, Rb, and Cs) and the O ions, while the
full-relativistic ultrasoft projector-augmented-wave-method
Perdew-Zunger type [58,59] for the Pr cations [60]. We set
the kinetic energy cutoff at 250 Ry. We perform the struc-
tural optimization starting from the structural parameters for
Rb2CeO3 listed in Materials Project [61]. In the structural op-
timization, we set the criteria for the maximum crystal stress
at 0.1 GPa. The remnant maximum atomic forces are less than
0.002 Ry/Bohr in the ab-plane and less than 0.0001 Ry/Bohr
along the axis perpendicular to the plane. All the results for
A = K, Rb, and Cs converge onto monoclinic structures with
C2/m symmetry as in the previous study for A = Li and Na
[49].

Meanwhile, in the calculations for the hyperhoneycomb
compound β-Na2PrO3, we adopt the pseudopotentials of
nonrelativistic norm-conserving von Barth-Car type [62]
for Na, nonrelativistic ultrasoft projector-augmented-wave-
method Perdew-Zunger type [58,59] for Pr, and nonrelativistic
norm-conserving Hartwigesen-Goedecker-Hutter type [57]
for O. We use the experimental structure with C2/c sym-
metry [48] without further structural optimization. Using the
electron hopping parameters from the MLWF analysis for
the nonrelativistic ab initio calculations, we construct the
multiorbital Hubbard model by adding the SOC by hand; we
take the SOC coefficient λ = 120 meV, which was estimated
for the quasi-2D honeycomb compound α-Na2PrO3 [49] (see
Sec. III B 2). The reason why we perform the nonrelativistic
ab initio calculations in this case is the computational cost
and the slow convergence of the self-consistent fields for the
3D material with a larger number of atoms in the unit cell.
Nonetheless, we confirm that, for the quasi-2D cases, the band
structures and the exchange coupling constants obtained by
adding the SOC afterward show good agreement with the
results by the relativistic ab initio calculations (not shown).

In both calculations, we compute the electronic band struc-
tures, the (projected) density of states, and the construction of
MLWFs by using the Monkhorst-Pack grids [63] of 4 × 4 × 4
and 8 × 8 × 8 k points determined from the primitive cells.
We set the convergence threshold in the self-consistent field
calculations at 1.0 × 10−10 Ry. We construct the MLWFs by
using WANNIER90 [64].

B. Multiorbital Hamiltonian

For both quasi-2D honeycomb and 3D hyperhoneycomb
cases, we construct multiorbital Hubbard models for the f -
orbital manifold on the basis of the ab initio results. The
Hamiltonian is commonly composed of four terms as

H = HSOC + HCEF + Hint + Hhop. (2)

The first term HSOC describes the effect of the SOC. The
Hamiltonian is given by

HSOC =
∑

i

HSOC,i, (3)

where

HSOC,i = λ

2

�∑
m=−�

∑
σ

mσ c̃†
imσ c̃imσ

+ λ

2

�−1∑
m=−�

√
� + m + 1

√
� − m

×(c̃†
im+1−c̃im+ + c̃†

im+c̃im+1−), (4)

where λ > 0 is the SOC coefficient, � is the orbital quantum
number taken as � = 3 for the f -orbital manifold, and m
and σ = ±1 denote the magnetic and spin quantum numbers,
respectively; c̃†

imσ and c̃imσ represent creation and annihilation
operators of an electron with m and σ at site i in the spherical
harmonics basis, respectively.

The second term in Eq. (2), HCEF, describes the effect
of the crystalline electric field. It is in general described by
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the rank-r Stevens multipole operators Ors (s = −r,−r +
1, . . . , r) as

HCEF =
∑
r,s

BrsOrs, (5)

where Brs denotes the coupling coefficient. In the present sit-
uation, the dominant contribution is the OCF from the oxygen
ions octahedrally coordinated around the Pr4+ cation, which
we denote HOCF. In the OCF, the only nonzero coefficients
are B44, B40, B64, and B60, which satisfy B44 = 5B40 and
B64 = −21B60, and hence, HOCF is given by

HOCF = B40(O40 + 5O44) + B60(O60 − 21O64). (6)

For Pr4+-based materials with the OCF, B40 and B60 are posi-
tive and negative, respectively, and B60 � −0.004B40 [65]. We
take into account only HOCF in the following discussions in
this section, while all other contributions in HCEF are incorpo-
rated in Sec. III by the MLWF analysis under realistic lattice
structures.

The third term in Eq. (2) describes the Coulomb interac-
tions between f electrons. The Hamiltonian is given by

Hint =
∑

i

∑
m1,m2,m3,m4

∑
σ1,σ2

δm1+m2,m3+m4

×
∑

k=0,2,4,6

F kC(k)(m1, m4)C(k)(m2, m3)

×c̃†
im1σ1

c̃†
im2σ2

c̃im3σ2 c̃im4σ1 , (7)

where F k and C(k) denote the Slater-Condon parameters and
the Guant coefficients (k = 0, 2, 4, 6), respectively, the latter
of which describe the orbital dependence of the Coulomb
interactions; δ is the Kronecker delta. Here, the Slater-Condon
parameters are related with the onsite Coulomb interaction U
and the Hund’s-rule coupling JH as [66,67]

U = F 0, (8)

JH = 1

6435
(286F 2 + 195F 4 + 250F 6). (9)

The fourth term in Eq. (2) describes the kinetic energy as

Hhop =
∑

μ

∑
〈i,i′〉μ

H (μ)
hop,ii′ , (10)

where H (μ)
hop,ii′ denotes the electron hopping between nearest-

neighbor sites i and i′ on the μ bond (one of the three types of
bonds on the tricoordinate structure, labeled as μ = x, y, and
z) as

H (μ)
hop,ii′ =

∑
u,v

∑
σ=±

(t̃iu,i′v,σ c†
iuσ ci′vσ + H.c.). (11)

Here, t̃iu,i′v,σ denotes the effective transfer integral between
orbital u at site i and orbital v at site i′ for spin σ (u and v

represent the seven types of 4 f orbitals in the cubic harmonic
basis, ξ , η, ζ , A, α, β, and γ [68]), which includes contribu-
tions from both direct 4 f -4 f and indirect 4 f -2p-4 f hopping
processes; c†

iuσ and ciuσ represent creation and annihilation
operators, respectively, for the orbital u and spin σ at site i.

l = 3
j = 7/2

j = 5/2

'

'

'

a b

'a 'b

SOC OCF

F /

F /

FIG. 1. Energy level scheme for the f -orbital manifold under the
spin-orbit coupling (SOC) and the octahedral crystal field (OCF).
The black dot represents the occupied state in the f 1 electron config-
uration. The schematic pictures of the corresponding wave functions
are also shown, where red and blue represent spin-up and spin-down
density profiles, respectively.

Specifically, we take t̃iu,i′v,σ in the form

t̃iu,i′v,σ = tiu,i′v,σ +
∑
o,p

tiu,op,σ t∗
i′v,op,σ


p-uv

, (12)

where the first term tiu,i′v,σ describes the direct hopping be-
tween orbital u at site i and orbital v at site i′ for spin σ , and
the second term describes the indirect hoppings via oxygen 2p
orbitals; tiu,op,σ is the transfer integral for spin σ between 4 f
orbital u at site i and 2p orbital p(= x, y, and z) at one of two
ligand sites o(= 1 and 2) shared by two PrO6 octahedra for the
sites i and i′, and 
p-uv is the harmonic mean of the energies
of orbitals u and v measured from that of p.

We estimate the values of tiu,i′v,σ , tiu,op,σ , and 
p-uv by the
MLWF analyses for the electronic band structure obtained
by the ab initio calculations. Note that we take into account
the electron hopping only between nearest-neighbor Pr pairs
for simplicity. The validity of this approximation will be ex-
amined by comparing the tight-binding band structures and
those obtained by the ab initio calculations (see Figs. 3 and
6). For the quasi-2D honeycomb cases, we average the values
over three types of bonds by assuming C3 symmetry in each
honeycomb layer for simplicity, as the deviations are very
small in each Pr layer (see Sec. III A 1).

C. Kramers doublet

We consider the 4 f 1 electronic state for the multiorbital
Hubbard model in Eq. (2), namely, one f electron per site on
average. This is expected from the formal valence of Pr4+ in
A2PrO3, and indeed confirmed by the ab initio calculations
in the later sections. Let us first discuss the atomic electronic
state for the first two terms in Eq. (2), HSOC and HCEF. The
SOC in Eq. (4) splits the 14-fold degenerate f -orbital man-
ifold by the total angular momentum j into the 2F5/2 sextet
with j = 5/2 and the 2F7/2 octet with j = 7/2, as shown
in Fig. 1 (the eigenvalues and eigenvectors are shown in
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Appendix A). These manifolds are further split by HOCF in
Eq. (6). The j = 5/2 manifold is split into �7 doublet and �8

quartet, while the j = 7/2 manifold is split into �′
7 doublet,

�′
8 quartet, and �6 doublet, as shown in Fig. 1. The �7 doublet

from the j = 5/2 manifold has the lowest eigenvalue of HOCF

at −240B40, whose eigenvector is described by∣∣∣∣ j = 5

2
, �7; ±

〉
= 1√

21
(2ic†

ξ∓ ∓ 2c†
η∓ ± 2ic†

ζ± + 3c†
A±)|0〉.

(13)

Here, we use the cubic harmonic basis as in Eq. (11) (we
omit the site label i for simplicity); |0〉 is the vacuum of
f electrons. (The eigenvalues and eigenvectors for the other
multiplets are shown in Appendix A.) The lowest-energy �7

doublet in Eq. (13) comprises a time-reversal pair, which can
be regarded as a pseudospin |±〉 with the effective angular
momentum jeff = 1/2. For the pseudospin state, we introduce
the operator S = (Sx, Sy, Sz )T defined by

Sμ = −3

5

(〈+| jμ|+〉 〈+| jμ|−〉
〈−| jμ|+〉 〈−| jμ|−〉

)
= 1

2
σμ, (14)

where j and σ are the total angular momentum operator and
the Pauli matrix, respectively.

D. Perturbation expansion

Next, for the �7 doublet described by the pseudospin in
Eq. (14), we discuss the effect of the Coulomb interaction
and the electron hopping described by the latter two terms in
Eq. (2). We assume that the Coulomb interaction in Hint is
large enough to realize the spin-orbit Mott insulating state in
the basis of the �7 doublet, where the 4 f electrons are local-
ized at each site with one electron per site. For this situation,
we derive the low-energy effective Hamiltonian by employing
the perturbation expansion with respect to the electron hop-
ping in Hhop. The lowest-order contribution is obtained from
the second-order perturbation. The effective Hamiltonian for
a pseudospin pair for nearest-neighbor sites i and i′ on a μ

bond is calculated by

h(μ)
ii′ =

∑
a,b,c,d=±

∑
n

〈cd|H (μ)
hop,ii′ |n〉〈n|H (μ)

hop,ii′ |ab〉
E0 − En

|cd〉〈ab|,

(15)

where |ab〉 and |cd〉 are the initial and final two-site states
with 4 f 1-4 f 1 electron configurations described by the eigen-
values of the pseudospin in Eq. (14) at each site, and |n〉
is the intermediate states with 4 f 2-4 f 0 or 4 f 0-4 f 2 electron
configurations; E0 is the energy for the initial and final states,
while En is for the intermediate state |n〉. In the present calcu-
lations, we assume the �7 doublet under the perfect OCF as
the initial states for simplicity, while we confirm that the main
results are not qualitatively changed when we use the eigen-
states of the onsite Hamiltonian constructed from the MLWFs
(not shown). We classify the intermediate states with the f 2

electron configuration on the basis of the Russell-Saunders
scheme by using the eigenstates of Hint + HSOC by omitting
the contributions from HCEF. This approach is justified from
the energy hierarchy in the electronic structures obtained in
Secs. III A 2 and III B 2 and the values of U and JH used

in Secs. III A 4 and III B 4. The calculations result in the 91
multiplets, whose explicit forms are given with their energy
eigenvalues in Appendix B.

The effective Hamiltonian in Eq. (15) can be summarized
into the form of the spin Hamiltonian in terms of the pseu-
dospins in Eq. (14). The effective pseudospin Hamiltonian,
e.g, for the z bond, is given in the matrix form

H (z)
ii′ = ST

i

⎡
⎣ J � �′

� J �′
�′ �′ J + K

⎤
⎦Si′ . (16)

The total Hamiltonian is given by the sum over the neighbor-
ing μ = x, y, z bonds as

Heff =
∑

μ

∑
〈i,i′〉μ

H (μ)
ii′ , (17)

where H (x)
ii′ and H (y)

ii′ are given by cyclic permutations of {xyz}
in H (z)

ii′ . We note that the spin Hamiltonian in Eq. (16) for
the quasi-2D honeycomb cases does not include antisymmet-
ric exchange interactions, such as the Dzyaloshinskii-Moriya
interaction [69,70], since the lattice structures possess the
inversion center at the middle of each Pr-Pr bond. This is not
the case for the 3D hyperhoneycomb case, but it turns out that
the antisymmetric exchange interactions are negligibly small
as discussed in Sec. III B 4.

III. RESULT

In this section, we show the results for a series of the quasi-
2D honeycomb compounds A2PrO3 (Sec. III A) and the 3D
hyperhoneycomb compound β-Na2PrO3 (Sec. III B). For the
quasi-2D cases, after presenting the optimized lattice struc-
tures in Sec. III A 1, we show the electronic band structures
for A = K, Rb, and Cs in Sec. III A 2. We estimate the tight-
binding parameters for the multiorbital Hubbard Hamiltonian
from the MLWF analysis in Sec. III A 3 and the exchange
coupling constants in the effective pseudospin Hamiltonian in
Sec. III A 4. Combining the results with those for A = Li and
Na in the previous study [49], we discuss the systematic evo-
lution of the structural, electronic, and magnetic properties. In
Sec. III A 5, we calculate the ground-state phase diagram for
the J-K-�′ model and map out the systematic evolution while
changing A-site ions on the phase diagram. For the 3D case,
we present the results in a parallel manner from Sec. III B 1
to III B 4, by using the experimental structure for the ab initio
calculations.

A. Honeycomb magnets A2PrO3

1. Lattice structure

Table I summarizes the structural parameters for A2PrO3

(A = K, Rb, and Cs) with C2/m symmetry obtained by the
structural optimization described in Sec. II A. The optimized
structures are composed of 2D honeycomb layers with edge-
sharing PrO6 octahedra, as exemplified in Fig. 2 for A = Rb.
While the A-site ionic radius increases, not only the intralayer
Pr-Pr bond length dPr-Pr but also the interlayer distance is
elongated, as shown in Table I. At the same time, the value of
a/n and the Pr-O-Pr bond angle θPr-O-Pr, which are measures
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TABLE I. Structural parameters of the optimized structures for
A2PrO3 (A = K, Rb, and Cs) with C2/m symmetry. See Fig. 2(b)
for the definitions of a, b, c, β, and n. The ratio a/n becomes
3/

√
2 � 2.12 in ideal octahedra with Oh symmetry. dPr-Pr and θPr-O-Pr

denote the average values of the Pr-Pr bond length and the Pr-O-Pr
bond angle, respectively, for the neighboring Pr pairs within the same
honeycomb layer.

K2PrO3 Rb2PrO3 Cs2PrO3

a (Å) 6.1069 6.2158 6.3349
b (Å) 10.535 10.705 10.921
c (Å) 6.3442 6.6890 7.0903
β (deg) 109.04 108.29 107.42

n (Å) 2.4103 2.4516 2.3698
a/n 2.5337 2.5354 2.6732

dPr-Pr (Å) 3.5188 3.5778 3.6471
θPr-O-Pr (deg) 103.68 105.49 107.57

of the degree of lattice distortions, gradually deviate from the
values for the ideal octahedra, 3/

√
2 and 90◦, respectively

[71]. Although the lattice symmetry is C2/m, the deviations
from the perfect honeycomb structure with C3 symmetry are
very small in each Pr layer for all the compounds; the differ-
ences of dPr-Pr and θPr-O-Pr among the different bond directions
are within �0.05 Å and � 1◦, respectively.

X

Y

F

H

Z
I

a

b

c

(a)

(c)

A

O
Pr4+

+

2-

n c

a b

(b)

FIG. 2. (a) and (b) The optimized C2/m monoclinic structure
for A2PrO3 with A = Rb. The other cases with A = K and Cs have
similar structures. The purple, yellow, and red spheres denote A+,
Pr4+, and O2− ions, respectively. The edge-sharing network of PrO6

octahedra is partially shown. In (b), the black lines represent a prim-
itive unit cell with the lattice parameters; n is the average distance of
the O layers sandwiching the Pr layer. (c) The first Brillouin zone for
the monoclinic structure. The red lines represent the symmetric lines
used in Fig. 3.

We note that the bond lengths and angles for the cases
with A = K, Rb, and Cs are comparatively larger than those
for the d5 Kitaev honeycomb candidates, A2IrO3 (A = Li
and Na) [72,73] and α-RuCl3 [74]. On the other hand,
Li2PrO3 and Na2PrO3, which were studied previously [49],
have similar structural parameters to the d5 candidates; the
bond lengths for the Li and Na cases are close to those
for Na2IrO3 and α-RuCl3, respectively, and the bond angles
are close to those for α-RuCl3 [74] and Na2IrO3 [72,73],
respectively.

2. Electronic structure

The electronic band structures and the projected density
of states for nonmagnetic states of A2PrO3 (A = K, Rb, and
Cs) are shown in Fig. 3. In all the cases, the Pr 4 f bands
are well isolated from the other bands and located around
the Fermi level set to zero. In the higher-energy region, there
are hybridized bands of s, p, and d orbitals of the A cations
above 2.5 eV, 2.0 eV, and 1.8 eV for A = K, Rb, and Cs,
respectively. The Pr 4s bands are located above 10 eV for all
the compounds (not shown). Meanwhile, in the lower-energy
region, the O 2p bands are located in the range from −5.5
to −2.2 eV for A = K, from −5.2 to −2.0 eV for A = Rb,
and from −4.5 to −1.8 eV for A = Cs, respectively, with
weak hybridization with the Pr 4 f bands. The bands in the
deeper energy range from −21 to −13 eV for A = K are
mainly from the hybridization of K 3p, Pr 5p, and O 2s
orbitals. The bands in the range from −12.2 to −10.4 eV
for A = Rb and in the range from −10.9 to −8.0 eV for
A = Cs are mainly from Rb 4p and Cs 5p orbitals, respec-
tively. The bands in the range from −21 to −14 eV for
A = Rb and Cs are mainly from the hybridization of Pr 5p and
O 2s orbitals.

Reflecting the localized nature of the f orbitals, the band-
widths of the well-isolated Pr 4 f bands are narrow. The
bandwidth decreases with the increase of the A-site ionic
radii: �1.3 eV for A = K, �1.2 eV for A = Rb, and �1.1 eV
for A = Cs. This is in accordance with the increased lattice
constants in Table I. As shown in the enlarged figures in
Figs. 3(g)–3(i), the 4 f bands are split into the bands pre-
dominantly originating from the 2F5/2 sextet (below 0.3 eV)
and those from the 2F7/2 octet (above 0.3 eV), as expected
from the atomic level scheme under the strong SOC in Fig. 1.
These two bunches of the bands are further split under the
crystal field; the 2F5/2 bands are split into the bands dominated
by the �7 doublet and the �8 quartet, while the 2F7/2 bands
are split into those dominated by �′

7 doublet, �′
8 quartet, and

�′
6 doublet, as expected in Fig. 1. The results support the

Russell-Saunders scheme used in Secs. II B–II D that takes
into account the SOC primarily and treats the CEF as a
perturbation.

In the 4 f 1 state, the lowest-energy shallow band (dou-
bly degenerate) below the Fermi level, which predominantly
originates from the �7 doublet split from the 2F5/2 sextet,
is occupied. In particular, in the A = K and Rb cases, the
band is fully occupied, indicating that the system is a band
insulator. The band gap is estimated as �18 meV and 9 meV
for A = K and Rb, respectively, Meanwhile, for the A =

104420-6



COMPUTATIONAL DESIGN OF f -ELECTRON KITAEV … PHYSICAL REVIEW MATERIALS 4, 104420 (2020)
E

N
E

R
G

Y
 (e

V
)

0.0

0.5

1.0

-5

-4

-3

-2

-1

0

1

-20

-15

-10

-5

0

5

10

-25
2

-6

E
N

E
R

G
Y

 (e
V

)
E

N
E

R
G

Y
 (e

V
)

X Γ Y F Z H I

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

X Γ Y F Z H I X Γ Y F Z H I

X Γ Y F Z H I X Γ Y F Z H I X Γ Y F Z H I

FIG. 3. Electronic band structures for A2PrO3 obtained by the relativistic ab initio calculations: (a), (d), (g) for A = K, (b), (e), (h) for
A = Rb, and (c), (f), (i) for A = Cs. The figures (a)–(c) are in the energy range from −25 eV to 10 eV, (d)–(f) are from −6 eV to 2 eV, and
(g)–(i) are from −0.1 eV to 1.2 eV. The band structures are drawn along the symmetric lines indicated in Fig. 2(c). The red dashed lines in
(g)–(i) show the band dispersions obtained by the tight-binding calculations with nearest-neighbor transfers estimated by the MLWFs. The
right panels in each figure display the projected density of states to various orbitals of three atoms A, Pr, and O in (a)–(c), Pr 4 f and O 2p
orbitals in (d)–(f), and the 2F5/2, 2F7/2, �7, �8, �′

7, �′
8, and �6 manifolds of the Pr 4 f states in (g)–(i). The Fermi level is set to zero.

Cs case, the (second) lowest-energy band is slightly hole
(electron) doped, indicating that the system is a compen-
sated metal. Nonetheless, it is expected for all the cases that
the Coulomb interactions can make the system a spin-orbit
Mott insulator.

In Figs. 3(g)–3(i), we also show the tight-binding band
structures with the transfer integrals between nearest-neighbor
Pr cations estimated from the MLWF analysis (see the next
section). The ab initio results for the 4 f bands are well
reproduced, especially for the relevant low-energy bands
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TABLE II. Nearest-neighbor transfer integrals t̃iu,i′v,+ on a z bond for A2PrO3 (A = K, Rb, and Cs); u is in the row and v is in the column.
t̃iu,i′v,− are given by the complex conjugates. The unit is in meV. The upper-right half of the table is omitted as the matrix is Hermite conjugate.

A = K ξ η ζ A α β γ

ξ 12.3
η −7.16 + 0.15i 12.3
ζ −1.04 + 0.12i −1.04 + 0.12i −84.1
A 5.30 − 0.09i −5.30 − 0.09i 0.02 + 0.68i −30.0
α −55.9 + 0.17i 12.4 + 0.25i 20.5 − 0.27i −10.6 + 0.22i 123
β −12.4 + 0.25i 55.9 + 0.17i −20.5 − 0.27i −10.6 − 0.22i −49.1 − 0.88i 123
γ 3.21 + 0.49i −3.21 + 0.49i −0.01 − 0.17i −7.32 7.53 + 0.53i 7.53 − 0.53i 44.2

A = Rb ξ η ζ A α β γ

ξ 9.15
η −11.5 + 0.09i 9.15
ζ −0.89 − 0.21i −0.89 + 0.21i −79.4
A 8.48 − 0.03i −8.48 − 0.03i −0.63i −22.5
α −47.1 + 0.06i 12.1 + 0.24i 35.0 − 0.34i −14.3 + 0.14i 110
β −12.1 + 0.24i 47.1 + 0.06i −35.0 − 0.34i −14.3 − 0.14i −46.7 − 0.68i 110
γ 5.98 + 0.49i −5.98 + 0.49i 0.02i −1.25 11.2 + 0.55i 11.2 − 0.55i 40.3

A = Cs ξ η ζ A α β γ

ξ 5.22
η −16.04 + 0.04i 5.22
ζ −0.09 − 0.34i −0.09 + 0.34i −68.2
A 12.1 + 0.05i −12.1 + 0.05i −0.54i −12.5
α −37.3 + 0.05i 9.46 + 0.26i 50.6 − 0.36i −16.5 + 0.10i 91.6
β −9.46 + 0.26i 37.3 + 0.05i −50.6 − 0.36i −16.5 − 0.10i −35.4 − 0.42i 91.6
γ 7.80 + 0.45i −7.80 + 0.45i 0.23i 5.20 16.4 + 0.48i 16.4 − 0.48i 33.1

near the Fermi level. This indicates that further-neighbor
transfer integrals are less significant, presumably due to the
localized nature of the 4 f orbitals. Based on this observation,
in Sec. III A 4, we construct effective models for the �7 pseu-
dospins in Eq. (13) by taking into account only the nearest-
neighbor transfer integrals in the same honeycomb layer.

3. Transfer integrals and SOC

Performing the MLWF analyses on the ab initio band
structures, we estimate the transfer integrals between the Pr
cations. The results for nearest-neighbor pairs on a z bond are
presented in Table II. Among the matrix elements, 11 types
give relevant contributions to the effective pseudospin Hamil-
tonian derived in Sec. III A 4: t̃iξ,i′α,σ = −t̃∗

iη,i′β,σ , t̃iζ ,i′ζ ,σ ,
t̃iA,i′A,σ , t̃iξ,i′ξ,σ = t̃∗

iη,i′η,σ , t̃iA,i′γ ,σ , t̃iξ,i′β,σ = −t̃∗
iη,i′α,σ , t̃iξ,i′η,σ ,

t̃iζ ,i′α,σ = −t̃∗
iζ ,i′β,σ , t̃iA,i′ξ,σ = −t̃∗

iA,i′η,σ , t̃iξ,i′γ ,σ = −t̃∗
iη,i′γ ,σ ,

and t̃iA,i′α,σ = t̃∗
iA,i′β,σ . Note that the transfer integrals between

the T1u orbitals, fα , fβ , and fγ , some of which have large
amplitudes, are irrelevant since they are not involved in the
�7 state in Eq. (13). The origins of the relevant contributions
and the systematic changes for the A-site substitution are
discussed in Appendix C.

In addition to the transfer integrals, we estimate the SOC
coefficient λ in Eq. (4) from the comparison of the band
structures in Fig. 3 with those obtained by nonrelativistic
calculations. The values of λ are estimated as λ � 0.12 eV for
A = K (same for A = Li and Na [49]) and λ � 0.11 eV for
A = Rb and Cs. We note that these are close to the empirical
values [75,76].

4. Effective exchange couplings

Following the procedure of the perturbation expansion
in Sec. II D, we estimate the coupling constants in the ef-
fective pseudospin Hamiltonian in Eq. (16). The results for
A2PrO3 (A = K, Rb, and Cs) are plotted in Fig. 4 for sev-
eral U as functions of the ratio of the Hund’s-rule coupling
JH to the onsite Coulomb repulsion U . The value of the
effective U in the transition from 4 f 1-4 f 1 to 4 f 2-4 f 0 was
experimentally determined as 3.7–5.4 eV with the x-ray pho-
toelectron spectroscopy [77], while the effective JH for 4 f 2

has been measured as 0.6–0.9 eV with spectroscopic methods
for Pr3+ ions [78–81]. On the other hand, theoretical esti-
mates were given as U = 5.0–5.7 eV by the thermodynamic
approximation method and the relativistic Hartree-Fock
method [82,83] and JH = 0.6–1.1 eV by the hydrogenic
method and the relativistic Hartree-Fock method [84,85].
We note that the previous ab initio studies on Ce- and Pr-
based materials with 4 f 1 or 4 f 2 electron configurations have
been implemented with U = 2.5–8 eV and JH/U = 0.08–
0.20 [86–95]. Considering these experimental and theoretical
estimates, we take the range of U = 2–6 eV and JH/U = 0.0–
0.2, in addition to λ = 0.12 eV for A = K and λ = 0.11 eV for
A = Rb and Cs which are obtained in the MLWF analyses in
the previous section.

In the case of K2PrO3 in Fig. 4(a), the AFM Kitaev cou-
pling K is most dominant for large JH/U , while the AFM
K becomes smaller than the AFM Heisenberg coupling J for
Rb2PrO3 in Fig. 4(b), and even negative (FM) for Cs2PrO3

in Fig. 4(c). Combining with the previous results for Li2PrO3
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FIG. 4. Coupling constants in the effective pseudospin Hamilto-
nian in Eq. (16) for (a) K2PrO3, (b) Rb2PrO3, and (c) Cs2PrO3 as
functions of the Hund’s-rule coupling JH. The green, red, orange, and
purple lines represent the Heisenberg J , Kitaev K , and off-diagonal
couplings � and �′, respectively. The bold, solid, dashed, and dotted
lines represent the results at U = 2, 3, 4, and 6 eV, respectively. The
SOC coefficient λ is set to 0.12 eV for K2PrO3 and 0.11 eV for
Rb2PrO3 and Cs2PrO3, respectively.

and Na2PrO3 [49], we find that the AFM Kitaev coupling K is
reduced systematically with the increase of the A-site ionic
radii. On the other hand, the AFM Heisenberg coupling J
shows smaller changes and remains most relevant in the case
of A = Rb and Cs in the entire range of U and JH studied here.

The symmetric off-diagonal coupling �′ is always positive for
A = K, Rb, and Cs and gives subdominant contributions for
larger A-site ionic radii, while � is smallest in all the cases.

Thus, we conclude that the effective pseudospin Hamil-
tonian for A2PrO3 (A = Li, Na, K, Rb, and Cs) can be well
described by the three dominant exchange couplings J , K ,
and �′. The Kitaev coupling K is AFM, except for the A = Cs
case. The situation is in stark contrast to the d5 cases where the
dominant couplings are J , K , and �, and the Kitaev coupling
K is FM. The d5 case was often studied by the model called
the J-K-� model with FM K [96,97]. Our results suggest that
the present 4 f 1 case is well described by the J-K-�′ model
with AFM K . In particular, as �′ is very small for the Li and
Na cases [49], these are approximately described by the J-K
model (the Heisenberg-Kitaev model). We will show the sys-
tematic changes of the coupling constants on the ground-state
phase diagram for the J-K-�′ model in Sec. III A 5.

5. Possible magnetic phases

Let us discuss the possible ground states for the quasi-2D
honeycomb compounds A2PrO3, by considering the J-K-�′
model with the coupling constants deduced from the analyses
above for A = K, Rb, and Cs and in the previous study for A =
Li and Na [49]. Although the ground state for the J-K-� and
J-K-�-�′ model was studied for the d5-electron candidates
[96,97], the effect of �′ has not been fully elaborated thus
far [97]. We study the magnetic ground state of the J-K-�′
model (� = 0) by using the exact diagonalizations for a 24-
site cluster with the Lanczos method. The results are plotted
in Fig. 5 by two parameters θ and φ which are related with the
coupling constants as

(J, K, �′) = (sin θ cos φ, sin θ sin φ, cos θ ). (18)

The phase boundaries are determined by peaks in the second
derivatives of the ground-state energy with respect to θ and
φ, and the magnetic state in each phase is identified by the
spin structure factors, following the previous studies [96,97].
We note that the results are consistent with the previous report
limited to several values of �′ in the J-K-�-�′ model [97].

As shown in Fig. 5, a large portion of the parameter space is
occupied by the AFM and the FM states, extending from the
trivial points in the J-only limits (K = �′ = 0). A classical
analysis similar to Ref. [98] shows that the spin moments
are ordered along the 〈111〉 directions for the FM state with
�′ < 0 and the AFM state with �′ > 0 and that the spin mo-
ments arrange in the (111) plane for the FM state with �′ > 0
and the AFM state with �′ < 0. Meanwhile, there are small
areas for the AFM Kitaev QSL and the FM Kitaev QSL states
around the K-only limits (J = �′ = 0). Similar to the J-K-�
model [96,97], the two QSL regions remain stable against
weak J and �′. We note that the region of the FM Kitaev QSL
state for the J-K-�′ model is more widely spread compared to
that for the J-K-� model [96], while the AFM one is limited
to a rather narrow region; it is taken over by the AFM and
zigzag states at J/K ∼ −0.018 and ∼0.024, respectively, in
the absence of �′. The zigzag state takes place in the region
with J < 0 and K > 0, while the stripy state appears for the
opposite signs of J and K . We note that, although Ref. [97]
revealed two distinct zigzag patterns where spins align along
the z axis in the weak � regime and along the x and y bonds,
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FIG. 5. Phase diagrams for the J-K-�′ model obtained by the
Lanczos exact diagonalization of a 24-site cluster. (a) and (b) show
the results for �′ � 0 and �′ � 0, respectively. The Cartesian coordi-
nates are given by ((π−θ ) cos φ, (π−θ ) sin φ) and (θ cos φ, θ sin φ)
for (a) and (b), respectively [see Eq. (18)], where the origins repre-
sent the �′-only limits (J = K = 0). The white regions denote the
regions where the spin state cannot be identified within the 24-site
cluster. The red, orange, and blue dots connected by the solid lines
show the evolution of the exchange coupling constants for the quasi-
2D honeycomb compounds A2PrO3 (A = Li, Na, K, Rb, and Cs) at
the onsite Coulomb energy U = 2, 4, and 6 eV, respectively; we set
the Hund’s-rule coupling to JH/U = 0.15, and the SOC coefficient λ

to 0.12 eV for A = Li, Na, and K, and 0.11 eV for A = Rb and Cs.

the latter is not found in the present J-K-�′ model. We also
identify a vortex state for �′ > 0 which is similar to that found
for the J-K-� model [97].

On these phase diagrams in Fig. 5, we map out the system-
atic evolution of the effective coupling constants J , K , and �′
while changing the A-site cation in A2PrO3. The results are
plotted for U = 2, 4, and 6 eV with JH/U = 0.15. Although
all the compounds are in the AFM region, the system gets
closer to the AFM Kitaev QSL region while decreasing the
A-site ionic radii as well as the value of U ; in particular, the
A = Li case with U = 2 eV is closest. Thus, our results show
that the smaller A-site ionic radius and weaker U make the
system A2PrO3 proximate to the AFM Kitaev QSL.

TABLE III. Structural parameters of the experimental structures
for β-Na2PrO3 with C2/c symmetry [48]. See Fig. 6(c) for the
definitions of a, b, c, and β. dPr-Pr and θPr-O-Pr denote the Pr-Pr bond
length and the Pr-O-Pr bond angle, respectively, for the neighboring
Pr pair for the x, y, and z bonds.

a (Å) 6.7878
b (Å) 9.7747
c (Å) 10.806
β (deg) 108.25

x bond y bond z bond

dPr-Pr (Å) 3.4363 3.4086 3.4400
θPr-O-Pr (deg) 100.06 99.655 99.667

B. Hyperhoneycomb magnet β-Na2PrO3

1. Lattice structure

Table III summarizes the experimental structural pa-
rameters for β-Na2PrO3 with C2/c symmetry [48]. The
experimental structure is the 3D hyperhoneycomb structure
with edge-sharing PrO6 octahedra, as shown in Fig. 6. We
note that the local structures indicated by dPr-Pr and θPr-O-Pr are
similar to those for the quasi-2D honeycomb case of Na2PrO3
[49].

In terms of the space group, the hyperhoneycomb struc-
ture composed of edge-sharing octahedra is seen not only in
this monoclinic crystal with C2/c symmetry but also in an
orthorhombic crystal with Fddd symmetry, as in β-Li2IrO3
[33]. The point group D2h of the Fddd symmetry gives a
C2 axis that penetrates the center of the unit cell in the [110]
direction, the other two perpendicular C2 axes parallel to the
[001] and [110] directions, and the (110) mirror plane. The
mirror plane makes the x and y bonds equivalent. Meanwhile,
the C2/c symmetry in the present material β-Na2PrO3 lacks
such mirror symmetry, which makes the x and y bonds in-
equivalent, as shown in Table III. We note that dPr-Pr is shortest
for the y bond.

2. Electronic structure

Figures 7(a)–7(c) display the electronic band structures and
the projected density of states for the nonmagnetic state of
β-Na2PrO3 obtained by the nonrelativistic ab initio calcula-
tions for the experimental lattice structure. The overall feature
is similar to the honeycomb cases in Sec. III A 2. The Pr 4 f
bands are well isolated from the other bands, locating around
the Fermi level set to zero, and the bandwidth is narrow
�0.9 eV. Figure 7(d) shows the band structure obtained for
the tight-binding Hamiltonian constructed from the MLWF
analysis for the nonrelativistic band structures. As shown
in this figure, when the SOC term HSOC given by Eq. (4)
with the coefficient λ = 0.12 eV estimated for the quasi-2D
counterpart [49] is manually implemented in the tight-binding
Hamiltonian, the bandwidth of the Pr 4 f bands is widened to
�1.3 eV. In addition, the SOC splits the 4 f bands into the
bands originating from the 2F5/2 sextet (below 0.3 eV) and
those from the 2F7/2 octet (above 0.3 eV). The further decom-
position of the projected density of states into the multiplets
given by the OCF as represented by Fig. 1 finds that the 2F5/2
bands and the 2F7/2 bands are split into the �7 doublet and the
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FIG. 6. (a)–(c) The C2/c monoclinic structure of the experi-
mentally synthesized β-Na2PrO3 [48]. The purple, yellow, and red
spheres denote Na+, Pr4+, and O2− ions, respectively. In (a) and
(b), the edge-sharing network of PrO6 octahedra is partially shown.
In (b), the blue, red, and green lines denote the x, y, and z bonds,
respectively. In (c), the black lines represent a primitive unit cell with
the lattice parameters. (d) The first Brillouin zone for the monoclinic
structure. The red lines represent the symmetric lines used in Fig. 7.

�8 quartet and into �′
7 doublet, �′

8 quartet, and �′
6 doublet,

respectively.
In the 4 f 1 state, the two lowest-energy shallow bands

below the Fermi level (double degenerate each), which pre-
dominantly originate from the �7 doublet split from the 2F5/2

sextet, are occupied (note that the unit cell includes four Pr
cations). The band gap is estimated as �9 meV, where the
spin-orbit Mott insulator would be realized by the Coulomb
interactions. In Fig. 7(c), we show that the tight-binding band
structure with the transfer integrals between nearest-neighbor
Pr cations estimated from the MLWF analysis (see the next
section) well reproduces the ab initio results, especially for
the low-energy bands. Moreover, as shown in Fig. 7(d), the
band structure obtained only by the nearest-neighbor trans-
fer integrals from the MLWF analysis well reproduces that
by all the further-neighbor transfer integrals even when the

TABLE IV. Nearest-neighbor transfer integrals t̃iu,i′v,σ (σ=±) on
a μ(= x, y, and z) bond for β-Na2PrO3; u is in the row and v is in
the column. The unit is in meV. The upper-right half of the table is
omitted as the matrix is Hermite conjugate.

μ = x η ζ ξ A β γ α

η 17.5
ζ −1.73 17.5
ξ 0.87 0.87 −79.6
A −1.22 1.22 1.74 −36.1
β −69.7 −8.64 −3.82 −4.52 132
γ 8.64 69.7 3.82 −4.52 −39.3 132
α −0.96 0.96 −1.65 −16.1 −3.56 −3.56 43.7

μ = y ζ ξ η A γ α β

ζ 18.7
ξ 3.38 18.7
η 0.46 0.46 −80.8
A −0.95 0.95 −2.29 −38.3
γ −71.8 9.07 1.91 3.16 136
α −9.07 71.8 −1.91 3.16 −38.6 136
β 1.16 −1.16 −0.99 −16.5 −2.83 −2.83 44.1

μ = z ξ η ζ A α β γ

ξ 18.1
η −4.35 18.1
ζ 3.41 3.41 −77.0
A 1.61 −1.61 2.08 −36.7
α −68.6 −6.15 6.86 1.65 130
β 6.15 68.6 −6.86 1.65 −38.9 130
γ 2.79 −2.79 −1.14 −17.1 −5.01 −5.01 41.9

SOC is implemented manually. Based on these observations,
in Sec. III B 4, we construct effective models for the �7

pseudospins in Eq. (13) by taking into account only the
nearest-neighbor transfer integrals.

3. Transfer integrals

Performing the MLWF analyses on the nonrelativistic ab
initio band structures, we estimate the transfer integrals be-
tween the Pr cations. The results for nearest-neighbor pairs
on the three bonds are presented in Table IV. We note that
the values are similar to the case of the quasi-2D honeycomb
compound Na2PrO3 [49]. The two transfer integrals t̃iξ,i′α,σ

and t̃iζ ,i′ζ ,σ , which arise mainly from the indirect hopping pro-
cesses, are comparatively large among the 11 types, similarly
to the honeycomb case in Sec. III A 3. These two give relevant
contributions to the effective pseudospin Hamiltonian derived
in the next section.

4. Effective exchange couplings

Following the procedure of the perturbation expansion in
Sec. II D, we estimate the coupling constants in the effec-
tive pseudospin Hamiltonian for β-Na2PrO3. The results are
plotted in Fig. 8. We take the same parameter ranges of U =
2–6 eV and JH/U = 0.0–0.2, in addition to λ = 0.12 eV, as in
Sec. III B 4.

As in the quasi-2D honeycomb case [49], the AFM Kitaev
coupling K is most dominant for almost the entire parameter
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(d)

(a)

FIG. 7. (a)–(c) Electronic band structures for β-Na2PrO3 obtained by the nonrelativistic ab initio calculations: (a) is in the energy range
from −25 eV to 10 eV, (b) is from −6 eV to 2 eV, and (c) is from −0.1 eV to 1.2 eV. The right panels display the projected density of
states to various orbitals of three atoms Na, Pr, and O in (a) and Pr 4 f and O 2p orbitals in (b). In (c), the red dashed lines show the
band dispersions obtained by the tight-binding calculation with nearest-neighbor transfers estimated by the MLWFs. (d) Electronic band
structures for β-Na2PrO3 obtained by the tight-binding calculation with manually implementing the SOC Hamiltonian HSOC given by Eq. (4)
with the coefficient λ = 0.12 eV. The green solid and red dashed lines show the band dispersions by taking into account all the transfer
integrals and the nearest-neighbor transfer integrals only, estimated by the MLWFs from the nonrelativistic scheme, respectively. The right
panel displays the projected density of states to the 2F5/2, 2F7/2, �7, �8, �′

7, �′
8, and �6 manifolds in the Pr 4 f states. The Fermi level is set

to zero.

region, while the AFM J is subdominant and both � and
�′ are negligibly small. The values are similar to those in
the quasi-2D case [49]. Our results suggest that the experi-
mentally synthesized material β-Na2PrO3 is well described
by the J-K model with dominant AFM K , as in the quasi-
2D case. We note that the amplitudes of J and K for the y
bond are comparatively larger than the other bonds, owing
to the shortest bond length dPr−Pr. Although the antisymmet-
ric Dzyaloshinskii-Moriya interactions can be present in this
structure, they are found to be negligible for all the bonds, less
than 10−6 meV.

Similar exchange coupling constants to the quasi-2D case
suggest that the ground state of β-Na2PrO3, which was syn-
thesized experimentally [48], is the AFM state located in the
vicinity of the AFM Kitaev QSL. We note that the magnetic
phase diagram for the 3D J-K-� model was calculated at
the classical level [99,100], which appears to support our
conclusion.

IV. DISCUSSION

In Sec. III A 4, we found the systematic change of the
effective exchange couplings for the A-site substitution, which
is followed also in the hyperhoneycomb case in Sec. III B 4.
In this section, we discuss the origin by analyzing the per-
turbation processes in detail. Specifically, we decompose
the contributions into different perturbation processes. In the
analyses, we include the results for A = Li and Na [49] to
elucidate the trend for the A-site substitution. Figure 9 shows
the decomposition into different hopping processes in the per-
turbation on a z bond. Here, (μ̃ν̃;μν) denotes the contribution
from the hopping process via t̃iμ̃,i′ ν̃,σ and t̃iμ,i′ν,σ [see Eqs. (12)
and (15)].

As shown in Fig. 9(a), the major contributions to the
AFM Kitaev coupling K come from (ξα;μν) [and symmet-
rically equivalent (ηβ;μν)]. For this type, we find that the
dominant contributions are from (ξα;ξα) [see Fig. 10(a)],
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FIG. 8. Coupling constants in the effective pseudospin Hamilto-
nian in Eq. (16) for β-Na2PrO3 on the (a) x, (b) y, and (c) z bond as
functions of the Hund’s-rule coupling JH. Notations are the same as
in Fig. 4. The SOC coefficient λ is set to 0.12 eV.

(ξα;ηβ) [Fig. 10(b)], and (ξα;ζ ζ ) [Fig. 10(c)]. There are also
substantial contributions from (ζ ζ ;μν), especially (ζ ζ ;AA)
[Fig. 10(d)] and (ζ ζ ;ξξ ) [Fig. 10(e)]. For larger A-site ionic
radii, K is turned into FM mainly due to the contributions from

(ζα;μν). For this type, we find that the dominant contributions
are from (ζα;ζα) [Fig. 10(f)] and (ζα;Aη) [Fig. 10(g)].

Figure 9(b) displays the decomposition of the Heisenberg
coupling J . The AFM J predominantly comes from (ζ ζ ;μν),
where (μ, ν) �= (ξ, ξ ) and (η, η). For this type, we find that
the dominant contributions are from (ζ ζ ;AA) [Fig. 10(h)] and
(ζ ζ ;ζ ζ ) [Fig. 10(i)]. We also find that (ζα;ζα) [Fig. 10(f)],
(ζα;Aη) [Fig. 10(g)], and (ζα;ξγ ) [Fig. 10(j)] contribute to
the AFM J for the compounds with large A-site ionic radii.
We note that there are FM contributions to J dominantly from
(ζ ζ ;ξξ ) [Fig. 10(e)] and symmetrically equivalent (ζ ζ ;ηη).

Figures 9(c) and 9(d) show the decompositions of the
symmetric off-diagonal � and �′, respectively. Although �

is always small as mentioned above, the major contributions
come from the types of (ξβ;μν) and (ζα;μν), where the dom-
inant ones in the former are (ξβ;ηβ) and (ξβ;ζ ζ ), and those
in the latter are (ζα;Aα), (ζα;ζβ), and (ζα;Aξ ). On the other
hand, the major contributions to �′ are mainly by (ζα;μν)
and symmetrically equivalent (ζβ; μν). We find that the
dominant contributions in (ζα;μν) are (ζα;ξα) [Fig. 10(k)],
(ζα;ζ ζ ) [Fig. 10(l)], (ζα;ηβ) [Fig. 10(m)], and (ζα;ξη)
[Fig. 10(n)]. We also find subdominant contributions from
the type (Aξ ;μν), especially (Aξ ;ζ ζ ) [Fig. 10(o)], (Aξ ;ηβ)
[Fig. 10(p)], and (Aξ ;ξα) [Fig. 10(q)].

Summarizing the above analysis, we conclude that the con-
tributions from (ξα;μν) and (ζ ζ ;μν) play a major role in the
dominant AFM Kitaev coupling K , while the latter (ζ ζ ;μν)
simultaneously gives a relevant contribution to the dominant
AFM Heisenberg coupling J . We also find that, when the
trigonal distortions become larger with the increase of the
A-site ionic radii, the contribution from (ζα;μν) becomes
more relevant to all the coupling constants; in particular, it
changes the sign of K from AFM to FM.

Finally, to further analyze the origin of the AFM K , we de-
compose K into the contributions from different intermediate
4 f 2-4 f 0 states in the perturbation [see Eq. (15)]. The result
is shown in Fig. 11. We find that the dominant contributions
come from the intermediate states 3H and 3F . These two have
the lowest and second-lowest energies among many interme-
diate states [see Eqs. (B5)–(B17)]. More specifically, the state
|3H4; MJ = ±4〉 contributes to the AFM K , while |3H4; MJ �=
±4〉 and 3F contribute to the FM K . The contributions from
|3H4; MJ = ±4〉 and 3F quickly decrease with the increase
of the A-site ionic radii, but that from |3H4; MJ �= ±4〉 does
not change so much, which finally leads to the FM K in
the Cs case. We also performed similar analyses on the 3D
hyperhoneycomb case. We found basically the same results as
the quasi-2D honeycomb counterpart (not shown).

V. SUMMARY

In summary, we have systematically investigated the possi-
ble realization of Kitaev-type bond dependent interactions in
A2PrO3 (A = alkali metal) with the quasi-2D honeycomb and
3D hyperhoneycomb structures composed of edge-sharing
PrO6 octahedra. In these compounds, under the strong spin-
orbit coupling and the octahedral crystalline electric field,
the lowest-energy multiplet for the 4 f 1 electronic state of
Pr4+ cations is expected to be the �7 doublet, which is de-
scribed by a pseudospin with the effective angular momentum
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FIG. 9. Coupling constants decomposed into the contributions from different hopping processes in the perturbation; (μ̃ν̃;μν) represents
the contribution via two hopping integrals t̃iμ̃,i′ ν̃,σ and t̃iμ,i′ν,σ on a z bond (μ̃, ν̃, μ, ν = ξ, η, ζ , A, α, β, γ ). The results are shown for A2PrO3

(A = Li, Na, K, Rb, and Cs): (a) Kitaev K , (b) Heisenberg J , and symmetric off-diagonal couplings (c) � and (d) �′. See also Ref. [49] for the
data for A = Li and Na. The black points indicate the net values of the coupling constants. The onsite Coulomb energy U and the Hund’s-rule
coupling JH/U are set to 4 eV and 0.15, respectively, for all the compounds. The SOC coefficient λ is set to 0.12 eV for A = Li, Na, and K,
and 0.11 eV for A = Rb and Cs.

jeff = 1/2. By using the ab initio calculations of the electronic
band structure, we confirmed that this picture holds for all the
compounds and the �7 state comprises a half-filled band to be
a spin-orbit Mott insulator under strong electron correlations.
Following the scheme used in the previous study [49], we
derived a low-energy effective Hamiltonian for the jeff = 1/2
pseudospins.

In the quasi-2D case, we have studied the compounds with
A = K, Rb, and Cs in addition to A = Li and Na in the
previous study [49] and discussed the systematic evolution of
the lattice structures, the electronic band structures, and the
exchange coupling constants. We found that the low-energy
magnetic properties of these compounds can be well described
by the effective pseudospin Hamiltonian with the isotropic
Heisenberg interaction J , the anisotropic Kitaev interaction
K , and the symmetric off-diagonal interaction �′. These three
coupling constants evolve systematically with the A-site sub-
stitution: (i) J is dominantly AFM and does not show a drastic

change, (ii) K is dominantly AFM but decreases for larger
A-site ionic radii and finally turns into FM for A = Cs, and
(iii) �′ is very small for A = Li and Na but increases for
larger A-site ionic radii. Calculating the ground-state phase
diagram for the J-K-�′ model, we showed that the A-site ion
with smaller radius, such as Li and Na, makes the system
proximate to the AFM Kitaev quantum spin liquid, while all
the compounds appear to exhibit an AFM order in the ground
state. We note that the A = Na case has been experimen-
tally synthesized with a mixture of Na and Pr cations [45],
while the Li case was only obtained in a different quasi-1D
structure thus far [44,45] although our ab initio calculations
suggest that the quasi-2D honeycomb structure is at least
locally stable.

We clarified the microscopic origin of the systematic
evolution of the exchange coupling constants by carefully
examining the perturbation processes and identifying the
dominant hopping processes as well as the intermediate states.
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FIG. 10. Schematic pictures of the hopping processes (μ̃ν̃;μν) that give dominant contributions to the effective coupling constants:
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for A2PrO3 (A = Li, Na, K, Rb, and Cs). The parameters are set in
the same way as in Fig. 9.

This analysis complements the previous one limited to A = Li
and Na [49], and furthermore, provides the microscopic infor-
mation relevant to future materials design. For smaller A-site
ionic radii where the trigonal distortion is small, the indi-
rect hoppings fξ -px- fα (equivalent to fη-py- fβ) and fζ -pz- fζ
give dominant contributions to the AFM K , while the in-
direct fζ -pz- fζ and the direct fA- fA contribute dominantly
to the AFM J . Meanwhile, for larger A-site ionic radii, the
increase in the trigonal distortion as well as the lattice constant
weakens the dominant hoppings, but instead, it enhances the
indirect fζ -pz- fα (equivalent to fζ -pz- fβ) that contributes to
the FM K , AFM J , and positive �′. As the intermediate states
for the perturbation processes, the 3H and 3F states have the
main contributions; the state |3H4; MJ = ±4〉 contributes to
the AFM K , while |3H4; MJ �= ±4〉 and 3F contribute to the
FM K . The results are distinct from those for the low-spin d5

electron configuration because of the differences in the spatial
anisotropy of f orbitals and the atomic energy levels under the
spin-orbit coupling and the crystalline electric field.

For the 3D hyperhoneycomb case, we performed simi-
lar analyses for the experimentally synthesized compound
β-Na2PrO3 [48]. We found that the results are similar to
the 2D counterpart with A = Na: The effective pseudospin
Hamiltonian is well described by the Heisenberg-Kitaev
model with negligible �′. The result will stimulate material
exploration of the Kitaev magnets in the series of 3D Pr-based
compounds by the A-site substitution.

We note that the energy scale of K for the f -electron
compounds is much smaller than that for 4d and 5d can-
didates: The former is estimated to be a few meV or less,
but the latter is typically several tens of meV [72,101–109].
This is because the f electrons are more localized than the d

electrons. Although this requires much lower temperatures to
detect the interesting nature of the f -electron candidates, there
are advantages compared to the d-electron cases. One is that
the Kitaev coupling can be AFM, in contrast to the FM one
in the existing d-electron candidates. This allows us to access
unexplored parameter regions of the Kitaev physics. Another
advantage is that parasitic magnetic orders, if any, by the
non-Kitaev couplings might be destroyed by applying smaller
magnetic fields because of the overall smaller energy scales.
These may make it possible to examine another topological
phase that was recently suggested for the AFM Kitaev model
in the magnetic field [50–55].

While our analyses have been limited to the 4 f 1 case, other
f electron configurations may also be useful for realizing
the Kitaev-type interactions. We note that there are several f
electron configurations that allow the lowest-energy multiplet
to be the Kramers doublet [110]. For instance, the lowest-
energy multiplet for the 4 f 5 electron configuration, which is
realized, e.g., for Sm3+, is expected to be the �7 doublet under
the strong spin-orbit coupling and the octahedral crystalline
electric field. In the 4 f 11 case, e.g., for Er3+, while the �7

doublet may compete with the �8 quartet, ErX3 (X = Br and I)
was reported to show interesting magnetic properties [111],
which may be worth investigating the magnetic interactions
from ab initio calculations like in the present study. The
4 f 13 case, which is the electron-hole counterpart of 4 f 1,
was studied both theoretically and experimentally, as men-
tioned in Sec. I. In this case, the expected multiplet is the �6

doublet, but the competition with the �′
7 doublet or the �′

8
quartet may cause unusual magnetic interactions [41], which
is potentially relevant to YbCl3 [43]. It is also interesting to
note that a pyrochlore compound Yb2Ti2O7 was discussed in
the context of the Kitaev-type magnets [112–114]. Besides
the spin-orbit coupling and the crystalline electric field, the
trigonal distortion, p- f mixings, and d- f electron repulsions
may lead to a variety of multiplets [115]. Thus, the f -electron
compounds provide a fertile playground for exotic magnetism
including the Kitaev-type quantum spin liquid. Systematic
studies by extending our present work are left for future
issues.

ACKNOWLEDGMENTS

The authors thank T. Miyake for fruitful discussions. Y.M.
thanks R. Coldea and K. Matsuhira for informative discus-
sions. The crystal structures in Figs. 2(a), 2(b), 6(a)–6(c)
were visualized by VESTA [116]. The second-order pertur-
bation calculations were performed by using SNEG package
[117]. The exact diagonalization with the Lanczos method
was performed by using H� package [118]. Parts of the nu-
merical calculations have been done using the facilities of the
Supercomputer Center, the Institute for Solid State Physics,
the University of Tokyo. This work was supported by JSPS
KAKENHI Grants No. 16H02206 and No. 18K03447, JST
CREST (JP-MJCR18T2), and US NSF PHY-1748958.

APPENDIX A: MULTIPLETS FOR THE f 1 ELECTRON CONFIGURATION

In this Appendix, we present the explicit forms of the multiplets for the f 1 electron configuration. As discussed in Sec. II C,
the 14-fold degenerate f -orbital manifold is split by the SOC into the 2F5/2 sextet with j = 5/2 and the 2F7/2 octet with j = 7/2.
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ξ∓ ∓

√
5c†

η∓ ± 2
√

5ic†
ζ± + 2

√
5c†

A± +
√

3ic†
α∓ ±

√
3c†

β∓)|0〉, (A2)

∣∣∣∣ j = 5

2
, jz = ±5

2

〉
= 1

2
√

14
(−3ic†

ξ∓ ± 3c†
η∓ ∓ 2ic†

ζ± − 2c†
A± +

√
15ic†

α∓ ±
√

15c†
β∓)|0〉, (A3)

while the j = 7/2 manifold has the eigenvalue 3λ/2, which is described by∣∣∣∣ j = 7

2
, jz = ±1

2

〉
= 1

4
√

7
(
√

15ic†
ξ∓ ±

√
15c†

η∓ + 3ic†
α∓ ∓ 3c†

β∓ ± 8ic†
γ±)|0〉, (A4)

∣∣∣∣ j = 7

2
, jz = ±3

2

〉
= 1

4
√

7
(5ic†

ξ∓ ∓ 5c†
η∓ ∓ 4ic†

ζ± − 4c†
A± +

√
15ic†

α∓ ±
√

15c†
β∓)|0〉, (A5)

∣∣∣∣ j = 7

2
, jz = ±5

2

〉
= 1

4
√

14
(
√

6ic†
ξ∓ ∓

√
6c†

η∓ ± 4
√

6ic†
ζ± − 4

√
6c†

A± −
√

10ic†
α∓ ∓

√
10c†

β∓)|0〉, (A6)

∣∣∣∣ j = 7

2
, jz = ±7

2

〉
= 1

4
(
√

3ic†
ξ∓ ±

√
3c†

η∓ −
√

5ic†
α∓ ±

√
5c†

β∓)|0〉. (A7)

These manifolds are further split by the OCF as discussed in Sec. II C. We present the multiplets other than the �7 doublet in
Eq. (13). The �8 quartet has the eigenvalue 120B40, which is described by∣∣∣∣ j = 5

2
, �8a; ±

〉
= 1

6
√

7
(−

√
15ic†

ξ∓ ±
√

15c†
η∓ ± 2

√
15ic†

ζ± + 9ic†
α∓ ± 9c†

β∓)|0〉, (A8)

∣∣∣∣ j = 5

2
, �8b; ±

〉
= 1

14
(−

√
35ic†

ξ∓ ∓
√

35c†
η∓ −

√
21ic†

α∓ ±
√

21c†
β∓ ± 2

√
21ic†

γ±)|0〉, (A9)

the �′
7 doublet from the j = 7/2 manifold has the eigenvalue −1080(B40 + 14B60), which is described by∣∣∣∣ j = 7

2
, �′

7; ±
〉

= 1√
7

(−ic†
ξ∓ ± c†

η∓ ∓ ic†
ζ± + 2c†

A±)|0〉, (A10)

the �′
8 quartet has the eigenvalue 120(B40 + 168B60), which is described by∣∣∣∣ j = 7

2
, �′

8a; ±
〉

= 1

2
√

7
(
√

3ic†
ξ∓ ∓

√
3c†

η∓ ∓ 2
√

3ic†
ζ± +

√
5ic†

α∓ ±
√

5c†
β∓)|0〉, (A11)

∣∣∣∣ j = 7

2
, �′

8b; ±
〉

= 1

6
√

7
(−9ic†

ξ∓ ∓ 9c†
η∓ +

√
15ic†

α∓ ∓
√

15c†
β∓ ∓ 2

√
15ic†

γ±)|0〉, (A12)

and the �6 doublet has the eigenvalue 840(B40 − 30B60), which is described by∣∣∣∣ j = 7

2
, �6; ±

〉
= 1√

3
(−ic†

α∓ ± c†
β∓ ∓ ic†

γ±)|0〉. (A13)

APPENDIX B: MULTIPLETS FOR THE f 2 ELECTRON CONFIGURATION

In this Appendix, we present the multiplets for the f 2 electron configuration discussed in Sec. II D. In the Russell-Saunders
scheme, the 91 multiplets are given in the form

|Ltot, Stot, Jtot, MJ〉 = (−1)Stot−Ltot−MJ
∑

ML,MS

√
2Jtot + 1

(
Ltot Stot Jtot

ML MS −MJ

)
|Ltot, Stot, ML, MS〉, (B1)

|Ltot, Stot, ML, MS = ±1〉 = (−1)−ML
∑

m1,m2

√
2(2Ltot + 1)

(
3 3 Ltot

m1 m2 −ML

)
c̃†

m1±c̃†
m2±|0〉, (B2)

|Ltot, Stot, ML, MS = 0〉 = (−1)−ML
∑

m1,m2

√
2Ltot + 1

(
3 3 Ltot

m1 m2 −ML

)
(c̃†

m1+c̃†
m2− + c̃†

m1−c̃†
m2+)|0〉, (B3)
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where Ltot, Stot, and Jtot denote the total orbital, spin, and angular momentum quantum numbers, respectively; ML, MS , and MJ

denote the total magnetic, secondary total spin, and secondary total angular momentum quantum numbers, respectively; m1 and
m2 are the magnetic quantum numbers taking −3,−2, . . . , 3. In these equations, the 2 × 3 matrices are the Wigner 3- j symbol
given by the Clebsch-Gordan coefficients.

For example, the state |Ltot = 5, Stot = 1, Jtot = 4, MJ = ±4〉, which is described as |3H4; MJ = ±4〉, is given in the form

|3H4; MJ = ±4〉 = 1

120
√

22
(∓6

√
5ic†

A∓c†
α∓ − 6

√
5c†

A∓c†
β∓ + 10

√
3c†

A∓c†
η∓ ∓ 10

√
3ic†

A∓c†
ξ∓ ∓ 90

√
5ic†

A±c†
α±

+ 90
√

5c†
A±c†

β± + 90
√

3c†
A±c†

η± ± 90
√

3ic†
A±c†

ξ± + 45
√

3ic†
α∓c†

β± − 20
√

3c†
α∓c†

γ∓

− 6
√

5c†
α∓c†

ζ∓ − 9
√

5ic†
α∓c†

η± ∓ 36
√

5c†
α∓c†

ξ± + 45
√

3ic†
α±c†

β∓ − 90
√

5c†
α±c†

ζ±

− 9
√

5ic†
α±c†

η∓ ∓ 36
√

5c†
α±c†

ξ∓ ∓ 20
√

3ic†
β∓c†

γ∓ ± 6
√

5ic†
β∓c†

ζ∓ ± 36
√

5c†
β∓c†

η±

− 9
√

5ic†
β∓c†

ξ± ∓ 90
√

5ic†
β±c†

ζ± ± 36
√

5c†
β±c†

η∓ − 9
√

5ic†
β±c†

ξ∓ ± 12
√

5ic†
γ∓c†

η∓

− 12
√

5c†
γ∓c†

ξ∓ ± 10
√

3ic†
ζ∓c†

η∓ + 10
√

3c†
ζ∓c†

ξ∓ ± 90
√

3ic†
ζ±c†

η± − 90
√

3c†
ζ±c†

ξ±

− 45
√

3ic†
η∓c†

ξ± − 45
√

3ic†
η±c†

ξ∓)|0〉. (B4)

The energy eigenvalues of the intermediate states En are given as

E3H4
= F0 − 25F2 − 51F4 − 13F6 − 3λ, (B5)

E3H5
= F0 − 25F2 − 51F4 − 13F6 − λ/2, (B6)

E3H6
= F0 − 25F2 − 51F4 − 13F6 + 5λ/2, (B7)

E3F2
= F0 − 10F2 − 33F4 − 286F6 − 2λ, (B8)

E3F3
= F0 − 10F2 − 33F4 − 286F6 − λ/2, (B9)

E3F4
= F0 − 10F2 − 33F4 − 286F6 + 3λ/2, (B10)

E1G4
= F0 − 30F2 + 97F4 + 78F6, (B11)

E1D2
= F0 + 19F2 − 99F4 + 715F6, (B12)

E3P0
= F0 + 45F2 + 33F4 − 1287F6 − λ, (B13)

E3P1
= F0 + 45F2 + 33F4 − 1287F6 − λ/2, (B14)

E3P2
= F0 + 45F2 + 33F4 − 1287F6 + λ/2, (B15)

E1I6
= F0 + 25F2 + 9F4 + F6, (B16)

E1S0
= F0 + 60F2 + 198F4 + 1716F6, (B17)

where Fk are given by the Slater-Condon parameters in Eq. (7) as F0 = F 0, F2 = F 2/225, F4 = F 4/1089, and F6 =
25F 6/184041; we took the ratio as F 2 : F 4 : F 6 = 12.980 : 8.163 : 5.878 given by the Hartree-Fock calculation for the 4 f 2

case [85]. The Coulomb repulsion U and the Hund’s-rule coupling JH are given in the linear combinations of Fk [see Eqs. (8)
and (9)].
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(a)

fαpx
fξ fζ

pz fζpzz
xy

(b)

(c) (d)

(h)

(i)

fAfA fξ fξ

fξ
fA px

fαpz
fζ

(e)

fξ fβpx

(f)

(g)

(j)

(k)

fηpx
fξ

fA fγ

fγfξ

fA fα

FIG. 12. Relevant hopping processes along a z bond: (a) indirect
fξ -px- fα , (b) indirect fζ -pz- fζ , (c) direct fA- fA, (d) direct fξ - fξ , (e)
direct fA- fγ , (f) direct fξ - fβ and indirect fξ -px- fβ , (g) direct fξ - fη
and indirect fξ -px- fη, (h) indirect fζ -pz- fα , (i) indirect fA-px- fξ , (j)
direct fξ - fγ , and (k) direct fA- fα .

APPENDIX C: TRANSFER INTEGRALS IN THE
f -ORBITAL MANIFOLD

In this Appendix, we discuss the origins of the transfer
integrals and their systematic changes for the A-site substi-
tution found in Table II. Suppose that trigonal distortions are
absent, indirect hopping paths via O p orbitals yield nonzero
values of two types of transfer integrals, t̃iξ,i′α,σ with p f π and
p f σ bonds as exemplified for the indirect hopping process
fξ -px- fα in Fig. 12(a) and t̃iζ ,i′ζ ,σ with p f π bonds via pz

as shown in Fig. 12(b). For these two, there are also con-
tributions from direct hopping paths between the f orbitals,
dominantly with f f π and f f φ bonds for the former and
an f f δ bond for the latter. Meanwhile, the direct hopping
paths yield other five nonzero transfer integrals: t̃iA,i′A,σ with
an f f π bond [Fig. 12(c)], t̃iξ,i′ξ,σ dominantly with f f σ and
f f φ bonds [Fig. 12(d)], t̃iA,i′γ ,σ with f f π and f f φ bonds
[Fig. 12(e)], t̃iξ,i′β,σ dominantly with f f π and f f φ bonds
[Fig. 12(f)], and t̃iξ,i′η,σ dominantly with f f σ and f f φ bonds
[Fig. 12(g)]. We note that, when trigonal distortions are intro-
duced, the indirect hopping processes fξ -px- fβ and fξ -px- fη
(equivalently, fξ -py- fη) become dominant for the latter two
t̃iξ,i′β,σ and t̃iξ,i′η,σ , respectively [Figs. 12(f) and 12(g)]. The
remaining four types of the transfer integrals t̃iζ ,i′α,σ , t̃iA,i′ξ,σ ,
t̃iξ,i′γ ,σ , and t̃iA,i′α,σ become nonzero only in the presence of
trigonal distortions; the indirect hopping processes fζ -pz- fα
and fξ -px- fA become dominant for t̃iζ ,i′α,σ and t̃iA,i′ξ,σ , re-
spectively [see Figs. 12(h) and 12(i)], and the direct hopping
processes fξ - fγ and fA- fα become dominant for t̃iξ,i′γ ,σ and
t̃iA,i′α,σ , respectively [see Figs. 12(j) and 12(k)].

The amplitudes of t̃iξ,i′α,σ and t̃iζ ,i′ζ ,σ , which are dominated
by the indirect hopping paths, are quite large among the 11
types of transfer integrals. They, however, decrease with the
increase in the A-site ionic radii which enhance the trigo-
nal distortions. On the other hand, among the five transfer
integrals predominantly originating from the direct hopping
paths, the amplitude of t̃iA,i′A,σ is distinctively large, which
also decreases with the increase of the A-site ionic radii due to
the increase in dPr-Pr. While the amplitudes of the remaining
four t̃iζ ,i′α,σ , t̃iA,i′ξ,σ , t̃iξ,i′γ ,σ , and t̃iA,i′α,σ become larger with
the increase of trigonal distortions for larger A-site ionic radii,
that of t̃iζ ,i′α,σ via the p f σ bond between pz and fα orbitals is
particularly sensitive and becomes largest for A = Cs.
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